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Abstract—For most problems in science and engineering we can obtain data sets that describe the observed system from various

perspectives and record the behavior of its individual components. Heterogeneous data sets can be collectively mined by data fusion.

Fusion can focus on a specific target relation and exploit directly associated data together with contextual data and data about system’s

constraints. In the paper we describe a data fusion approach with penalized matrix tri-factorization (DFMF) that simultaneously

factorizes data matrices to reveal hidden associations. The approach can directly consider any data that can be expressed in a matrix,

including those from feature-based representations, ontologies, associations and networks. We demonstrate the utility of DFMF for

gene function prediction task with eleven different data sources and for prediction of pharmacologic actions by fusing six data sources.

Our data fusion algorithm compares favorably to alternative data integration approaches and achieves higher accuracy than can be

obtained from any single data source alone.

Index Terms—Data fusion, intermediate data integration, matrix factorization, data mining, bioinformatics, cheminformatics
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1 INTRODUCTION

DATA abound in all areas of human endeavour. We may
gather various data sets that are directly related to the

problem, or data sets that are loosely related to our study
but could be useful when combined with other data sets.
Consider, for example, the exposome [1] that encompasses
the totality of human endeavour in the study of disease. Let
us say that we examine susceptibility to a particular disease
and have access to the patients’ clinical data together with
data on their demographics, habits, living environments,
friends, relatives, movie-watching habits, and movie genre
ontology. Mining such a diverse data collection may reveal
interesting patterns that would remain hidden if we would
analyze only directly related, clinical data. What if the dis-
ease was less common in living areas with more open
spaces or in environments where people need to walk
instead of drive to the nearest grocery? Is the disease less
common among those that watch comedies and ignore
politics and news?

Methods for data fusion can collectively treat data sets
and combine diverse data sources even when they differ in
their conceptual, contextual and typographical representa-
tion [2], [3]. Individual data sets may be incomplete, yet
because of their diversity and complementarity, fusion can
improve the robustness and predictive performance of the
resulting models [4], [5].

According to Pavlidis et al. (2002) [6], data fusion
approaches can be classified into three main categories
depending on the modeling stage at which fusion takes

place. Early (or full) integration transforms all data sources
into a single feature-based table and treats this as a single
data set that can be explored by any of the well-
established feature-based machine learning algorithms.
The inferred models can in principle include any type of
relationships between the features from within and
between the data sources. Early integration relies on
procedures for feature construction. For our exposome
example, patient-specific data would need to include both
clinical data and information from the movie genre ontol-
ogies. The former may be trivial as this data is already
related to each specific patient, while the latter requires
more complex feature engineering. Early integration also
neglects the modular structure of the data.

In late (decision) integration, each data source gives rise to
a separate model. Predictions of these models are fused by
model weighting. Again, prior to model inference, it is nec-
essary to transform each data set to encode relations to the
target concept. For our example, information on the movie
preferences of friends and relatives would need to be
mapped to disease associations. Such transformations may
not be trivial and would need to be crafted independently
for every data source.

The youngest branch of data fusion algorithms is interme-
diate (partial) integration. Algorithms in this category explic-
itly address the multiplicity of data and fuse them through
inference of a single joint model. Intermediate integration
does not merge the input data, nor does it develop separate
models for each data source. It instead retains the structure
of the data sources by incorporating it within the structure
of predictive model. This particular approach is often pre-
ferred because of its superior predictive accuracy [5], [6],
[7], [8], [9], but for a given model type, it requires the devel-
opment of a new inference algorithm.

We here report on the development of a new method
for intermediate data fusion based on constrained matrix
factorization. Our aim was to construct an algorithm that
requires no or only minimal transformation of input data
and can fuse feature-based representations, ontologies,
associations and networks. We focus on the challenge of
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dealing with collections of heterogeneous data sources,
and while showing that our method can be used on siz-
able problems from current research, scaling is not the
focus of the present paper. We first present our data
fusion algorithm, henceforth DFMF (Section 2), and then
place it within the related work of relational learning
approaches (Section 3). We also refer to related data
integration approaches, specifically to methods of kernel-
based data fusion (Section 3). We then examine the utility
of DFMF and experimentally compare it with intermedi-
ate integration by multiple kernel learning (MKL), early
integration with random forests, and tri-SPMF [10],
previously proposed matrix tri-factorization approach
(Section 4).

2 DATA FUSION ALGORITHM

The DFMF considers r object types E1; . . . ; Er and a collec-
tion of data sources, each relating a pair of object types
ðEi; EjÞ. In our introductory example of the exposome, object
types could be a patient, a disease or a living environment,

among others. If there are ni objects of type Ei (oip is pth

object of type Ei) and nj objects of type Ej, we represent the
observations from the data source that relates ðEi; EjÞ for
i 6¼ j in a sparse matrix Rij 2 Rni�nj . An example of such a
matrix would relate patients and drugs by reporting on
patient’s current drug prescriptions. Notice that matrices
Rij and Rji are in general asymmetric. A data source that
provides relations between objects of the same type Ei is
represented by a constraint matrix Qi 2 Rni�ni . Examples of
such constraints are social networks and drug interactions.

In real-world scenarios we might not have access to rela-
tions between all pairs of object types. Our data fusion algo-
rithm still integrates all available data if the underlying
graph of relations between object types is connected. In that
case, low-dimensional representations of objects of certain
type borrow information from related objects of the differ-
ent type. Fig. 1 shows an example of an underlying graph of
relations and a block configuration of the fusion system
with four object types.

To retain the block structure of our fusion system and
hence model distinct relations between object types, we
propose the simultaneous factorization of all relation
matrices Rij constrained by Qi. The resulting system
contains factors that are specific to each data source and
factors that are specific to each object type. Through fac-
tor sharing we fuse the data but also identify source-spe-
cific patterns.

We have developed a variant of three-factor penalized
matrix factorization that simultaneously decomposes
all available relation matrices Rij into Gi 2 Rni�ki , Gj 2
Rnj�kj and S 2 Rki�kj , and regularizes their approximation
through constraint matrices Qi and Qj such that Rij �
GiSijG

T
j . Approximation can be rewritten such that entry

Rijðp; qÞ is approximated by an inner product of the pth row
of matrix Gi and a linear combination of the columns of
matrix Sij, weighted by the qth column of Gj. The matrix
Sij, which has relatively few vectors compared to Rij

(ki � ni, kj � nj), is used to represent many data vectors,
and a good approximation can only be achieved in the pres-
ence of the latent structure in the original data.

The proposed fusion approach is different from treat-
ing an entire system (e.g., from Fig. 1) as a large single
matrix. Factorization of such a matrix would yield
factors that are not object type-specific and would thus
disregard the structure of the system. We also show (Sec-
tion 5.5) that such an approach is inferior in terms of
predictive performance.

In comparison with existing multi-type relational data
factorization approaches (see Section 3) the following char-
acterizes our DFMF data fusion method:

i) DFMF can model multiple relations between multiple
object types.

ii) Relations between some object types can be
completely missing (see Fig. 1).

iii) Every object type can be associated with multiple
constraint matrices.

iv) The algorithm makes no assumptions about struc-
tural properties of relations (e.g., symmetry of
relations).

In order to be applicable to general real-world fusion prob-
lems, data fusion algorithm would need to jointly address
all of these characteristics. Besides DFMF proposed in this
manuscript, we are not aware of any other approach that

Fig. 1. Conceptual fusion configuration for four object types, E1; E2; E3

and E4, equivalently represented by the graph of relations between
object types (a) and the block-based matrix structure (b). Each data
source relates a pair of object types, denoted by arcs in a graph (a) or
matrices with shades of gray in block matrix (b). For example, data
matrix R23 relates object types E2 and E3. Some relations are entirely
missing. For instance, there is no data source relating objects from E3

and E1, as there is no arc linking nodes E3 and E1 in (a) or equivalently, a
matrix R31 is missing in (b). Relations can be asymmetric, such that

R23 6¼ RT
32. Constraints denoted by loops in (a) or matrices with blue

entries in (b) relate objects of the same type. In our example configura-
tion, constraints are provided for object types E2 (one constraint matrix)
and E4 (three constraint matrices).
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would do so. Most real-world data integration problems
would usually consider a larger number of object types, but
with growing number of object types, it is likely that data
relating a pair of object types is either not available nor
meaningful. On the other side, there may be various data
sources available on interactions between objects of the
same type that also require appropriate treatment. For
example of this type of data, consider abundance of data
bases on drug or disease interactions.

In the case study presented in this paper we apply data
fusion to infer relations between two target object types, Ei

and Ej (Sections 2.6 and 2.7). This relation, encoded in a tar-
get matrix Rij, will be observed in the context of all other
data sources (Section 2.1). We assume that our target Rij is a
½0; 1�-matrix that is only partially observed. Its entries indi-
cate a degree of relation, 0 denoting no relation and 1 denot-
ing the strongest relation. We aim to predict unobserved
entries in Rij by reconstructing them through matrix factori-
zation. Such treatment in general applies to multi-class or
multi-label classification tasks, which are conveniently
addressed by multiple kernel fusion [11], with which we
compare our performance in this paper.

In the following, we present the factorization model,
objective function, derive the updating rules for optimiza-
tion, and describe the procedure for prediction of rela-
tions from matrix factors. In the optimization part, we
closely follow [10] in notation, mathematical derivation
and proof technique.

2.1 Factorization Model for Multi-Relational
and Multi-Object Type Data

An input to DFMF is a relation block matrix R that concep-
tually represents all relation matrices:

R ¼
� R12 � � � R1r

R21 � � � � R2r

..

. ..
. . .

. ..
.

Rr1 Rr2 � � � �

26664
37775: (1)

Here, an asterisk (“*”) denotes the relation between the
same type of objects that DMFM does not model. Notice
that our method does not require the presence of all relation
matrices in Eq. (1). Depending on a particular data setup,
any subset of relation matrices might be missing and thus,
unmodeled. A block in the ith row and jth column (Rij) of
matrix R represents the relationship between object type Ei

and Ej. The pth object of type Ei (i.e., o
i
p) and qth object of

type Ej (i.e., o
j
q) are related by Rijðp; qÞ. An important aspect

of Eq. (1) for data fusion and what distinguishes DMFM
from other conceptually related matrix factorization models
such as S-NMTF [12] or even tri-SPMF [10] is that it is
designed for multi-object type and multi-relational data

where the relations can be asymmetric, Rji 6¼ RT
ij, and some

can be completely missing (unknown Rij) (Section 2.3).
We additionally consider constraints relating objects

of the same type. Several data sources of this kind may
be available for each object type. For instance, personal
relations may be observed from a social network or a
family tree. Assume there are ti 	 0 data sources for
object type Ei represented by a set of constraint matrices

Q
ðtÞ
i for t 2 f1; 2; . . . ; tig. Constraints are collectively

encoded in a set of constraint block diagonal matrices

QðtÞ for t 2 f1; 2; . . . ;maxi tig:

QðtÞ ¼ Diag
�
Q

ðtÞ
1 ;Q

ðtÞ
2 ; . . . ;QðtÞ

r

�
: (2)

The ith block along the main diagonal of QðtÞ is zero if
t > ti. Entries in constraint matrices are positive for objects
that are not similar and negative for objects that are simi-
lar. The former are known as cannot-link constraints
because they impose penalties on the current approxima-
tion of the matrix factors, and the latter are must-link con-
straints, which are rewards that reduce the value of the
cost function during optimization. Must-link constraint
expresses the notion that a pair of objects of the same type
should be close in their latent component space. An exam-
ple of must-link constraints are, for instance, drug-drug
interactions, and example of cannot-link constraints the
matrix of adversaries. Typically, data sources with must-
link constraints are more abundant.

The block matrix R is tri-factorized into block matrix fac-
torsG and S:

G ¼ Diag
�
G

n1�k1
1 ;G

n2�k2
2 ; . . . ;Gnr�kr

r

�
;

S ¼
� Sk1�k2

12 � � � Sk1�kr
1r

S
k2�k1
21 � � � � S

k2�kr
2r

..

. ..
. . .

. ..
.

S
kr�k1
r1 S

kr�k2
r2 � � � �

26664
37775: (3)

Matrix S in Eq. (3) has the same block structure as R in

Eq. (1). It is in general asymmetric (i.e., Sji 6¼ ST
ij) and if a

relation matrix is missing in R then also its corresponding
matrix factor in S will be missing. These two properties of S
stem from our decision to model relation matrices without
assuming their structural properties or their availability for
every possible combination of object types.

A factorization rank ki is assigned to Ei during inference
of the factorized system. Factor Sij defines the latent relation
between object types Ei and Ej, while factor Gi is specific to
objects of type Ei and is used in the reconstruction of every
relation with this object type. In this way, each relation

matrix Rij obtains its own factorization GiSijG
T
j with factor

Gi (Gj) that is shared across all relations which involve
object types Ei (Ej). This can also be observed from the block

structure of the reconstructed systemGSGT :

� G1S12G
T
2 � � � G1S1rG

T
r

G2S21G
T
1 � � � � G2S2rG

T
r

..

. ..
. . .

. ..
.

GrSr1G
T
1 GrSr2G

T
2 � � � �

26664
37775: (4)

Here, the pth row in factor Gi holds the latent component

representation of object oip. By holding Gj and Sij fixed, it is

clear that latent component representation of oip depends on

Gj as well as on the existence of relation Rij: Consequently,
all direct and indirect relations have a determining influence
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on the calculation of oipth latent representation. Just as the

objects of type Ei are represented byGi, each relation is rep-
resented by factor Sij, which models how the latent compo-
nents interact in the respective relation. The asymmetry of
Sij takes into account whether a latent component occurs as
a subject or an object of corresponding relation Rij.

2.2 Objective Function

The objective function minimized by DFMF aims at good
approximation of the input data and adherence to must-link
and cannot-link constraints:

min
G	0

JðG;SÞ ¼
X
Rij2R

����Rij 
GiSijG
T
j

����2
þ

Xmaxi ti

t¼1

trðGTQðtÞGÞ:
(5)

Here, jj � jj and trð�Þ denote the Frobenius norm and trace,
respectively, and R is the set of all relations included in our
model. Our objective function explicitly allows that
relations between some object types are entirely missing.

Notice that in Eq. (5) we do not approximate input data
by jjR
GSGT jj2 as was proposed in related approaches
of S-NMTF [12] and tri-SPMF [10]. To model the data
system such as that from Fig. 1, one could be tempted to
replace the missing relation matrices with zero matrices.
This would enable the optimization to further reduce the
value of objective function, but would also introduce
relations in factorized system that were intentionally not
present in the input data. Their inclusion in the model
would distort inferred relations between other object types
(see Section 5.1).

2.3 Computing the Factorization

The DFMF algorithm for solving the minimization problem
specified in Eq. (5) is shown in Algorithm 1. The algorithm
first initializes matrix factors (Section 2.8) and then itera-
tively refines them by alternating between fixing G and
updating S, and then fixing S and updatingG, until conver-
gence. Successive updates of Gi and Sij converge to a local
minimum of the optimization problem.

We derive multiplicative updating rules for regularized
decomposition of relation matrices by fixing one matrix fac-
tor (e.g., G) and considering the roots of the partial deriva-
tive with respect to the other matrix factor (e.g., S, and vice-
versa) of the Lagrangian function. The latter is constructed
from the objective function (Eq. (5)):

JðG;SÞ ¼
X
Rij2R

tr
�
RT

ijRij 
 2GT
j R

T
ijGiSij

þGT
i GiSijG

T
j GjS

T
ij

�
þ

Xmaxiti

t¼1

Xr
i¼1

tr
�
GT

i Q
ðtÞ
i Gi

�
:

(6)

Regarding the correctness and convergence of the algo-
rithm in Algorithm 1 we have the following two theorems.

Theorem 1 (Correctness of DFMF algorithm). If the update
rules for matrix factors G and S from Algorithm 1 converge,
then the final solution satisfies the KKT conditions of optimality.

Proof. We introduce the Lagrangian multipliers �1; �2; . . . ;
�r and construct the Lagrange function:

L ¼ JðG;SÞ 

Xr
i¼1

tr
�
�iG

T
i

�
: (7)

Then for i; j; such that Rij 2 R:

@L

@Sij
¼ 
2GT

i RijGj þ 2GT
i GiSijG

T
j Gj;

and for i ¼ 1; 2; . . . ; r:

@L

@Gi
¼

X
j:Rij2R

�
2RijGjS
T
ij þ 2GiSijG

T
j GjS

T
ij

�
þ

X
j:Rji2R

�
2RT
jiGjSji þ 2GiS

T
jiG

T
j GjSji

�
þ

Xmaxi ti

t¼1

2Q
ðtÞ
i Gi 
 �i:

(8)

Fixing G1;G2; . . . ;Gr and letting @L
@Sij

¼ 0 for all i; j ¼ 1;
2; . . . ; r, we obtain:

S ¼ ðGTGÞ
1GTRGðGTGÞ
1:

We then fix S and let @L
@Gi

¼ 0 for i ¼ 1; 2; . . . ; r: We get
an expression for the KKT multiplier �i from Eq. (8).
Then the KKT complementary condition for the non-
negativity of Gi is

Algorithm 1. Factorization algorithm of proposed data fusion approach
(DFMF).
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0 ¼ �i �Gi

¼
X

j:Rij2R

�
2RijGjS
T
ij þ 2GiSijG

T
j GjS

T
ij

�24
þ

X
j:Rji2R

�
 2RT
jiGjSji þ 2GiS

T
jiG

T
j GjSji

�þ Xmaxi ti

t¼1

2Q
ðtÞ
i Gi

#
�Gi:

(9)

Let us here introduce variables Gi to denote Gi ¼ �i �Gi:
Eq. (9) is a fixed point equation and the solution must
satisfy it at convergence. We let:

Q
ðtÞ
i ¼ �

Q
ðtÞ
i

�þ 
 �
Q

ðtÞ
i

�

RijGjS

T
ij ¼

�
RijGjS

T
ij

�þ 
 �
RijGjS

T
ij

�

SijG

T
j GjS

T
ij ¼

�
SijG

T
j GjS

T
ij

�þ 
 �
SijG

T
j GjS

T
ij

�

RT

jiGjSji ¼
�
RT

jiGjSji

�þ 
 �
RT

jiGjSji

�

ST
jiG

T
j GjSji ¼

�
ST
jiG

T
j GjSji

�þ 
 �
ST
jiG

T
j GjSji

�

;

where all matrices on right-hand sides are nonnegative.
Then, given an initial guess of Gi, the successive updates
of Gi using Eqs. (10), (11), and (12) converge to a local
minimum of the problem in Eq. (5). It can be easily
seen that using such a rule, at convergence, Gi satisfies
Gi �Gi ¼ 0; which is equivalent to Gi ¼ 0 (Eq. (9)) due to
nonnegativity ofGi. tu

Theorem 2 (Convergence of DFMF algorithm). The objective
function JðG;SÞ given by Eq. (5) is nonincreasing under the
updating rules for matrix factorsG and S in Algorithm 1.

Please see the Appendix for a detailed proof of the above
theorem. Our proof essentially follows the idea of auxiliary
functions often used in the convergence proofs of approxi-
mate matrix factorization algorithms [13].

2.4 Stopping Criterion

In this paper we apply data fusion to infer relations between
two target object types, Ei and Ej. We hence define the stop-
ping criterion that observes convergence in approximation
of only the target matrix Rij. Our convergence criterion is
the absolute difference of target matrix reconstruction error,

jjRij 
GiSijG
T
j jj2; computed in two consecutive iterations

of DFMF algorithm. In our experiments the stopping

threshold was set to 10
5. To reduce the computational
load, the convergence criterion was assessed only every fifth
iteration.

2.5 Parameter Estimation

Parameters to DFMF algorithm are factorization ranks,
k1; k2; . . . ; kr: These are chosen from a predefined interval of
possible rank values such that their choice maximizes the
estimated quality of the model. To reduce the number of
required factorization runs we mimic the bisection method
by first testing rank values at the midpoint and borders of
specified ranges and then for each rank value selecting the
subinterval for which the resulting model was of higher
quality. We evaluate the models through the explained vari-
ance, the residual sum of squares (RSS) and a measure

based on the cophenetic correlation coefficient r [14]. We
compute these measures for the target relation matrix. The

RSS is computed over observed associations ðoip; ojqÞ in Rij as

RSSðRijÞ ¼
P½ðRij 
GiSijG

T
j Þðp; qÞ�2: Similarly, explained

variance is R2ðRijÞ ¼ 1
 RSSðRijÞ=
P½Rijðp; qÞ�2:

We assess the three quality scores through internal cross-
validation and observe how R2ðRijÞ, RSSðRijÞ and rðRijÞ
vary with changes of factorization ranks. We select ranks
k1; k2; . . . ; kr where the cophenetic coefficient begins to fall,
the explained variance is high and the RSS curve shows an
inflection point [15].

2.6 Prediction from Matrix Factors

The approximate relation matrix bRij for the target pair of

object types Ei and Ej is reconstructed as bRij ¼ GiSijG
T
j :

When the model is requested to propose relations for a new

object oiniþ1 of type Ei that was not included in the training

data, we need to estimate its factorized representation and
use the resulting factors for prediction. We formulate a non-
negative linear least-squares and solve it with an efficient
interior point Newton-like method [16] for minxl	0jjðGlSliþ
GlS

T
ilÞxl 
 oi;lniþ1jj22, where oi;lniþ1 2 Rnl is the original descrip-

tion of object oiniþ1 (if available) and xl 2 Rki is its factorized

representation (for l ¼ 1; 2; . . . ; r and l 6¼ i). A solution vec-

tor given by
P

l x
�T
l is added to Gi and a new bRij 2

Rðniþ1Þ�nj is computed.
We would like to identify object pairs ðoip; ojqÞ for which

the predicted degree of relation bRijðp; qÞ is unusually high.

We are interested in candidate pairs ðoip; ojqÞ for which the

estimated association score bRijðp; qÞ is greater than the mean

estimated score of all known relations of oip:

bRijðp; qÞ > 1

jAðoip; EjÞj
X

o
j
m2Aðoip;EjÞ

bRijðp;mÞ; (13)

where Aðoip; EjÞ is the set of all objects of Ej related to oip.
Notice that this rule is row-centric, that is, given an object of
type Ei, it searches for objects of the other type (Ej) that it
could be related to. We can modify the rule to become col-
umn-centric, or even combine the two rules.

For example, let us consider that we are studying disease
predispositions for a set of patients. Let the patients be
objects of type Ei and diseases objects of type Ej. A patient-
centric rule would consider a patient and his medical his-
tory and through Eq. (13) propose a set of new disease asso-
ciations. A disease-centric rule would instead consider all
patients already associated with a specific disease and iden-
tify other patients with a sufficiently high association score.

We can combine row-centric and column-centric
approaches. For example, we can first apply a row-centric
approach to identify candidates of type Ei and then estimate

the strength of association to a specific object ojq by reporting

an inverse percentile of association score in the distribution

of scores for all true associations of ojq, that is, by considering

the scores in the q-ed column of bRij. In our gene function
prediction study, we use row-centric approach for
candidate identification and column-centric approach for
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association scoring, and in the experiment from cheminfor-
matics we apply row-centric approach to both tasks.

2.7 An Ensemble Approach to Prediction

Different initializations ofGi may in practice give rise to dif-
ferent factorizations of the fusion system. To leverage this
effect we construct an ensemble of factorization models.
The resulting matrix factors in each model may also be dif-
ferent due to small random perturbations of selected factori-
zation ranks. We use each factorization system for inference
of associations (Section 2.6) and then select the candidate
pair through a majority vote. That is, the rule from Eq. (13)
must apply in more than one half of factorized systems of
the ensemble. Ensembles improved the predictive accuracy
and stability of the factorized system and the robustness of
the results. In our experiments the ensembles combined
15 factorization models.

2.8 Matrix Factor Initialization

The inference of the factorized system in Section 2.1 is
sensitive to the initialization of factor G. Proper initiali-
zation sidesteps the issue of local convergence and
reduces the number of iterations needed to obtain matrix
factors of equal quality. We initialize G by separately ini-
tializing each Gi; using algorithms for single-matrix fac-
torization. Factors S are computed from G (Algorithm 1)
and do not require initialization.

Wang et al. [10] and several other authors [13] use sim-
ple random initialization. Other more informed initializa-
tion algorithms include random C [17], random Acol [17],
non-negative double SVD and its variants [18], and
k-means clustering or relaxed SVD-centroid initialization
[17]. We show that the latter approaches are indeed better
over a random initialization (Section 5.4). We use random
Acol in our case study. Random Acol computes each col-
umn of Gi as an element-wise average of a random subset
of columns in Rij.

3 RELATED WORK

Approximate matrix factorization estimates a data matrix R
as a product of low-rank matrix factors that are found by
solving an optimization problem. In two-factor decomposi-
tion, R 2 Rn�m is decomposed to a product WH, where

W 2 Rn�k, H 2 Rk�m and k � minðn;mÞ. A large class of
matrix factorization algorithms minimize discrepancy
between the observed matrix and its low-rank approxima-
tion, such that R � WH. For instance, SVD, non-negative
matrix factorization and exponential family PCA all mini-
mize Bregman divergence [19].

Although often used in data analysis for dimensionality
reduction, clustering or low-rank approximation, there
have been only a few applications of matrix factorization in
data fusion. Lange and Buhmann [20] proposed an integra-
tion by non-negative matrix factorization of a target matrix,
which was a convex combination of similarity matrices
obtained from multiple information sources. Their work is
similar to that of Wang et al. [21], who applied non-negative
matrix tri-factorization with input matrix completion. Note
that both approaches implement early integration and can
model only multiple dyadic relations. Their approaches

cannot be used to model relations between more than two
object types, which is a major distinction with the algorithm
proposed in this paper.

Zhang et al. [22] proposed a joint matrix factorization to
decompose a number of data matrices Ri into a common
basis matrix W and different coefficient matrices Hi, such

that Ri � WHi by minimizing
P

i jjRi 
WHijj2. This is an
intermediate integration approach with different data sour-
ces but it can describe only relations whose objects (i.e.,
rows in Ri) are fixed across relation matrices. Similar
approaches but with various regularization types were also
proposed, such as network- or relation-regularized con-
straints [23], [24] and hierarchical priors [25], [26]. Our work
generalizes these approaches by simultaneously dealing
with objects of different types, where we can vary object
types along both dimensions of relation matrices, Rij) and
can constrain objects of every type.

There is an abundance of work on matrix factorization
models that consider a single dyadic relation matrix or
multiple relation matrices between the same two types of
objects [10], [21], [24], [26], [27], [28] that are subsumed
in our approach. For instance, Nickel [29] proposed a tri-
factorization model for multiple dyadic relations that
factorized every Ri as Ri � ASiA

T . Although their model
is appropriate for certain tasks of collective learning, all
Ri describe relations between the same two sets of
objects, whereas our approach models multi-relational
and multi-object type data.

Rettinger et al. [30] proposed context-aware tensor
decomposition for relation prediction in social networks,
CARTD. They decompose a tensor into additive factorized
matrices using two-factor decomposition. They assume that
input data is provided together with the contextual infor-
mation that describes one specific relation, the recommen-
dation. The drawback of their and similar approaches [27],
[31], [32] for r-ary tensors is that in higher dimensions
(r > 3) the tensors become increasingly sparse and the
computational requirements become infeasible. Notice that
here r corresponds to number of different object types in
DFMF. In comparison, the approach proposed in this paper
can handle tens of different object types.

Wang et al. [10] and Wang et al. [12] proposed tri-SPMF
and S-NMTF, respectively, a simultaneous clustering of
multi-type relational data via symmetric nonnegative
matrix tri-factorization. These two methods are conceptu-
ally similar to our approach and use both inter-type and
intra-type relations, but they require a full set of symmetric
relation matrices, Rij ¼ RT

ji. These assumptions of tri-SPMF
and S-NMTF are rarely met in real-world fusion scenarios
(see, for example, a fusion configuration from Fig. 2, which
is not a six-clique), where we do not have access to relation
matrices between all possible pairs of object types (i.e., Rij

for 1 � i < j � r). The tri-SPMF and S-NMTF algorithms do
not converge to a local minimum if described relations are

asymmetric (Rij 6¼ RT
ji).

We are currently witnessing increasing interest in the
joint treatment of heterogeneous data sets and the emer-
gence of approaches specifically designed for data fusion.
Besides matrix factorization-based methods as reviewed
above, these approaches include canonical correlation
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analysis [33], combining many interaction networks into a
composite network [34], multiple graph clustering with
linked matrix factorization [8], a mixture of Markov chains
associated with different graphs [35], dependency-seeking
clustering algorithms with variational Bayes [36], latent
factor analysis [37], [38], nonparametric Bayes ensemble
learning [39], approaches based on Bayesian theory [40],
[41], [42], neural networks [43], and module guided random
forests [44].

Data integration approaches from the previous para-
graph either fuse input data (early integration) or predic-
tions (late integration) and do not directly combine
heterogeneous representation of objects of different types.
A state-of-the-art approach that can address such data
through intermediate integration is kernel-based learning.
Multiple kernel learning has been pioneered by Lanckriet
et al. [45] and Bach et al. [46] and is an additive extension of
single kernel SVM to incorporate multiple kernels in classi-
fication, regression and clustering. The MKL assumes that
E1; . . . ; Er are r different representations of the same set of n
objects. Extension from single to multiple data sources is
achieved by additive combination of kernel matrices, given

by V ¼ Pr
i¼1 uiKi j 8i : ui 	 0;

� Pr
i¼1 u

d
i ¼ 1;Ki  0g; where

ui are weights of the kernel matrices, d is a parameter deter-
mining the norm of constraint posed on coefficients
(for L2; Lp-norm MKL, see [11], [47], [48], [49]) and Ki are
normalized kernel matrices centered in the Hilbert space.
Among other improvements, Yu et al. extended the frame-
work of the MKL in Lanckriet et al. [45] by optimizing vari-
ous norms in the dual problem of SVMs that allows non-
sparse optimal kernel coefficients u�i . G€onen and Alpaydın
[50] recently reviewed several MKL algorithms and con-
cluded that, in general, using multiple kernels instead of a
single one is useful. The heterogeneity of data sources in
the MKL is resolved by transforming different object types
and data structures (e.g., strings, vectors, graphs) into
kernel matrices. These transformations depend on the
choice of the kernels, which in turn affects the method’s per-
formance [51].

4 EXPERIMENTS

We present two case studies from bioinformatics and chem-
informatics, where recent technological advancements have
allowed researchers to collect large and diverse experimen-
tal data sets [39], [52], [53], [54]. From bioinformatics, we
study prediction of gene function, where the target relation
is given by a binary matrix representing relationships
between genes of the amoeba Dictyostelium discoideum and
their associated functions or processes (Gene Ontology
(GO) terms, R12). In the cheminformatics study, the binary
target matrix encodes the pharmacologic actions of a subset
of chemicals from PubChem database. We apply DFMF to
fuse eleven data matrices for gene function prediction and
six data matrices for the prediction of pharmacologic
actions. During testing, we estimate the relation for a previ-
ously-unseen pair (Gene, GO Term) or (Chemical, Pharma-
cologic Action).

We compare DFMF to an early integration by random
forests [55], [56], intermediate integration by multiple kernel
learning [11] and relational learning by matrix factorization

(tri-SPMF) [10]. Kernel-based fusion used a multi-class L2

norm MKL with Vapnik’s SVM [57]. The MKL was formu-
lated as a second order cone program (SOCP) and its dual
problem was solved by the conic optimization solver
SeDuMi. Random forests from the Orange data mining suite
were used with default parameters. Relational learning by
tri-SPMF used the matrix factorization algorithm from
Wang et al. [10] and a procedure described in Section 2.6 for
predicting associations.

4.1 Setup for Gene Function Prediction Task

Various classification schemes were developed to standard-
ize the association of genes to its function. Of these, Gene
Ontology [58] is adopted widely and is thus suitable for
computational studies [34], [59]. In our study, given a gene,
we aimed to predict a set of its associated GO terms along
with the confidence of the association.

4.1.1 Data

We observed six object types (Fig. 2): genes (type 1), ontol-
ogy terms (type 2), experimental conditions (type 3),
publications from the PubMed database (PMID) (type 4),
Medical Subject Headings (MeSH) descriptors (type 5),
and KEGG pathways [60] (type 6). The data included
gene expression measured during different time-points of a
24-hour development cycle [61] (R13, 14 experimental condi-
tions), gene annotations with experimental evidence code to
148 generic slim terms from the GO (R12), PMIDs and their
associated D. discoideum genes from dictyBase (R14), genes
participating in KEGG pathways (R16), assignments of
MeSH descriptors to publications from PubMed (R45),
references to published work on associations between a
specific GO term and gene product (R42), and associations
of enzymes involved in KEGG pathways and related to GO
terms (R62).

To balance R12, our target relation matrix, we added an
equal number of non-associations for which there is no evi-
dence of any type in the GO. We constrained our system by
considering gene interaction scores from STRING v9.0 (Q1)

Fig. 2. The fusion configuration for gene function prediction task in D.
discoideum. Some relations are entirely missing, for instance R23. Nodes
represent object types used in our study. Edges correspond to relation
and constraint matrices. The arc that represents the target matrix R12

and its object types are highlighted.
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and slim term similarity scores (Q2) computed as 
0:2hops,
where hops was the length of the shortest path between two
terms in the GO graph. Similarly, MeSH descriptors were
constrained with the average number of hops in the MeSH
hierarchy between each pair of descriptors (Q5). Constraints
between KEGG pathways corresponded to the number of
common ortholog groups (Q6). The slim subset of GO terms
was used to limit the optimization complexity of the MKL
and the number of variables in the SOCP, and to ease the
computational burden of early integration by random for-
ests, which inferred a separate model for each of the terms.

We conducted three experiments in which we considered
either 100 or 1,000 most GO-annotated genes or the whole
D. discoideum genome (�12;000 genes). We also examined
the predictions of gene associations with any of nine GO
terms that are of specific relevance to the current research in
the Dictyostelium community (upon consultations with Gad
Shaulsky, Baylor College of Medicine, Houston, TX; see
Table 2). Instead of using a generic slim subset of terms, we
examined the predictions in the context of a complete set of
GO terms. This resulted in a data set with �2;000 terms,
each term having �10 direct gene annotations.

4.1.2 Preprocessing for Kernel-Based Fusion

We generated an RBF kernel for gene expression measure-
ments from R13 with the RBF function kðxi; xjÞ ¼ expð
jjxi

xjjj2=2s2Þ, and a linear kernel for ½0; 1�-protein-interaction
matrix from Q1. This particular choice of kernels was moti-
vated by the experimental study and kernel comparison in
[5]. Kernels were applied to data matrices. We used a linear
kernel to generate a kernel matrix from D. discoideum spe-
cific genes that participate in pathways (R16), and a kernel
matrix from PMIDs and their associated genes (R14). Several
data sources describe relations between object types other
than genes. For kernel-based fusion we had to transform
them to explicitly relate to genes. For instance, to relate
genes and MeSH descriptors, we counted the number of
publications that were associated with a specific gene (R14)
and were assigned a specific MeSH descriptor (R45, see also
Fig. 2). A linear kernel was applied to the resulting matrix.
Kernel matrices that incorporated relations between KEGG
pathways and GO terms (R62), and publications and GO
terms were obtained in similar fashion.

To represent the hierarchical structure of MeSH descrip-
tors (Q5), the semantic structure of the GO graph (Q2) and
ortholog groups that correspond to KEGG pathways (Q6),
we considered the genes as nodes in three distinct large
weighted graphs. In the graph for Q5, the link between two
genes was weighted by the similarity of their associated sets
of MeSH descriptors using information from R14 and R45.
We considered the MeSH hierarchy to measure these simi-
larities. Similarly, for the graph for Q2 we considered the
GO semantic structure in computing similarities of sets of
GO terms associated with genes. In the graph for Q6, the
gene edges were weighted by the number of common
KEGG ortholog groups. Kernel matrices were constructed
with a diffusion kernel [62].

The resulting kernel matrices K 2 Rn�n were centered
as Kcði; jÞ ¼ Kði; jÞ 
 1=n

P
i Kði; jÞ 
 1=n

P
j Kði; jÞþ

1=n2
P

ij Kði; jÞ and normalized as Knði; jÞ ¼ Kcði; jÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kcði; iÞKcðj; jÞp

. The parameters for all kernels were

selected through internal cross-validation. In cross-vali-
dation, only the training part of the matrices was opti-
mized for learning, while centering and normalization
were performed on the entire data set. The prediction
task was defined through the classification matrix of
genes and their associated GO slim terms from R12.

4.1.3 Preprocessing for Early Integration

The gene-related data matrices prepared for kernel-based
fusion were also used for early integration and were
concatenated into a single data table. Each row in the table
represented a gene profile obtained from all available data
sources. For our case study, each gene was characterized by
a fixed 9;362-dimensional feature vector. For each GO slim
term, we then separately developed a classifier with a ran-
dom forest of classification trees and reported cross-vali-
dated results.

4.1.4 Preprocessing for tri-SPMF Learning

Relation and constraint matrices prepared for DFMF were
also used for tri-SPMF factorization algorithm. Tri-SPMF
requires a full set of relation matrices between all pairs of
object types. Thus, we used zero matrices for non-existing
relations from Fig. 2. For instance, R63 and Q4 were repre-
sented by zero matrices of proper dimensions. Because tri-

SPMF requires that relations are symmetric, we set Rji ¼ RT
ij

for all available relation matrices.

4.2 Setup for Pharmacologic Action Prediction Task

Identification of the mechanisms of action of chemical com-
pounds is a crucial task in drug discovery [63], [64]. Here,
our aim was to computationally predict pharmacologic
actions of chemical compounds as defined in the PubChem
database [65].

4.2.1 Data

We considered six object types (Fig. 3): chemicals (type 1),
PubChem’s [65] pharmacologic actions (type 2), publica-
tions from the PubMed database (type 3), depositors of

Fig. 3. The fusion configuration for the prediction of pharmacologic
actions of chemicals, with object types denoted with nodes and relations
between them with edges. The edge representing the target relation and
its corresponding data matrix R12 is highlighted.
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chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring

We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance

Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)

Prediction task DFMF MKL RF tri-SPMF

F1 AUC F1 AUC F1 AUC F1 AUC

100 D. discoideum genes 0.799 0.801 0.781 0.788 0.761 0.785 0.731 0.724
1000 D. discoideum genes 0.826 0.823 0.787 0.798 0.767 0.788 0.756 0.741
Whole D. discoideum genome 0.831 0.849 0.800 0.821 0.782 0.801 0.778 0.787
Pharmacologic actions 0.663 0.834 0.639 0.811 0.643 0.819 0.641 0.810
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5.2 Sensitivity to Inclusion of Data Sources

Inclusion of additional data sources improves the accuracy
of prediction models. We illustrate this for gene function
prediction in Fig. 4a, where we started with only the target
data source R12 and then added either R13 or Q1 or both.
Similar effects were observed when we studied other com-
binations of data sources (not shown here for brevity).
Notice also that due to ensembling the cross-validated vari-
ance of F1 is small.

5.3 Sensitivity to Inclusion of Constraints

We varied the sparseness of gene constraint matrix Q1 by
holding out a random subset of protein-protein interactions.
We set the entries of Q1 that corresponded to held-out con-
straints to zero so that they did not affect the cost function
during optimization. Fig. 4b shows that including addi-
tional information on genes in the form of constraints
improves the predictive performance of DFMF for gene
function prediction.

5.4 Matrix Factor Initialization Study

We studied the effect of matrix factor initialization on
DFMF by observing the reconstruction error after one and
after twenty iterations of optimization procedure, the
latter being about one fourth of the iterations required for
the optimization algorithm to converge when predicting
gene functions. We estimated the error relative to the
optimal ðk1; k2; . . . ; k6Þ-rank approximation given by the

SVD. For iteration v and matrix Rij the error was com-
puted by:

ErrijðvÞ ¼
jjRij 
G

ðvÞ
i S

ðvÞ
ij ðGT

j ÞðvÞjj2 
 dF ðRij; ½Rij�kÞ
dF ðRij; ½Rij�kÞ

; (14)

whereG
ðvÞ
i ,G

ðvÞ
j and S

ðvÞ
ij were matrix factors obtained after v

iterations of factorization algorithm. In Eq. (14), dF ðRij;

½Rij�kÞ ¼ jjRij 
UkSkV
T
k jj2 denotes the Frobenius distance

between Rij and its k-rank approximation given by the
SVD, where k ¼ maxðki; kjÞ is the approximation rank.
ErrijðvÞ is a pessimistic measure of quantitative accuracy
because of the choice of k. This error measure is similar to
the error of the two-factor non-negative matrix factorization
from [17].

Table 3 shows the results for the experiment with 1000
most GO-annotated D. discoideum genes and selected factor-
ization ranks ki < 65; i 2 ½6�: The informed initialization
algorithms surpass the random initialization. Of these, the
random Acol algorithm performs best in terms of accuracy
and is also one of the simplest.

5.5 Early Integration by Matrix Factorization

Our data fusion approach simultaneously factorizes indi-
vidual blocks of data in R. Alternatively, we could also
disregard the data structure, and treat R as a single data
matrix. Such data treatment would transform our data
fusion approach to that of early integration and lose the
benefits of structured system and source-specific factori-
zation. To prove this experimentally, we considered
the 1;000 most GO-annotated D. discoideum genes. The
resulting cross-validated F1 score for factorization-based

Fig. 4. Adding new data sources (a) or incorporating more object-type-
specific constraints in Q1 (b) both increase the accuracy of matrix fac-
torization-based models for gene function prediction task.

TABLE 3
Effect of Initialization Algorithm on Reconstruction

Error of DFMF’s Factorization Model

Method TimeGð0Þ StorageGð0Þ Err12ð1Þ Err12ð20Þ
Rand. 0.0011 s 618 K 5.11 3.61
Rand. C 0.1027 s 553 K 2.97 1.67
Rand. Acol 0.0654 s 505 K 1.59 1.30
K-means 0.4029 s 562 K 2.47 2.20
NNDSVDa 0.1193 s 562 K 3.50 2.01

TABLE 2
Gene Ontology Term-Specific Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF),

Kernel-Based Method (MKL), Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)

GO term name Term identifier Namespace Size DFMF MKL RF tri-SPMF

F1 AUC F1 AUC F1 AUC F1 AUC

Activation of adeny. cyc. act. 0007190 BP 11 0.834 0.844 0.770 0.781 0.758 0.601 0.729 0.731
Chemotaxis 0006935 BP 58 0.981 0.980 0.794 0.786 0.538 0.724 0.804 0.810
Chemotaxis to cAMP 0043327 BP 21 0.922 0.910 0.835 0.862 0.798 0.767 0.838 0.815
Phagocytosis 0006909 BP 33 0.956 0.932 0.892 0.901 0.789 0.619 0.836 0.810
Response to bacterium 0009617 BP 51 0.899 0.870 0.788 0.761 0.785 0.761 0.817 0.831
Cell-cell adhesion 0016337 BP 14 0.883 0.861 0.867 0.856 0.728 0.725 0.799 0.834
Actin binding 0003779 MF 43 0.676 0.781 0.664 0.658 0.642 0.737 0.671 0.682
Lysozyme activity 0003796 MF 4 0.782 0.750 0.774 0.750 0.754 0.625 0.747 0.625
Seq.-spec. DNA bind. t. f. a. 0003700 MF 79 0.956 0.948 0.894 0.901 0.732 0.759 0.892 0.852

Terms in Gene Ontology belong to one of three namespaces, biological process (BP), molecular function (MF) or cellular component.
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early integration was 0:576, compared to 0:826 obtained
with our proposed data fusion algorithm. This result is
not surprising as neglecting the structure of the system
also causes the loss of the structure in matrix factors and
the loss of zero blocks in factors S and G from Eq. (3).
Clearly, data structure carries substantial information
and should be retained in the model.

6 CONCLUSION

We have proposed a new matrix factorization-based data
fusion algorithm called DFMF. The approach is flexible
and, in contrast to state-of-the-art kernel-based methods,
requires minimal, if any, preprocessing of input data.
This latter feature, the ability to model multi-relational
and multi-object type data, and DFMF’s excellent accu-
racy and time response, are the principal advantages of
our new algorithm.

DFMF can model any collection of data sets, each of
which can be expressed as a matrix. Tasks from bioinfor-
matics and cheminformatics considered here that were tra-
ditionally regarded as classification problems exemplify
just one type of data mining problems that can be addressed
with our method. We anticipate the utility of factorization-
based data fusion in multi-task learning, association mining,
clustering, link prediction or structured output prediction.

APPENDIX

PROOF OF CONVERGENCE (THEOREM 2)

Our proof follows the concept of auxiliary functions often
used in convergence proofs of approximate matrix factori-
zation algorithms [13]. The proof is performed by introduc-
ing an appropriate function F ðG;G0Þ, which is an auxiliary
function of the objective JðG;SÞ that satisfies:

F ðG0;G0Þ ¼ JðG0;SÞ; F ðG;G0Þ 	 JðG;SÞ:
If such an auxiliary function F can be found and if G is
updated in ðmþ 1Þth iteration as

Gðmþ1Þ ¼ argmin
G

F ðG;GðmÞÞ; (15)

then the following holds:

JðGðmþ1Þ;SÞ � F ðGðmþ1Þ;GðmÞÞ
� F ðGðmÞ;GðmÞÞ
¼ JðGðmÞ;SÞ:

(16)

That is, if F is an auxiliary function of JðG;SÞ, then JðG;SÞ
is nonincreasing under the update Eq. (15). In the proof we
show the update step for G in Eq. (12) is exactly the update
in Eq. (15) with a proper auxiliary function. For that we
make use of an auxiliary function specified by Wang et al.
(2008) (Appendix 2 in [10]). Wang et al. constructed a func-

tion FWangðA;A0;B;C;DÞ and showed that it satisfied the

conditions of auxiliary functions for functions of the form

JðA;B;C;DÞ ¼ trð
2ATBþADAT Þ þ trðATCAÞ, where C
and D are symmetric, and A is nonnegative. To prove the
convergence of our algorithm, we show that the objective
function from Eq. (5) is a special case of JðA;B;C;DÞ.

Proof of Theorem 2. First, we view JðG;SÞ in Eq. (6) as a
function of G1 and construct the auxiliary function
FWangðA;A0;B;C;DÞ such that:

A ¼ G1;

B ¼
X

j:R1j2R
R1jGjS

T
1j þ

X
i:Ri12R

RT
i1GiSi1;

C ¼
Xmaxi ti

t¼1

Q
ðtÞ
1 ;

D ¼
X

j:R1j2R
S1jG

T
j GjS

T
1j þ

X
i:Ri12R

ST
i1G

T
i GiSi1:

(17)

With these values for A, B, C and D, the auxilary func-
tion FWang is convex in G1. Notice that each of the two
summation terms in the right-hand side expression for D
represents the sum of the symmetric matrices of the form

ðGjS
T
1jÞT ðGjS

T
1jÞ and ðGiSi1ÞT ðGiSi1Þ, respectively. Thus,

D is symmetric. The global minimum (Eq. (15)) of
FWangðA;A0;B;C;DÞ is exactly the update rule for G1 in
Eqs. (10), (11), and (12).

We repeat this process by constructing the remaining
r
 1 auxiliary functions by separately considering
JðG;SÞ as a function of matrix factors G2 . . . ;Gr. From
the theory of auxiliary functions it then follows that J is
nonincreasing under the update rules for each of
G1;G2; . . . ;Gr. Letting JðG1;G2; . . . ;Gr;SÞ ¼ JðG;SÞ;
we have:

J
�
G0

1;G
0
2; . . . ;G

0
r ;S

� 	 J
�
G1

1;G
0
2; . . . ;G

0
r ;S

�
	 � � �
	 J

�
G1

1;G
1
2; . . . ;G

1
r ;S

�
:

Since JðG;SÞ is certainly bounded from below by zero,
we proved the theorem. tu
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