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1. Introduction 
Welcome to IDAMAP-2006, the eleventh workshop on 
intelligent data analysis in biomedicine and 
pharmacology, hosted by the Department of Computer 
Science of the University of Verona, Verona, Italy. This 
is the first IDAMAP workshop, to last more than one 
day: IDAMAP-2006 consists of one afternoon (on 
Friday, August 25) and one full day (on Saturday, August 
26). 
The IDAMAP workshop series is devoted to 
computational methods for data analysis in medicine, 
biology and pharmacology that present results of analysis 
in the form communicable to domain experts and that 
somehow exploit knowledge of the problem domain. 
Such knowledge may be available at different stages of 
the data-analysis and model-building process. Typical 
methods include data visualization, data exploration, 
machine learning, and data mining. This year's IDAMAP 
will spend specific, although not exclusive, attention to 
methods for handling temporal data. 
Gathering in an informal setting, participants have the 
opportunity to meet and discuss selected technical topics 
in a deep way: indeed, ample time is allotted for informal 
discussion among the participants. All participants are 
invited to join the workshop dinner on Friday, August 25. 
 
2. Program 
The scientific program of the workshop consists of 
presentations of accepted scientific papers, two invited 
presentations, a panel, and demonstrations of data 
analysis tools. More particularly, we will have 11 long 
presentations, 5 short presentations, and a long 
presentation within a panel. 5 demos enrich the workshop 
with a more application-oriented focus. We have also two 
invited talks. We are happy to have Amar Das from 
Stanford University and Xiaohui Liu from Brunel 
University accepting to act as invited speakers.  
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Knowledge-Driven Querying of Time-Oriented Biomedical Data 

Amar K. Das 

Departments of Medicine and of Psychiatry and Behavioral Sciences 
Stanford University School of Medicine 

 

Querying and abstracting time-stamped data are frequently undertaken steps in biomedical data 
analysis and require extensive use of domain knowledge that is difficult to support at the 
database level.  Prior knowledge-based methods for biomedical data analysis have not 
adequately addressed the temporal limitations of underlying database technologies. Thus, there 
is a need for principled methods that can resolve the disconnect between the representation of 
temporal data in biomedical databases and the specification of domain-relevant concepts used in 
data analysis. In this talk, I present my group’s work on methods for knowledge-level querying of 
time-oriented data that permit knowledge generated from query results to be tied to the data and, 
if necessary, used for further inference. We use the Semantic Web ontology and rule languages, 
OWL and SWRL, respectively, to specify a temporal ontology that can integrate the domain 
knowledge with the database content.  We have created a general bridge-based software 
architecture to process knowledge-driven queries efficiently using existing time-oriented 
databases.  I demonstrate the applicability of our approach for the discovery of drug resistance 
patterns in the Stanford HIV Database. 
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Mining Possibilistic Temporal Constraint Networks: A Case Study in
Diagnostic Evolution at Intensive Care Units

Francisco Guil
Dept. Languages and Computer Science

University of Almeria
04120 - Almeria, Spain
francisco.guil@ual.es

Jose M. Juarez and Roque Marin
Dept. Information and Comm. Engineering

University of Murcia
30100 - Murcia, Spain

{jmjuarez, rmarin}@dif.um.es

Abstract

It is commonly accepted that the large number
of temporal associations extracted in the tempo-
ral data mining step makes the knowledge dis-
covery process practically unmanageable for hu-
man experts. This is the typical second-order
data mining problem, where the vast amount of
simple sequences or patterns needs to be summa-
rized further. In this paper we propose a method
for building possibilistic temporal constraint net-
works that better summarizes the huge set of
mined timed-stamped sequences from a temporal
data mining process. This method is based on the
Theory of Evidence of Shafer as a mathematical
tool for obtaining the fuzzy measures involved in
the temporal network. This work also presents
a practical example describing an application of
this proposal in the Intensive Care Unit domain.

1 Introduction
Temporal data mining can be defined as the activity of loo-
king for interesting correlations (or patterns) in large sets
of temporal data accumulated for other purposes. It has
the capability of mining activity, inferring associations of
contextual and temporal proximity, that could also indicate
a cause-effect association. This important kind of know-
ledge can be overlooked when the temporal component
is ignored or treated as a simple numeric attribute [Rod-
dick and Spiliopoulou, 2002]. In non-temporal data mi-
ning techniques, there are usually two different tasks: the
description of the characteristics of the database (or analy-
sis of the data), and the prediction of the evolution of the
population. However, in temporal data mining this distinc-
tion is less appropriate, because the evolution of the popu-
lation is already incorporated in the temporal properties of
the analyzed data.

In [Guil et al., 2004] we presented an algorithm, named
TSET , based on the inter-transactional framework for
mining frequent sequences from several kind of datasets,
mainly transactional and relational datasets. The improve-
ment of the proposed solution was the use of a unique
structure to store all frequent sequences. The data struc-
ture used is the well-known set-enumeration tree, widely
used in the data mining area, in which the temporal seman-
tic is incorporated. The result is a set of frequent sequences

describing partially the dataset. This set forms a potential
base of temporal information that, after the experts analy-
sis, can be very useful to obtain valuable knowledge. Ho-
wever, the overwhelming number of discovered frequent
sequences may make such task absolutely impossible in
practice. This problem can be viewed as a second-order
data mining problem, which consists in the necessity of ob-
taining a more understandable and useful sort of knowledge
from a huge volume of temporal associations resulting after
the data mining process.

In this paper, we propose an extension of a previous work
[Guil and Marı́n, 2006], which consists on the description
of the building of a special model of temporal network
formed by a set of uncertain relations amongst temporal
points. The temporal model, proposed by HadjAli, Dubois
and Prade in [HadjAli et al., 2004], is based on the Possi-
bility Theory as expressive tool for the representation and
management of uncertainty in point-based temporal rela-
tions. The uncertainty is represented by a vector describing
three possibility values, expressing the relative plausibility
of the three basic relations between two temporal points,
that is, ”before”, ”at the same time” and ”after”. Thus, the
authors define the basic operations (inversion, composition,
combination and negation) that allow to infer new temporal
information and to propagate uncertainty in a possibilistic
way.

Once the sequences base is obtained (characterized by a
frequency distribution), we propose a Shafer Theory-based
technique which: firstly divides the sequence base into a
set of nested subsets and then it normalizes the frequencies
of each nested subset so they add to 1. Secondly, for each
nested subset, it builds a temporal constraint network calcu-
lating, for each pair of temporal points or events, the possi-
bility degrees of the three basic temporal relations. The re-
sult is an enumeration of temporal constraint networks that
better summarizes the temporal information existing in the
dataset. In other words, they permit the qualitative repre-
sentation of uncertain temporal relations and they are based
on formal sound theory for reasoning with uncertainty.

The remainder of the paper is organized as follows. Sec-
tion 2 describes briefly the TSET algorithm and gives a
formal description of the problem of mining frequent se-
quences from datasets. Section 3 describes briefly the re-
presentation aspects of the possibilistic temporal model. In
Section 4 we describe the approach for obtaining the un-
certain vectors associated with the basic temporal relations
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from the divided sequences base. Section 5 presents a prac-
tical experience at Intensive Care Unit (hereinafter ICU)
that illustrates the proposed approach. Conclusions and fu-
ture work are finally drawn in Section 6.

2 The TSET algorithm
TSET is an algorithm designed for mining frequent se-
quences (or frequent temporal pattern) from large rela-
tional datasets. It is based on the 1-dimensional inter-
transactional framework [Lu et al., 2000], and therefore,
the aim is to find associations of events amongst different
records (or transactions), and not only the associations of
events within records. The main improvement of TSET
is that it uses a unique tree-based structure to store all fre-
quent sequences. The data structure used is the well known
set-enumeration tree, in which the temporal semantic is in-
corporated.

The algorithm follows the same basic principles as most
apriori-based algorithms [Agrawal et al., 1993]. Frequent
sequence mining is an iterative process, and the focus is
on a level-wise pattern generation. Firstly, all frequent 1-
sequences (frequent events) are found, these are used to
generate frequent 2-sequences, then 3-sequences are found
using frequent 2-sequences, and so on. In other words,
(k+1)-sequences are generated only after all k-sequences
have been generated. On each cycle, the downward closure
property is used to prune the search space. This property,
also called anti-monotonicity property, indicates that if a
sequence is infrequent, then all super-sequence must also
be infrequent.

In the sequel, we will introduce the terminologies and
the definitions necessary to establish the problem of mining
frequent sequences from large datasets.

2.1 Concepts and terminologies
Definition 1 A dataset D is an ordered sequence of records
D[0], D[1],...,D[r−1] where each D[i] can have c columns
or attributes, A[0], ..., A[c − 1]. The 0-attribute will be the
dimensional attribute, the temporal data associated with
the record, expressed in temporal units. The rest of attri-
butes can be quantitative or categorical.

We assume that the domain of each attribute is a finite
subset of non-negative integers, and we also assume that
the structure of time is discrete and linear. Due to eve-
ry event registered has its absolute date identified, we re-
present the time for events with an absolute dating system
[Pani, 2001].

In order to simplify the calculations, we transform the
original dataset subtracting the date of each record from
the date of the first record, i.e. the time origin.

Definition 2 An event e is a 3-tuple (A[i], v, t), where
0 < i < c, v ∈ dom{A[i]}, and t ∈ dom{A[0]}, that is,
t ∈ N. Events are ”things that happen”, and they usually
represent the dynamic aspect of the world [Pani, 2001].

In our case, an event is related to the fact that a value v
is assigned to a certain attribute A[i] with the occurrence
time t. The set of all distinct pairs (A[i],v) can be also
called event types. We will use the notation e.a, e.v, and
e.t to set and get the attribute, value, and time variables

related to the event e, and e.type to get the event type asso-
ciated with it.

Definition 3 Given two events e1 and e2, we define the ≤
relation as follows:

1. e1 = e2 iff (e1.t = e2.t) ∧ (e1.a = e2.a) ∧ (e1.v =
e2.v)

2. e1 < e2 iff (e1.t < e2.t) ∨ ((e1.t = e2.t) ∧ (e1.a <
e2.a))

3. e1 ≤ e2 iff (e1 < e2) ∨ (e1 = e2)
We assume that a lexicographic ordering exists among the
pairs (attribute, value), the events types, in the dataset.

Definition 4 A sequence (or event sequence) is an ordered
set of events S = {e0, e1, ..., ek−1}, where for all i < j,
ei < ej .

Obviously, |S| = k. Note that different events with the
same temporal unit can belong to the same sequence. Fur-
thermore, the same events with different temporal unit asso-
ciated can belong to the same sequence. Nevertheless, in
any case will exist two or more pairs (attribute, value) asso-
ciated to the same temporal unit. So, an attribute cannot
take two different values in the same instant.

Definition 5 Let Utmin be the minimal dimensional value
associated to the sequence S. In other words, Utmin =
min{ei.t}, for ei ∈ S. If Utmin = 0, we say that S is
a normalized sequence. Note that any non-normalized se-
quence can be transformed into a normalized one through
a normalization function.

Let Utmax be the maximal dimensional value associated
to the sequence S. This value indicates the maximum dis-
tance amongst the events belonging to the normalized se-
quence S. In other words, Utmax = ek.t, where |S| = k.
From both, confidence and complexity points of view [Lu et
al., 2000], this value will be always less than or equal to a
user-defined parameter called maxspan, denoted by ω.

Definition 6 The support (frequency) of a sequence is de-
fined as:

support(S) =
fr(S)
|D| ,

where fr(S) denotes the number of occurrences of the se-
quence S in the dataset, and |D| is the number of records
in the dataset D, in other words, r.

Definition 7 A frequent sequence is a normalized se-
quence whose support is greater than or equal to a user-
specified threshold called minimum support. We denote this
user-defined parameter as minsup, or simply σ.

Definition 8 A sequence is a frequent maximal sequence
if and only if it is frequent and no proper super-sequence
(superset) of it is frequent.

Given a dataset D and the user-defined parameters ω and
σ, the goal of sequence mining is to determine in the dataset
the set SD,σ,ω

f , formed by all the frequent sequences whose
support are greater than or equal to σ, that is,

SD,σ,ω
f = {Si|support(Si) ≥ σ}.

This set, formed by a large number of time-stamped se-
quences, is the goal of the temporal data mining algorithm
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and the input of the method proposed in this paper for ob-
taining a temporal constraint network. Basically, the idea
is to divide it into a set of nested subsets and, for each sub-
set, obtain a temporal constraint model which summarize
better the existing temporal information in the sequences.

3 Representation of Uncertain Temporal
Relations

In literature can be found a large amount of work trying to
handle uncertainty in temporal reasoning. However, very
few work deal with time points as ontological primitives
for expressing temporal elements. Basically, two tempo-
ral point-based approaches have been recently proposed
for representing and managing uncertain relations between
events, the probabilistic model done by Ryabov and Puu-
ronen [Ryabov and Puuronen, 2001], and the possibilistic
model proposed by HadjAli, Dubois, and Prade [HadjAli et
al., 2004]. In this paper, the authors argued the main diffe-
rences between these two approaches. Mainly, there are
two main differences. First, the possibilistic modeling can
be purely qualitative, avoiding the necessity of quantifying
uncertainty if information is poor. Second, their proposal is
capable of modeling ignorance in a non-biased way. In our
case, the selection of the possibilistic model is reinforced
by the fact that we need a model which make the fusion of
mined and expert knowledge easier [Dubois et al., 1999].

The selected model is based on possibility theory
[Dubois and Prade, 1988] for the representation and ma-
nagement of uncertainty in temporal relations between two
point-based events. Uncertainty is represented as a vec-
tor involving three possibility values expressing the rela-
tive plausibility of the three basic relations (” < ”, ” =
”, and ” > ”) that can hold between these points. Also,
they describe the inference rules (that form the basis of
the reasoning method) defining a set of operations: inver-
sion, composition, combination, and negation, the opera-
tions that govern the uncertainty propagation in the infer-
ence process. The authors show that the whole reasoning
process can actually be handled in possibilistic logic.

Three basic relations can hold between two temporal
points, ”before (<)”, ”at the same time (=)”, and ”after
(>)”. An uncertain relation between temporal points is ex-
pressed as any possible disjunction of basic relations:

≤ ⇐⇒ < or =
≥ ⇐⇒ > or =
	= ⇐⇒ < or >
? ⇐⇒ <, =, or >

The last case represents total ignorance, that is, any
of the three basic relations is possible. The representa-
tion is extended using the Possibility Theory for mode-
ling the plausibility degree of each basic relation. Given
two temporal points, a and b, an uncertain relation rab be-
tween them is represented by a normalized vector Πab =
(Π<

ab, Π
=
ab, Π

>
ab), such that max(Π<

ab, Π
=
ab, Π

>
ab) = 1,

where Π<
ab (respectively, Π=

ab, Π>
ab) is the possibility of

a < b (respectively a = b, a > b).
From the uncertain vector (Π<

ab, Π
=
ab, Π

>
ab), and using the

duality between possibility and necessity, namely

N(A) = 1 − Π(Ac), where Ac is the complement of A

we can derive the possibility and necessity degree of each
basic relation and their disjunctions.

As,
Π≤

ab = max(Π<
ab, Π

=
ab)

Π≥
ab = max(Π=

ab, Π
>
ab)

Π�=
ab = max(Π<

ab, Π
>
ab),

we can obtain the necessity degrees of the basic relations,

N<
ab = N(a < b) = 1 − Π≥

ab

N=
ab = N(a = b) = 1 − Π�=

ab

N>
ab = N(a > b) = 1 − Π≤

ab.

In a similar way, we can also obtain

N≥
ab = N(a ≥ b) = 1 − Π<

ab

N �=
ab = N(a 	= b) = 1 − Π=

ab

N≤
ab = N(a ≤ b) = 1 − Π>

ab.

Moreover, the authors defined the rules that enable us
to infer new temporal information and to propagate uncer-
tainty in a possibilistic way. The reasoning tool relies on
four operations expressing:

inversion ⇐⇒ r̃ab = rba

composition ⇐⇒ rac = rab ⊗ rbc

combination ⇐⇒ rab = r1ab
⊕ r2ab

negation ⇐⇒ ¬
These rules complete the definition of a model for re-

presenting and reasoning with uncertain temporal relations
that uses the Possibility Theory as an expressive tool for
dealing with uncertainty in temporal reasoning.

4 Extracting Uncertain Temporal Relations
In this section, we propose a technique for extract the un-
certain temporal relation between each pair of event types
from the sequences base. The uncertain temporal relation is
represented by an uncertain vector formed by three possibi-
lity values, expressing the plausibility degree for each basic
temporal relation. We propose the use of Shafer Theory of
Evidence [Shafer, 1976] to obtain the plausibility degrees
from the frequencies values associated with the set of se-
quences. The result will be a set of temporal constraint net-
works, which belong to a a suitable model for representing
and reasoning with temporal informationwhere uncertainty
is presented.

4.1 Shafer’s Theory of Evidence
The Shafer Theory of Evidence, also known as Dempster-
Shafer Theory, is a theory of uncertainty developed spe-
cially for modelling complex systems. It is based on a spe-
cial fuzzy measure called belief measure. Beliefs can be
assigned to propositions to express the uncertainty associ-
ated to them being discerned. Given a finite universal set U ,
the frame of discernment, the beliefs are usually computed
based on a density function m : 2U → [0, 1] called basic
probability assignment (bpa):

m(∅) = 0, and
∑
A⊆U

m(A) = 1.
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m(A) represents the belief exactly committed to the set A.
If m(A) > 0, then A is called a focal element. The set of
focal elements constitute a core:

F = {A ⊆ U : m(A) > 0}
The core and its associated bpa define a body of evidence,
from where a belief function Bel : 2U → [0, 1] is defined:

Bel(A) =
∑

B|B⊆A

m(B)

For any given measure Bel, a dual measure, Pl : 2U →
[0, 1] can be defined:

Pl(A) = 1 − Bel(A).

So, this measure called plausibility measure, can be also
defined:

Pl(A) =
∑

B|B∩A �=∅
m(B).

It can be verified [Shafer, 1976] that the functions Bel and
Pl are, respectively, a possibility (or necessity) measure if
and only if the focal elements form a nested or consonant
set, that is, if it can be ordered in such a way that each is
contained within the next. In that case, the associated belief
and plausibility measures posses the following properties:
For all A, B ∈ 2U ,

Bel(A ∩ B) = N(A ∩ B) = min[Bel(A), Bel(B)]

Pl(A ∪ B) = Π(A ∪ B) = max[Pl(A), P l(B)]

4.2 Calculating the possibility measures of
temporal relations

In our proposal, the sequences base is formed by a set of
linked nested set, each one corresponding to a frequent
maximal sequence and its subsequences. From an algo-
rithm point of view, each nested set corresponds with a
branch of the tree. So the proposed method build the tem-
poral constraint networks in a linear time, just with a depth-
first traversal of the tree.

Following the notation of Shafer’s Theory, our core is
each set of nested sequences NS ⊆ BSD,σ,ω which is
formed by a set of focal elements or sequences. We nor-
malize the frequencies of each nested subset so they add to
1.

Let Ω be the set of event types presented in the dataset,
that is,

Ω = {(A[i], v)|v ∈ dom(A[i])} .

Taking into account the maxspan constraint, the set of
events is defined as an extension of the Ω set in this way:

Ωω = {(A[i], v, t)|v ∈ dom(A[i]) ∧ 0 ≤ t ≤ w)}
This set is our frame of discernment, that is, Ωω = U . So,
the set of focal elements, the nested sequences base, is de-
fined:

NS = {Si ⊆ Ωω|m(Si) > 0} ,

where m is the bpa function derived from the frequencies
of the sequences, such that m : 2Ωω → [0, 1],

m(∅) = 0,
∑

i

m(Si) = 1

We will denote a temporal relation between two events
e1, e2 as e1Θe2. Since we are only interested in the basic
temporal relations,

Θ ∈ {<, =, >} .

For each pair of event types presented in the nested set,
we need to obtain the possibility degree of each basic tem-
poral relation between them. In order to compute the possi-
bility of a temporal relation, it is necessary to consider all
focal elements, that is, all sequences which make the tem-
poral relation possible. However, from complexity point of
view, we will obtain the possibility degrees from the ne-
cessity ones, calculated over the complement of the basic
temporal relation, that is,

Θc ∈ {>=, <>, <=} .

Proposition 1 Let suppose the qualitative temporal rela-
tion e1Θce2. This relation induces a parameterized set:

Xe1Θce2 = {(eiej)} ,

where ei, ej ∈ Ωω, ei.type = e1, ej .type = e2, and
ei.tΘcej.t.

Proposition 2 In order to obtain the set of sequences in-
volved in the temporal relation, we introduce the assess-
ment operator Γ, defined as:

Γ(Xe1Θce2) = {Si|Si ⊆ Xe1Θce2} ,

where Si ∈ NS.

Proposition 3 The possibility degree of the temporal rela-
tion e1Θe2 is defined as:

Π(e1Θe2) = 1 − N(e1Θce2) = 1 −
∑

Si∈Γ(Xe1Θe2 )

m(Si)

5 A practical experience at Intensive Care
Unit

The Intensive Care Unit (ICU) is a medical service to pro-
vide critical attention of medically recoverable patients.
One of the fundamental characteristics of this domain is
that patients require a permanent availability of monito-
ring equipment and specialist care. Thus, clinicians work
in shifts in order to provide a 24 hours service. In this
sense, the temporal evolution of patients is permanently
recorded. Physicians at ICU are daily required to provide
reports, describing the different diagnosis hypotheses that
they assume and the posterior actions (tests, treatments, or
requiring new laboratory analysis). In our particular case,
the ICU service has a Health Information System (HIS) that
stores this information and generates the reports.

Due to the amount of information (different medical a-
reas implied), and the importance of the temporal dimen-
sion (implicitly and explicitly analysed in patients’ evolu-
tion), we consider that the ICU is a suitable domain to apply
our second-order temporal data mining proposal.

5.1 Practical Application
In ICU domains, as well as the final diagnosis (like other
hospital services), there are evolutive diagnoses that state
the diagnostic hypotheses. These hypotheses are daily
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made by physicians during patient’s stay at the ICU service.
Furthermore, they can be considered high-level medical in-
formation since it is obtained from physician’s knowledge
and medical observations (like EKGs, tests, or nursing care
data).

Despite the importance of other clinical information
within the health record, such as treatments or demographic
data, we consider in our experiment that the evolution
of these diagnosis are a good representation of patient
problems and the discovery of temporal pattern diagnosis
could be useful in many AI systems for temporal diagnosis
or prognosis.

In our experiment, each patient is represented in the
database by a temporal sequence of diagnoses (temporal
points) and the data mining process results are frequent
temporal patterns (or frequent sequences) of diagnosis evo-
lution. In the analysis of this data, different parameters
have been empirically stated (maxspan = 24 , and support
value = 3, 5, 9) depending of the dataset of 144 patients.

Supp Patient Patt Tot Patt
3 N= 936 Max=5 N=379374 Max=12
5 N=122 Max=3 N=115810 Max=11
9 N= 49 Max=1 N=20837 Max=9

Table 1: Practical experiments considering independent pa-
tients and complete data. Supp = data mining parameter
of minimum support. N = number of sequences obtained.
Max = maximum size of the sequences.

In Table 1 is shown a summary of some of the results
obtained from the proposed data mining process. In order
to count the frequency of possible patterns, two alternative
strategies have been adopted. Firstly, if medical data is in-
terpreted, the patterns discovery could be more relevant,
considering only the repetitions of the occurrences of diag-
nosis hypotheses on different patients (Patient Patt column
in Table 1). Secondly, considering all possible occurrences
without any kind of semantics (see Tot Patt column in Ta-
ble 1). At present, there is not fully medical evaluation of
the patterns obtained yet. However, it must be considered
that the current state of the practical part of this research is
in an initial step.

5.2 Evolutive Diagnosis Pattern Example
In order to explain the results obtained, this section descri-
bes a particular example of the patterns obtained from the
complete temporal data mining process applied on tempo-
ral diagnosis evolution.

The following maximal sequence (and their subse-
quences) has been obtained from the ICU database:

Id Sequence Frequence
s4 {(d6, 0), (d7, 0), (d169, 0), (d′169, 3)} 3
s3 {(d6, 0), (d7, 0), (d169, 0)} 4
s2 {(d6, 0), (d7, 0)} 6
s1 {(d6, 0)} 10

Table 2: Sequences and frequency. (di, t) diagnosis i at
day t

d6

d7

d169

d169’r6,169’

r7,169

r169,169’

r6,7

r6,169

r7,169’

Figure 1: Pattern described by a Possibilistic Temporal
Constraint Network

The maximal sequence (s4 in Table2) describes patients
to whom physicians diagnosed at income day:d6 (Acute
Miocardial Infarction of the Pared Inferior -ICD 10 l211),
d7 (haemorrhage complications), and d169 (Acute Miocar-
dial Infarction -ICD 10 l252). But also d169 again the third
day of stay at the ICU.

Thus, a basic assignment (m) can be defined considering
Evidence Theory of Shafer and normalizing the sequence’s
frequency.

m(s1) = 10/23 = 0.434.. (1)

m(s2) = 6/23 = 0.260.. (2)

m(s3) = 4/23 = 0.173.. (3)

m(s4) = 3/23 = 0.130.. (4)

Note that sequences describe a nested set (s1 ⊆ s2 ⊆
s3 ⊆ s4) and therefore Shafer Theory can be applied for
obtaining the possibilistic values of relations between sin-
gleton sets as follows:

Πdi<dj = 1 − Ndi≥dj = 1 − Beldi≥dj (5)

Πdi=dj = 1 − Ndi<>dj = 1 − Beldi<>dj (6)

Πdi>dj = 1 − Ndi≤dj = 1 − Beldi≤dj (7)

For example, in the particular case of d6 and d7:

Πd6<d7 = 1 −
∑

d6≥d7⊆B

m(B) = 1 − 13/23 = 10/23 (8)

Πd6=d7 = 1 −
∑

d6<>d7⊆B

m(B) = 1 − 0 = 1 (9)

Πd6>d7 = 1 −
∑

d6≤d7⊆B

m(B) = 1 − 13/23 = 10/23 (10)

These formulae state the possibilistic values of the
three temporal relations between d6 and d7, describ-
ing one of the temporal constraints of the pattern
((Πd6<d7 , Πd6=d7 , Πd6>d7)). The relations between d6 −
d169, d7−d169 ,and d169−d′169 can be obtained in the same
way (see Figure 1).

Note that the inverse of these relations are easily ob-
tained by the use of the inverse operator defined by Hadjali,
Dubois, and Prade temporal model. Thus, the final set of
possibilistic temporal constraints is shown in table 3:

Combination of Patterns
This model partially solves the second order problem of
data mining, providing a simple representation of the pa-
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d6 d7 d169 d’169
d6 (1,1,1) (.44,1,.44) (.7,1,.7) (1,.87,.87)
d7 (.44,1,.44) (1,1,1) (.7,1,.7) (1,.87,.87)

d169 (.7,1,.7) (.7,1,.7) (1,1,1) (1,.87,.87)
d’169 (.87,.87,1) (.87,.87,1) (.87,.87,1) (1,1,1)

Table 3: All Possibilistic Temporal Constraints of the Net-
work from ICU data

tterns obtained. Thus, one of the advantages of this re-
presentation is the capability of combination between di-
fferent patterns. This is useful when some kind of reason-
ing is required to infer new potential patterns.

Let consider again two patterns obtained given the fol-
lowing maximal sequences from the ICU database:

Id Sequence Frequence
s4 {(d6, 0), (d7, 0), (d169, 0), (d′169, 3)} 3
s5 {(d6, 0), (d95, 0), (d169, 0), (d′95, 2)} 4

Table 4: Maximal Sequences.

The possibilistic temporal constraint networks are ob-
tained as shown in previous section. In order to
do this combination, we suggest to use the Mini-
mum Rule. Then, for each relation present in both
patterns (e.g. rd6−d169 in our case), the new rela-
tion of the combined pattern is the minimum of both:
min(rd6d169 , r

′
d6d169

) = ((min(Πd6<d169 , Π′
d6<d169

)),
(min(Πd6=d169 , Π′

d6=d169
)), (min(Πd6>d169 , Π′

d6>d169
)))

In case that one of the relations is not present in both (e.g.
rd6d95 ), the same calculus is done with the trivial relation
(1, 1, 1).

6 Conclusions and future work
In this paper, we propose an initial approach for buil-
ding qualitative temporal constraint networks from a set of
mined frequent sequences with the aim of obtaining a more
understandable, useful, and manageable sort of knowledge.
The selected temporal model is the proposed by HadjAli,
Dubois, and Prade, which uses the Possibility Theory as
an expressive tool for representing and reasoning with un-
certain temporal relations between point-based events. We
propose a Shafer’s Theory-based technique to obtain these
possibility degrees involved in the network from the fre-
quencies of the sequences.

In order to demonstrate the viability of this proposal we
have applied it to the temporal evolution of diagnosis hy-
potheses at a ICU service. Despite that the clinical valida-
tion is not yet performed, the presented results points out
the simplicity of representation and the advantage for ex-
pert’s comprehension.

In future work, we intend to analyze in depth the net-
works obtained from the set of mined frequent sequences.
We also propose to extend the model of temporal network
in order to represent not only qualitative but also quanti-
tative temporal relations, taking advantage of the temporal
information presented in the time-stamped sequences ex-
tracted by TSET .

Acknowledgments
This work is supported in part by MEC TIC2003-09400-
C04 and the FPU national plan (grant ref. AP2003-4476).

References
[Agrawal et al., 1993] R. Agrawal, T. Imielinski, and

A. N. Swami. Mining association rules between sets of
items in large databases. In P. Buneman and S. Jajodia,
editors, Proc. of the ACM SIGMOD Int. Conf. on Man-
agement of Data, Washington, D.C., May 26-28, 1993,
pages 207–216. ACM Press, 1993.

[Dubois and Prade, 1988] D. Dubois and H. Prade. Possi-
bility Theory. Plenum Press, 1988.

[Dubois et al., 1999] D. Dubois, H. Prade, and G. Yager.
Merging fuzzy information. In Fuzzy Sets in Approxi-
mate Reasoning and Information Systems, pages 335–
401. Kluwer Academic Publishers, 1999.

[Guil and Marı́n, 2006] F. Guil and R. Marı́n. Extracting
uncertain temporal relations from mined frequent se-
quences. In Proc. of the 13th Int. Symposium on Tem-
poral Representation and Reasoning (TIME 2006), ac-
cepted, 2006.

[Guil et al., 2004] F. Guil, A. Bosch, and R. Marı́n. TSET:
An algorithm for mining frequent temporal patterns. In
Proc. of the First Int. Workshop on Knowledge Discov-
ery in Data Streams, in conjunction with ECML/PKDD
2004, pages 65–74, 2004.

[HadjAli et al., 2004] A. HadjAli, D. Dubois, and
H. Prade. A possibility theory-based approach for
handling of uncertain relations between temporal
points. In 11th International Symposium on Temporal
Representation and Reasoning (TIME 2004), pages
36–43. IEEE Computer Society, 2004.

[Lu et al., 2000] H. Lu, L. Feng, and J. Han. Be-
yond intra-transaction association analysis: Mining
multi-dimensional inter-transaction association rules.
ACM Transactions on Information Systems (TOIS),
18(4):423–454, 2000.

[Pani, 2001] A. K. Pani. Temporal representation and rea-
soning in artificial intelligence: A review. Mathematical
and Computer Modelling, 34:55–80, 2001.

[Roddick and Spiliopoulou, 2002] J. F. Roddick and
M. Spiliopoulou. A survey of temporal knowledge
discovery paradigms and methods. IEEE Transactions
on Knowledge and Data Engineering, 14(4):750–767,
2002.

[Ryabov and Puuronen, 2001] V. Ryabov and S. Puuro-
nen. Probabilistic reasoning about uncertain relations
between temporal points. In 8th International Sym-
posium on Temporal Representation and Reasoning
(TIME 2001), pages 1530–1511. IEEE Computer Soci-
ety, 2001.

[Shafer, 1976] G. Shafer. A Mathematical Theory of Ev-
idence. Princenton University Press, Princenton, NJ,
1976.

IDAMAP 2006 Page 12 of 106



Describing and modeling time series based on qualitative temporal abstraction 

Lucia Sacchi1, Marion Verduijn2,5, Niels Peek2, Evert de Jonge3, Bas de Mol4,5, Riccardo Bellazzi1
1Laboratory for Medical Informatics, University of Pavia, Pavia, Italy, lucia.sacchi@unipv.it 

2Dept. of Medical Informatics, Academic Medical Center (AMC), Amsterdam, The Netherlands 
3 Dept. of Intensive Care Medicine, AMC, Amsterdam, The Netherlands 
4 Dept. of Cardio-thoracic Surgery, AMC, Amsterdam, The Netherlands 

5 Dept. of Biomedical Engineering, University of Technology, Eindhoven, The Netherlands 

Abstract 
In this paper we address the problem of predict-
ing the risk of prolonged mechanical ventilation 
in ICU patients on the basis of the temporal be-
havior of ten monitoring variables. The time 
course of such variables have been synthesized 
through four different Temporal Abstraction 
methods, including State, Trends and their com-
binations. A comparison of the performances of 
the different abstraction methods has been run on 
644 cardiac surgery patients by using two differ-
ent classifiers, the Naïve Bayes and the decision 
tree. Results show that the state and the com-
bined methods are the best ones, in particular 
with the Naïve Bayes classifier. The Temporal 
Abstractions approach seems a convenient 
method to summarize ICU data for classification 
purposes. 

1 Introduction 
The analysis of time series collected by monitoring clini-
cal variables is a topic of great interest in biomedical re-
search. Since a huge amount of temporal data is generally 
collected in a multivariate context, clinicians and analysts 
usually feel the need to shift from raw data to a new, more 
synthetic, meaningful and computationally manageable 
dataset. To this aim, temporal data abstraction turns out to 
be one of the most interesting steps in the process of intel-
ligent analysis of temporal biomedical data. In this con-
text, the introduction and application of the formalism of 
knowledge-based Temporal Abstraction (TA) [Shahar, 
1997] turned out to be an interesting issue to deal with 
several problems [Bellazzi et al., 2005; Haimowitz and 
Kohane, 1996; Miksch et al., 1996; Salatian and Hunter, 
1999; Shahar and Musen, 1996; Verduijn et al., 2005]. In 
this paper we address the challenging problem of predict-
ing the risk of prolonged mechanical ventilation (PMV) 
for patients admitted at ICU after cardiac surgery by ex-
ploiting the formalism of TAs. In particular, we try to 
answer to two main questions: i) how a qualitative de-
scription of temporal data can help in the prediction of the 
outcome and ii) which is the best strategy to summarize 
the large number of abstractions that may be extracted 
from monitoring time series. In particular, focusing on 
TAs, we propose a comparison between several kinds of 

representations used as features for the prognostic prob-
lem and evaluate the results obtained by running different 
classification algorithms. 

2 Material and Methods 

2.1 Data  
In this work we consider data coming from 664 patients 
who underwent cardiac surgery at the Academic Medical 
Centre in Amsterdam in the period from April 2002 to 
May 2004. As an ordinary post-surgical procedure, these 
patients are sent to the ICU, where they receive mechani-
cal ventilation (MV). In normal postoperative courses, 
patients can be released from MV within 24 hours after 
ICU admission; in case of complications they instead un-
dergo prolonged mechanical ventilation (PMV), i.e., MV 
for more than 24 hours.  
During the ICU stay several variables are monitored over 
time; according to the frequency with which these vari-
ables are measured, they can be divided into two groups: 
- Variables measured every minute (high frequency vari-
ables): mean arterial blood pressure (ABPm), central ve-
nous pressure (CVP), heart rate (HR), temperature (TMP), 
fraction inspired oxygen (FiO2) and respiration pressure 
(RP). The latter two variables are parameters of the venti-
lator; they are set and regularly adjusted by the clinician at 
the lowest possible value and reflect the lung functioning 
of the patient; 
- Variables measured several times a day (low frequency 
variables): base excess (BE), creatinine kinase MB 
(CKMB), glucose value (GLC), and cardiac output (CO). 
The outcome prolonged mechanical ventilation (PMV) is 
defined relying on the duration of mechanical ventilation 
as 1 if the duration is greater than 24h and 0 otherwise. 
Moreover, since we aim at predicting the outcome within 
the first 12 hours after the admission at ICU, we consider 
temporal data in the interval 0-12 hours, leaving out the 
measurements in the interval 12-24 hours after admission. 
Before entering the abstraction step, data needed an initial 
preprocessing phase, made up of two steps: first, all the 
clinically unreliable values were removed from all the 
variables, relying on thresholds defined by a clinical ex-
pert; second, high frequency variables were smoothed 
through a moving average technique in order to reduce the 
effects of additional noise artifacts in the time series.  
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For the qualitative representation of the time series we 
chose to resort to the formalism of knowledge-based TA. 

2.2 Knowledge-based Temporal Abstractions 
Temporal Abstractions represent a convenient AI tech-
nique to extract compact and meaningful descriptions 
from temporal data; the most interesting feature of such 
representation is the shift from a time-point (quantitative) 
to an interval-based qualitative representation of the time 
series, aimed at extracting specific patterns which are 
verified in the data. Within TAs, we can distinguish be-
tween basic and complex abstractions. Basic TAs are used 
to extract simple patterns, and can be specified into Trend 
TAs, to capture increasing, decreasing or stationary 
courses in a numerical time series, and State TAs, to de-
tect qualitative patterns corresponding to low, high or 
normal values in a numerical or symbolic time series. 
Complex TAs, on the other hand, correspond to intervals 
in which specific temporal relationships between basic or 
other complex TAs hold. Such temporal relationships are 
usually identified with the ones defined in Allen algebra 
[Allen, 1984]. 

2.3 Comparison between different TA represen-
tations  

As already mentioned in the introduction, in this paper we 
address the problem of the representation of temporal 
variables recorded during an ICU stay through TAs, aim-
ing at evaluating their capability in predicting the outcome 
and at establishing a comparison of different descriptions 
of the variables. In more detail, by exploiting TAs in sev-
eral ways, we propose the four representations introduced 
in the following sections. 

Representation through State TAs 
Through this representation we aim at assigning an ab-
straction reflecting information on the level of each vari-
able (i.e., low, normal, high) over intervals specified over 
the time series. In particular, for high frequency variables 
we aim at defining a label over the four 3-hours intervals: 
0-3, 3-6, 6-9, 9-12 hours, while for the low frequency 
variables the labels are detected over the two 6-hours in-
tervals 0-6 and 6-12 hours after admission at the ICU. To 
extract such labels, each numerical value of the time se-
ries is first replaced by a qualitative label of the kind 
‘low’, ‘normal’, or ‘high’, where the thresholds for defin-
ing the levels are detected through an automatic 10-fold 
cross validation procedure. As a second step, the propor-
tion of labels of different type found over each interval is 
evaluated, in order to establish a label valid over all the 
period. If a label is found to be significantly overrepre-
sented over a period (p-value of a chi-squared Pearson’s 
statistic <0.05), that label is then assigned to the corre-
sponding interval. If no majority label can be detected, the 
interval is labeled with a ‘varying’ TA. According to this 
strategy, a total number of 32 features for the classifica-
tion problem is obtained; we have in fact one label for 
each of the 4 three-hour periods for the 6 high frequency 
variables and one label for each of the 2 six-hour periods 
for the 4 low frequency variables. 

Representation through trend TAs 
Through this representation we aim at assigning an ab-
straction reflecting information on the temporal trend of 
each variable (i.e. increasing, decreasing, stationary) over 
specific intervals. For what concerns the high frequency 
variables ABPm, CVP, HR and TMP, the same 3-hours 
intervals identified for the state abstractions are consid-
ered. As a first step, trend detection is performed over 
each of the considered periods, relying on a piecewise 
linear segmentation of the time series carried out through 
a sliding window algorithm [Keogh et al, 2003]. A trend 
label reflecting the information on the slope is used to 
label each segment of the approximating curve. The pro-
cedure for trend detection develops then in a similar way 
as for state abstractions: if more than one type of trend is 
detected over the three-hour period, a chi-squared Pear-
son’s statistic is computed to determine if one trend label 
can be assigned as a global label to that specific period (p-
value<0.05). If that is not the case, the global label ‘vary-
ing’ is assigned to the trend pattern.  
Because of the long steady periods and the little number 
of measurements respectively, the variables FiO2 and RP 
and the four low frequency variables were all considered 
over the whole twelve-hour period; according to this pro-
cedure, one global trend label is assigned to these time 
series relying on the slope of the regression line obtained 
over the whole period. 
According to this strategy, a total number of 22 features 
for the classification problem is obtained; we have in fact 
one label for each of the 4 three-hour periods for ABPm, 
CVP, HR and TMP plus one label for FiO2, RP and the 4 
low frequency variables. 

Combining State and Trend Abstractions 
With this representation, features are defined by merging 
the information coming from both the trend and the state 
descriptions extracted as described in the previous para-
graphs. In particular, state and trend labels are combined 
over each period defined for each variable, replicating the 
trend label where necessary (e.g., the state labels of each 
three-hour period for the variables FiO2 and RP are com-
bined with the trend label of the twelve hour period of 
these variables, which is ‘spread’ over every subperiod). 
As in the case of the State TA representation, the total 
number of features for the classification problem is of 32. 

Clustering State and trend TAs 
To reduce the high number of features (22 for the trend 
representation and 32 for the state description) obtained 
by representing time series through trend and state TAs 
we performed a clustering of the available labels and used 
the information on both the clustering trends and states as 
features for the classification problem. The general proce-
dure to cluster the qualitative variables develops in a way 
which is similar both for trend and state TAs. In particu-
lar, when the variable is evaluated on different periods, 
the labels are first pasted together to form a pattern of 
trend or state changes. Time series that present similar 
labels are then clustered together according to an heuristic 
criterion. The following tables show the clusters that have 
been defined for each variable. 
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STATE TAs 
Classification 

Algorithm CA Sensitivity Specificity AUC 

NB 0.7803 0.8589 0.5939 0.8163 
CT 0.7244 0.8739 0.3703 0.6777 

Table 1. Labels for the clustered State TAs 

STATE Tas 
Variables Clusters 
ABPm, CVP, 
HR, and TMP 

‘high at least for six consecutive hours’ 
‘low at least for six consecutive hours’ 
‘normal for the last nine hours or for the whole 
twelve-hour period’,  
‘normal for the last six hours’ 
‘normal at least six consecutive hours not at the 
end’  
‘varying’ 

FiO2 and RP ‘high at least for the six last hours’ ‘normal all 
twelve hours or low at least for six consecutive 
hours’ 
‘normal at least for the six last hours ‘varying’ 

BE, CI, 
CKMB, and 
GLC 

‘high at least for the six last hours’ 
‘low at least for the six last hours’ 
‘normal all twelve hours’ 
‘normal at least for the six last hours’ 
‘varying’ 

Table 2. Labels for the clustered Trend TAs 
 
As it is clear from the previous tables, the clusters are not 
mutually exclusive: for example, a variable which is nor-
mal in the last nine hours is also normal in the last six 
hours. To overcome this ambiguity, the variables are as-
signed to the most specific group (e.g. normal in the last 
nine hours). 

2.4 Prognostic modeling 
 
Once the TA-based features for each representation have 
been derived, both Naïve Bayes and classification trees 
were tested on the task of predicting the risk of PMV. The 
performances of the two classifiers were evaluated 
through 3-fold cross validation. The analysis were per-
formed in Orange, a data mining environment which is 
based on visual programming [Demsar et al., 2004]. 

3 Results  
In this Section we will present the results obtained by 
running Naïve Bayes and classification trees on the prob-
lem of predicting the risk of PMV from ICU monitoring 
temporal variables. For each of the TA representations 
presented in Section 2 a table is reported. As a reference, 
also the results for the majority classifier are shown.  
Classification accuracy (CA), sensitivity, specificity and 
area under ROC curve (AUC) are shown for a complete 
evaluation of the performances of the classifiers. 

 
Table 3. Results for the default classifier, which classifies all the 
examples according to the majority class in the training set. 

Table 4. Results for the State TA representation. (NB = Naïve 
Bayes, CT = Classification Tree) 

TREND TAs 
Classification 

Algorithm CA Sensitivity Specificity AUC 

NB 0.6958 0.6378 0.5013 0.6502 
CT 0.6494 0.6579 0.5846 0.5785 

Table 5. Results for the Trend TA representation. (NB = Naïve 
Bayes, CT = Classification Tree) 

MERGED TAs 
Classification 

Algorithm CA Sensitivity Specificity AUC 

NB 0.7623 0.8589 0.5324 0.8023 
CT 0.7231 0.8547 0.4104 0.6603 

TREND Tas 
Variables Clusters 
ABPm, CVP, 
HR, and TMP 

‘decreasing at least for six consecutive hours’, 
‘increasing at least for six consecutive hours’, and 
‘varying’ 

Table 6. Results for the Merged State and Trend TA representa-
tion. (NB = Naïve Bayes, CT = Classification Tree) 

Table 7. Results for the Clustered State and Trend TA represen-
tation. (NB = Naïve Bayes, CT = Classification Tree) 

CLUSTERED TAs 
Classification 

Algorithm CA Sensitivity Specificity AUC 

NB 0.7517 0.8632 0.4680 0.7737 
CT 0.7073 0.8377 0.3972 0.6201 

 
By comparing the results obtained using different kinds of 
TA representations, we can point out some interesting 
observations: first of all, the trend representation as it is 
seems to be not informative for the prediction of the out-
come. The reason for such a behaviour may be that con-
sidering only the information about the trend (i.e. without 
any hint on the level of the variable) might not be enough 
to describe causes that may lead to a PMV. The observa-
tion that, on the other hand, the state representation results 
in better performances with both the classifiers supports 
the hypothesis just introduced.  
The merging of state and trend TAs into a single label, 
that can be seen as a complex TA, performs in a way that 
is comparable to the state representation. From a clinical 
point of view this description might anyway be more in-
formative that the mere use of state TAs, since it allows a 
more complete description of the variables, including both 
level and trend information.  
A similar comment can be made also for what concerns 
the representation through clustered variables; with such a 
description we have in fact the possibility of synthesizing 
both the trend and the state features with an improvement 
in interpretability and clarity of the results for the clini-
cians. Classification 

Algorithm CA Sensitivity Specificity AUC 

Majority 0.7048 1 - 0.5000 4 Discussion and conclusions  
In this paper we have analyzed how a qualitative represen-
tation of time series through knowledge-based TAs can be 
exploited for the task of predicting the risk of prolonged 
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mechanical ventilation in patients recovered at the ICU 
after cardiac surgery.  
We have introduced four descriptions of temporal data 
derived by exploiting temporal abstractions in several 
ways. One of the main advantages of introducing such a 
representation of time series is of course the fact that it 
results in a more intuitive and clear interpretation of the 
results by the clinicians. The descriptions of the variables 
obtained in terms of TAs are in fact self-explanatory and 
don’t need to be interpreted by an algorithm-expert.  
Another issue that we have explored in this paper is the 
effect of combining different abstractions (representation 
through merged and clustered TAs) in terms of predictive 
capability and to reduce the number of features of the 
problem.  
From the results it turns out that the best performances are 
obtained when introducing the information on the level of 
the variables into the problem features. Trend information 
by itself results in fact in poor performances of both the 
considered classifiers. The two methods for coupling both 
trend and state descriptions result rather satisfactory in 
terms of performances and in terms of synthesis of the 
information in a lower number of features in terms of in-
terpretability of the results.  
Further work can be made on both on the improving of the 
description through trend TAs, in particular by consider-
ing also the information about the rate (e.g. ‘slightly in-
creasing’ or ‘fast decreasing’) and also on the improving 
on sensitivity which results rather low in all the cases. 

References 
[Allen, 1984] James F. Allen. Towards a general theory of 

action and time. Artificial Intelligence, 23:123-154, 
1984. 

[Bellazzi et al., 2005] Riccardo Bellazzi, Cristiana Lariz-
za, Paolo Magni, and Roberto Bellazzi. 2005. Tempo-
ral data mining for the quality assessment of hemodi-
alysis services. Artificial Intelligence in Medicine, 
34(1):25-39, 2005. 

[Demsar et al., 2004] Janez Demsar, Blaz Zupan, Gregor 
Leban. Orange: From Experimental Machine Learning 
to Interactive Data Mining. White Paper 
(www.ailab.si/orange). Faculty of Computer and In-
formation Science. University of Ljubljana, 2004. 

[Haimowitz and Kohane, 1996] Ira J. Haimowitz, Isaac S. 
Kohane. Managing temporal worlds for medical trend 
diagnosis. Artificial Intelligence in Medicine, 8: 299-
321, 1996. 

[Keogh et al., 2003] Eamonn Keogh, Selina Chu, David 
Hart, Michael Pazzani. Segmenting time series: A sur-
vey and novel approach. In: M. Last, A. Kandel, H. 
Bunke (Eds.), Data Mining in Time Series Databases, 
World Scientfic Publishing Company, pp. 1-22, 2003. 

[Miksch et al., 1996] Silvia Miksch, Werner Horn, Chris-
tian Popow, Franz Paky. Utilizing temporal data ab-
straction for data validation and therapy planning for 
artificially ventilated newborn infants Artificial Intelli-
gence in Medicine, 8: 543-576, 1996. 

[Salatian and Hunter, 1999] Apkar Salatian, Jim Hunter. 
Deriving trends in historical and real time continu-
ously sampled medical data. Journal of Intelligent In-
formation Systems, 13: 47-71, 1999. 

[Shahar and Musen, 1996] Yuval Shahar and Mark A. 
Musen. Knowledge-based temporal abstraction in 
clinical domains. Artificial Intelligence in Medicine 
8(3):267-98, 1996. 

[Shahar, 1997] Yuval Shahar. A framework for knowl-
edge-based temporal abstraction. Artificial Intelligence, 
90:79-133, 1997. 
[Verduijn et al., 2005] Marion Verduijn, Arianna Dagliati, 

Lucia Sacchi, Niels Peek, Riccardo Bellazzi, Evert de 
Jonge, Bas de Mol. IC prediction from patient 
monitoring data: a comparison of two temporal 
abstraction procedures. In Proceedings of the AMIA 
2005 Annual Symposium,2005. 

 

IDAMAP 2006 Page 16 of 106



Temporal Characterization of Ill-known Diseases

Silvana Badaloni and Marco Falda
University of Padova via Gradenigo 6, 35100 Padova, Italy

silvana.badaloni@unipd.it, marco.falda@unipd.it

Abstract
In the identification of unknown diseases the
temporal evolution is one of the most important
aspects. Very often information about a new dis-
ease is imprecise and vague, due to the fact that
the disease itself is hardly recognized by study-
ing the symptoms of the patients. To this aim,
we have applied a Fuzzy Temporal Reasoning
system we have developed to the case of Severe
Acute Respiratory Syndrome (SARS). The sys-
tem is able to handle both qualitative and met-
ric temporal knowledge affected by vagueness
and uncertainty. In this preliminary work, we
show how the fuzzy temporal framework allows
us to represent temporal evolutions of symptoms
in different patients thus making possible to de-
duce characteristic periods of an unknown dis-
ease such as SARS was.

1 Introduction
Unpurified drinking water, improper use of antibiotics, lo-
cal warfare, massive refugee migration and changing social
and environmental conditions around the world have fos-
tered the spread of new and potentially devastating viruses
and diseases and have made surveillance for infectious
diseases a public health need [Berkelman et al., 1994;
Berkelman et al., 1996].

Medical examiners and coroners certify approximately
20% of all deaths that occur within the United States and
can be a key source of information regarding infectious
disease deaths [Wolfe et al., 2004]. A computer-assisted
search tool could detect infectious disease deaths from a
medical examiner database, thereby reducing the time and
resources required to perform such surveillance manually.

Medical diagnosis is a field in which imprecise informa-
tion about symptoms and events can appear; for example
this happens when the physician must interpret the descrip-
tion of a patient, or when a new disease appears and typical
patterns have to be discovered. Human reasoning about
uncertainty is often poorly coherent, while an automated
system can guarantee an homogeneous treatment of vague
data.

The framework of Fuzzy Sets can be regarded as the
most suitable formalism to deal with imprecision intrin-
sic to many medical problems [Steimann, 2001] especially

when epidemiological studies cannot be developed since
statistical data are lacking or insufficient. Therefore, fuzzy-
set based approaches allow one the ease of expression of-
fered by symbolic models avoiding the unwieldiness of an-
alytical alternatives, bridging the gap between the discrete
world of reasoning and the continuity of reality [Steimann,
2001].

The most common use of fuzzy temporal reasoning in
medical diagnosis is for representing the temporal evolu-
tion of the manifestations of patient diseases in order to rec-
ognize the typical temporal evolution of a specific disease,
and then make a diagnosis. In [Wainer and Rezende, 1997;
Wainer and Sandri, 1999] it has been shown how diag-
nostic reasoning can be fundamental to detect infectious
diseases on the basis of temporal information. For exam-
ple, Staphylococcus aureus and short therm Bacillus cereus
are the only possible bacterial causes for nausea and vom-
iting within 1-6 h from ingestion of contaminated matter
while a patient with botulism will only have those symp-
toms only 18-36 h after ingestion. In [Badaloni and Falda,
2005] we have addressed the problem of recognizing an ex-
anthematic disease starting from the approximated knowl-
edge of the temporal sequence of its symptoms and from
the imprecise data coming from a patient’s description. In
exanthematic diseases the temporal evolution and the du-
ration of the symptoms are sufficient to discriminate them,
therefore the diagnosis can be based on the identification of
typical temporal structures.

In this preliminary work, we address the problem of di-
agnostic reasoning from a different point of view. We start
from a set of data concerning the temporal evolution of
symptoms of different patients affected by an unknown or
ill-known disease. It should be noticed that, at the mo-
ment, we don’t treat data extracted from laboratory tests or
temporal biomedical patterns that would require the use of
advanced methodologies to deal with [Sacchi et al., 2005]
but, more simply, we treat temporal data relative to com-
mon symptoms of a limited group of patients. Once repre-
sented such data in a fuzzy constraint temporal network, we
propose a method for abstracting general temporal features
characterizing the disease, if they exist (e.g. the incubation
period). To this aim we utilize a model [Badaloni et al.,
2004] based on Fuzzy Temporal Constraint Networks. The
constraint based system allows one to manage in a unified
framework temporal information of different types. In fact,
temporal information coming from the domain may be both
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qualitative such as “the interval I1 with fever precedes the
interval I2 with cough” or metric such as “fever lasts one
day” or mixed such as “symptom m2 follows symptom m1
and starts at 8pm”.

In this paper, we present an application of our temporal
reasoning system in a case study: the Severe Acute Respi-
ratory Syndrome (SARS). It is organized as follows: Sec-
tion 2 describes our approach to integrate temporal infor-
mation in presence of vagueness and uncertainty, Section 3
defines the medical problem under study, Section 4 reports
the considered temporal data and shows how the problem
can be modeled. Finally, the results are discussed in Sec-
tion 5.

2 Qualitative and quantitative fuzzy
temporal constraints

Let’s first describe the different components of our integra-
tion model. To deal with qualitative temporal information
the most famous approach is the Allen’s Interval Algebra
[Allen, 1983]; in this algebra each constraint is a binary
relation between a pair of intervals, represented by a dis-
junction of atomic relations:

I1 (rel1, . . . , relm) I2

where each rel i is one of the 13 mutually exclusive
atomic relations that may exist between two intervals (such
as equal, before, meets etc.).

Allen’s Interval Algebra has been extended in [Badaloni
and Giacomin, 2006] with the Possibility Theory [Dubois
et al., 1996] by assigning to every atomic relation rel i a de-
gree αi, which indicates the preference degree of the corre-
sponding assignment among the others

I1 R I2 with R = (rel1[α1], . . . , rel13[α13])

where αi is the preference degree of rel i (i = 1, . . . , 13);
preferences can be defined in the interval [0, 1]. If we take
the set {0, 1} the classic approach is obtained.

Intervals are interpreted as ordered pairs (x, y) : x ≤ y
of <2, and soft constraints between them as fuzzy subsets
of <2×<2 in such a way that the pairs of intervals that are
in relation relk have membership degree αk.

If temporal entities are points, the Point Algebra [Vilain
et al., 1989] and its fuzzy extension [Badaloni and Gia-
comin, 2006] have been considered. In the classical case,
i.e. when temporal information is not affected by uncer-
tainty and vagueness, a Qualitative Algebra QA that in-
cludes all the combinations that can occur between tem-
poral points and intervals is defined in [Meiri, 1996], con-
taining all the algebras: the Point Algebra PA , the Inter-
val Algebra IA, the Point-Interval and Interval-Point Alge-
bras PI and IP , referring to point-point, interval-interval,
point-interval, interval-point relations. In order to build
the fuzzy Qualitative Algebra QAfuz , we have consid-
ered the corresponding fuzzy extensions PAfuz and IAfuz

[Badaloni and Giacomin, 2002; Badaloni and Giacomin,
2006], PIfuz and IP fuz [Badaloni et al., 2004].

Dealing with temporal metric information, tradi-
tional Temporal Constraint Satisfaction Problems (TCSPs)
[Dechter et al., 1991] have been extended to the fuzzy case
[Marı́n et al., 1997; Godo and Vila, 2001]. In most cases

trapezoidal distributions have been used, since they seem
enough expressive and computationally less expensive. We
too adopt trapezoidal distributions: each trapezoid is rep-
resented by a 4-tuple of values describing its four charac-
teristic points plus a degree of consistency αi denoting its
height.

Tk =� ak, bk, ck, dk � [αk]
with ak, bk ∈ <∪{−∞}, ck, dk ∈ <∪{+∞}, αk ∈ (0, 1],
� is either ( or [ and � is either ) or ].

The points bk and ck determine the interval of those tem-
poral values which are likely, whereas ak and dk determine
the interval out of which the values are absolutely impossi-
ble.

As an example, let’s consider the following sentence:
“Patient P1 had fever on February 27; within ap-
proximately 5 days he developed cough.”

By setting the origin of time on February 27 and assum-
ing an imprecision of one day, we can model this sentence
as

P1 : {(4, 4.5, 5.5, 6)}

in Figure 1 its graphical representation is shown.

Figure 1: Example of trapezoidal possibility distribution

In our approach the following trapezoids can be mod-
eled:

open triangle:(ai, ai, ai, di)[αi]
open trapezoid:(−∞,−∞, ci, di)[αi]

closed left semiaxis:(−∞,−∞, di, di][αi]
in this way the expressiveness of the language is in-

creased with respect to e.g. [Barro et al., 1994]. Be-
sides, these trapezoids allow us to integrate qualitative con-
straints.

As far as operations between metric constraints are
concerned, the usual operations i.e. inversion, conjunc-
tive combination, disjunctive combination and composition
have been defined.

2.1 About the integration
Fuzzy qualitative constraints and fuzzy metric constraints
have been integrated together in a single framework
[Badaloni et al., 2004] defining two transformation func-
tions QUANfuz and QUALfuz that allow to switch from
the qualitative to the metric plane and vice versa. In the
conversion from the metric to the qualitative plane a lot of
information is lost, due to the fact that for example any met-
ric constraint that represents a positive distance between
temporal events is transformed into the “before” qualitative
constraint; nothing instead is lost in the inverse conversion.
For this reason, when the constraints to be represented are
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of different nature the operations between qualitative and
metric constraints are made, as far as possible, in the met-
ric plane, in order to loose as less information as possible;
therefore we always try to transform the qualitative con-
straints into metric constraints. There is a case however
where it is not possible to remain in the metric plane; this
happens when the composition operation involves a mixed
qualitative relation. In this case it is necessary to transform
the metric operand and to operate in the qualitative plane.
Once the operations have been extended to the fuzzy case
usual algorithms to solve CSPs can be easily generalized.

This way, we can manage temporal networks where
nodes can represent both points and intervals, and where
edges are accordingly labeled by qualitative and quantita-
tive fuzzy temporal constraints. A more detailed descrip-
tion of our approach can be found in [Badaloni et al., 2004].

2.2 Algorithms
The notions of local consistency have been extended too.
In particular, local consistency has been expressed as the
degree of satisfaction which denotes the acceptability of
an assignment with respect to the soft constraints involved
in the relative sub-network. According to [Dubois et al.,
1996], this degree of satisfaction corresponds to the least
satisfied constraint.

Moreover, Path-Consistency and Branch & Bound algo-
rithms have been generalized to the fuzzy case adding some
relevant refinements that improve their efficiency. Path-
consistency allows to prune significantly the search space
while having a polynomial computing time.

In our integrated system embedding both qualitative and
metric constraints composition and conjunction operations
used in the algorithms depend on the type of operands,
therefore they change according to the kind of constraints
to be processed (qualitative or metric).

3 The SARS case
In the following we will consider the case of SARS, a kind
of pneumonia spread from Far East in 2003. We take as ref-
erence one of the first articles written in that period [Pouta-
nen et al., 2003]; it is about the cases in Toronto. We will
study only four patients of ten (Patients 1, 2, 7 and 8), be-
cause they are better described from the temporal point of
view. In this initial study the scenario has been simplified,
but it is sufficient to show the flexibility of the constraints
that can be used to model a problem, but the system could
be applied to tens of patients thus outperforming a human
analysis in terms of coherence and consistency.

3.1 Description of the outbreak
The Toronto index case (Patient 1) and her husband trav-
eled to Hong Kong to visit relatives from February 13
through February 23, 2003. They returned to their apart-
ment in Toronto on February 23, 2003. Patient 1, a 78-year-
old woman, had fever, anorexia, myalgias, a sore throat,
and mild nonproductive cough two days after returning
home. Two days later, she noted the development of in-
creasing cough with dyspnea. She died three days later, on
March 5, at home, nine days after the onset of her illness.

The index patient’s 43-year-old son (Patient 2), had fever
and diaphoresis on February 27. Within approximately five

days he became afebrile, but concurrently, a nonproductive
cough, chest pain, and dyspnea developed. Because of per-
sistent symptoms, 4 days later he was assessed at a hospital
and noted to have a fever (temperature, 39.8C) and an oxy-
gen saturation of 82 percent while breathing room air. De-
spite intensive physiological support, multiorgan dysfunc-
tion syndrome developed, and he died on March 13, 2003,
6 days after admission, and 15 days after becoming ill.

As a result of media attention, three additional cases of
SARS were identified. The first case was in a previously
healthy 37-year-old female family physician of Asian de-
scent (Patient 7) who saw Patient 2 and his wife on March
6, when they were both symptomatic. Patient 7 had a severe
headache on March 9, followed by fevers (temperatures
of up to 40C), myalgias, and malaise. Four days later, a
nonproductive cough developed, and she was noted to have
fever (temperature, 38.5C) and tachypnea with an oxygen
saturation of 100 percent on room air.

The second additional identified case was in a 76-year-
old man of non-Asian descent (Patient 8). Patient 8 was as-
sessed in the emergency department on March 7 for atrial
fibrillation and observed overnight on a gurney separated
by a cotton curtain 1 to 2 m from Patient 2. Patient 8
was discharged home on March 8, and two days later he
had fever (temperatures of up to 40C), diaphoresis, and
fatigue. Despite receiving broad-spectrum antibiotics, os-
eltamivir, intravenous ribavirin, and intensive support, he
died on March 21, 5 days after admission and 12 days after
the onset of his illness.

4 Modelling the scenarios
The four patients were suspected to have SARS because the
lived in the same apartment in Toronto and the symptoms
were similar to those reported in Hong Kong, where Patient
1 spent a week before returning home.

Our aim is to characterize the incubation period, that is
the period between the contagion and the first symptoms.
To do this, we take into account the period during which the
disease could have been got, the fever (as initial symptom),
the cough, the contagion and the death.

For example the following temporal evolution can be ab-
stracted from the previous observations about Patient 1:

• in travel from February 13 to February 23;
• 2 days later, fever;
• 2 days later, cough;
• 3 days later, death.

These temporal descriptions allow to build timetables for
each patient in exam, as depicted in Figure 3. Note that
metric information need to be specified as relative distances
between temporal events, since this is the semantics of met-
ric constraints.

Four distinct networks have been build for each patient
starting from the previous data. In a preliminary phase the
symptoms common to all patients have been identified by
the physicians. There are seven significant points plus an
interval (V6) that represents the period during which the
disease could be got, in the following called I .

The seven points become the network vertices and are
identical in each network (Figure 3):
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13 23 25 27 2 6 7 8 9 10 13 14 15

13 23 25 27 2 6 7 8 9 10 13 14 15

13 23 25 27 2 6 7 8 9 10 13 14 15

H R F D

V F C

HCF D

13 23 25 27 2 6 8 9 10 13 14

T CF D T: travel D: death
F: fever V: visit
C: cough R: discharge
H: hospital

Figure 2: Timelines for the patient’s data

1. V0: t0, the “origin of time”;
2. V1: begin of I;
3. V2: end of I;
4. V3: fever;
5. V4: cough;
6. V5: death;
8. V7: contagion.

The “origin of time” has been set on February 23, that
is the day in which Patient 1 returned home and infected
her family. The end of period I coincides respectively with
the death, the admission to hospital, the discharge to home
and the one-day medical visit. The constraints that refer
to a patient have been defined as in the following example,
where we assume an uncertainty of half a day:

• about -10 days from V0 to V1:

V0{[−11,−10.5,−10,−9.5]}V1

• 0 days from V0 to V2

V0{=}V2

• about 2 days from V2 to V3

V2{[1, 1.5, 2.5, 3]}V3

• about 2 days from V3 to V4

V3{[1, 1.5, 2.5, 3]}V4

Figure 3: Graph of the problem

• about 3 days from V4 to V5

V4{[2, 2.5, 3.5, 4]}V5

Additionally in all four cases there are the following con-
straints that model the facts that the contagion must be be-
fore the first symptom and that the I period is characterized
by a begin and an end, and that the contagion must be con-
tained in period I .

V7{<}V3

V6{si}V1

V6{fi}V2

V7{d, s, f}V6

In this example all qualitative constraints have a degree
of preference equal to 1, because here they are used only
to link qualitative intervals with metric points. Metric con-
straints instead present, as said before, a trapezoidal possi-
bility distribution (that is the set of all preference degrees in
the domain) that sets the maximal plausibility to the assign-
ments in the core between b and c, and states as impossible
the values outside the range (a, d).

5 Results
The previous networks are then coded as XML files based
on a XML schema designed to represent Fuzzy Temporal
Networks, and then passed to the solver.

A consistency analysis of the temporal data gave the
following incubation estimates in terms of constraints be-
tween the contagion V7 and the fever V3, being Pi the pa-
tients

P1 : V3{(−13.5,−12.5,−1.5,−1.0)}V7

P2 : V3{(−4.5,−4.0, 0.0, 0.0]}V7

P7 : V3{(−4.5,−3.5,−2.0,−1.0)}V7

P8 : V3{(−5.0,−3.5,−1.5,−1.0)}V7
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That can be interpreted as:

P1: approximately from 1 to 12 days;

P2: approximately from 0 to 4 days;

P7: approximately from 2 to 4 days;

P8: approximately from 1 to 4 days.

The output of the solver is still a valid XML file that
could be possibly modified and processed again. In this
prototype version the application has a command line in-
terface, but since it works with XML the output could be
easy formatted to be shown on a Web interface using XML
stylesheets.

In Figures 4, 5, 6 and 7 the period I is represented as a
hatched rectangle and the incubation period as an interval
between the begin of the period I and the onset of the first
symptoms.

Figure 4: Evolution in Patient 1

Figure 5: Evolution in Patient 2

Figure 6: Evolution in Patient 7

In this paper to merge information coming from differ-
ent sources the intersection operations has been considered:
therefore real incubation period is the intersection of the
four estimated periods, that is about 2-4 days. In this case
the deduction has been not too difficult, but in a more re-
alistic scenario with a lot of temporal data to analyze an
automated reasoning system could be very helpful for a
physician that has to figure out the temporal evolution of
the symptoms of a new disease. Besides, a more robust
technique should take into account the weight of data com-
ing from different sources in order to reduce the influence
of less common cases (possibly wrong).

6 Conclusions
In this paper we have shown an application of our tempo-
ral constraint solver in a medical domain; this application
could support the physician to characterize temporally an

Figure 7: Evolution in Patient 8

unknown disease by aid him to deduce its temporal evo-
lution. Our solver extends the classic temporal constraints
by allowing to specify uncertainty and vagueness; this is
fundamental in the context of unknown illnesses.

In order to make the system more useful a first enhance-
ment will be the management of constraint classes; in this
way, it will be possible to merge automatically the deduced
durations in order to identify the most plausible.

Moreover, as in [Wainer and Sandri, 1999; Keravnou,
2002], a real diagnosis expert system should consider also
atemporal aspects of diseases. As future work we intend to
enrich our system by addressing also these aspects.
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Cancer area characterization by non-parametric clustering
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Abstract

The application of machine learning techniques
to open problems in different medical research
fields appears to be stimulating and fruitful, es-
pecially in the last decade. In this paper, a new
method for MRI data segmentation is proposed,
which aims at improving the support of medical
researchers in the context of cancer therapy. In
particular, our effort is focused on the process-
ing of raw output obtained by Dynamic Contrast-
Enhanced MRI (DCE-MRI) techniques. Here,
morphological and functional parameters are ex-
tracted, which seem indicate the local develop-
ment of cancer. Our contribute consists in or-
ganizing automatically these output, separating
MRI slice areas with different meaning, in a his-
tological sense. The technique adopted is based
on the Mean-Shift paradigm, and it has recently
shown to be robust and useful for different and
heterogeneous segmentation tasks. Moreover,
the technique appears to be predisposed to nu-
merous extensions and medical-driven optimiza-
tions.

1 Introduction
Segmentation is a vast and complex domain, both in terms
of problem formulation and resolution techniques. It con-
sists in formally translating the delicate visual notions of
homogeneity and similarity, and defining criteria which al-
low their efficient implementation[Petitjean, 2002]. The
goal is to partition the source data into meaningful pieces,
i.e. those parts corresponding to the different entities, in
the physical and semantical sense of the application en-
visioned. Roughly speaking, the segmentation methods
can be categorized into two main classes:edge-basedand

∗U. Castellani, M. Cristani, V. Murino and E. Rossato are with
the Dipartimento di Informatica, University of Verona, Strada le
Grazie 15, 37134 Verona (Italy). Contacts: U. Castellani, e-mail
umberto.castellani@univr.it .

†P. Marzola and A. Sbarbati are with the Department of Mor-
phological and Biomedical Sciences, Anatomy and Histology
Section, University of Verona, P.le Scuro 10 - Policlinico B.go
Roma - 37134 Verona (Italy). Contacts: P. Marzola, e-mail
pasquina.marzola@univr.it .

region-based[Petitjean, 2002]. In the former, features cor-
responding to part boundaries are first detected and then
regions are built, each one formed by sets of points de-
limited by the same boundary. In the latter, points shar-
ing the same similarity property are grouped together. In
particular, three are the most popular approaches to region-
based segmentation:split-and-mergemethods, identified
by a top-down paradigm;region-growingmethods, that
adopt a bottom-up paradigm, andclustering-basedmeth-
ods, based on the projection of the points onto a higher
dimensional space where the clusters (i.e., segments) are
recovered by defining some particular distance functions
[Jainet al., 1999a].

In this paper, we apply a recently proposed clustering-
based technique for the analysis of data, which considers
as leading framework the Mean Shift (MS) clustering para-
digm, proposed in[Comaniciu and Meer, 2002]. The main
underlying idea of such non parametric approach is that the
data space is regarded as an empirical probability density
function to estimate. The MS procedure operates by shift-
ing a fixed size estimation window, i.e.,the kernel, from
each data point towards a local mode, denoted, roughly
speaking, as a high concentration of points. The points
converging to the same mode are considered as belonging
to the same region.

Although MS has shown to be a powerful technique for
several research fields such as image and video segmenta-
tion, tracking, clustering and data mining[Comaniciu and
Meer, 2002; Collins, 2003; Georgescuet al., 2003], very
few work has been derived from it in the context of med-
ical multidimensional data segmentation.

In this paper, the MS paradigm is applied to perform
segmentation of multidimensional data, obtained using Dy-
namic Contrast-Enhanced Magnetic Resonance Imaging
(DCE-MRI). Briefly speaking, DCE-MRI techniques rep-
resent non-invasive ways to discover symptoms of local tu-
mor growth, based on a manually-driven feature extraction
step that operates on the MRI imagery.

As explained in the following, our method bring two
advantages to the current state of the DCE-MRI analysis.
First, it permits a more accurate feature extraction step, that
here operates in anautomaticfashion. Second, it permits
to fasten the analysis itself, ensuring a higher throughput,
that turns out to be useful in the case of massive analysis.

The rest of the paper is organized as follow. In Section
2, an overview of the previous work done in the context
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of medical data segmentation is provided; subsequently, in
Section 3, the necessary medical background is provided,
considering the classical DCE-MRI experimental method-
ology, in the contest of the tumor development monitoring.
This section will elucidate the nature of the data managed;
moreover, here it will be possible to deeply understand the
advantages brought by our method. In Section 4, the Mean
Shift procedure is explained, connecting it with a classical
pattern recognition procedure, i.e. the Parzen Windows es-
timation method. In Section 5, the technical details of the
proposed method are reported. Results are shown in Sec-
tion 6, also compared with a state of the art method, and,
finally, Section 7 concludes the paper.

2 Previous Works

In the realm of medical data segmentation, several works
have been introduced, especially for MRI clustering and
classification[Windishbergeret al., 2003; Dimitriadouet
al., 2004; Zhang and Chen, 2004; Wismulleret al., 2006;
Arulmurgan et al., 2005; Wei and Yang, 2005; Jainet
al., 1999b; Scarthet al., 1995; Castellaniet al., 2005].
Most proposed methods are based on theK-Means al-
gorithm [McQueen, 1967; Han and Kamber, 2000]. In
[Windishbergeret al., 2003; Zhang and Chen, 2004], a
variant of the K-Means has been implemented, calledfuzzy
C-Means(FCM) [Scarthet al., 1995; Jainet al., 1999b;
Dimitriadouet al., 2004]. Such variant takes advantages of
fuzzy logic algorithms to enhance clustering performance.
In particular, the FCM algorithm assigns pixels to fuzzy
clusters without labels. Unlike the hard clustering methods
which force pixels to belong exclusively to one class, FCM
allows pixels to belong to multiple clusters with varying de-
grees of memberships. In[Windishbergeret al., 2003] the
clustering of MRI time series have been performed for the
identification and separation of artifacts as well as quan-
tification of expected novel information on brain activi-
ties. In[Zhang and Chen, 2004] the authors focused on the
methodological aspect of thefuzzy C-Meansby introduc-
ing a kernel-induced distance metric and a spatial penalty
on the membership functions. The proposed approach has
proved to be more robust to noise and other artifacts with
respect to standard algorithms. In[Castellaniet al., 2005]
the authors proposed a DCE-MRI clustering approach, cou-
pled with a Information Visualization module, in which a
Bayesian development of the K-Means was applied. Here
the add-on is that the number of the clusters is automati-
cally computed; the algorithm is similar in spirit to the X-
Means algorithm proposed by[Pelleg and Moore, 2000].
In [Dimitriadouet al., 2004], a quantitative comparison of
MRI cluster analysis has been reported.
With respect to the proposed evaluation, the results clearly
show that approaches based on k-means algorithm perform
significantly better than all the other methods.
More complex techniques have been proposed in[Wis-
mulleret al., 2006; Arulmurganet al., 2005; Wei and Yang,
2005] which are based on neural networks or genetic algo-
rithms[Jainet al., 1999b; Han and Kamber, 2000], but they
are time consuming and therefore are not suitable for inter-
active applications.

3 The DCE-MRI analysis
The main purpose of DCE-MRI analysis is to accurately
monitor the local development of cancer, eventually sub-
ject to different treatments.
The traditional criteria to assess the tumor response to treat-
ment is based on the local measurement of tumor size
change. This phenomenon is due to the localangiogenesis,
i.e., the process of growth of new vessels which provide the
tumor tissue with nutrients. In consequence, various angio-
genesis inhibitors have been developed to target vascular
endothelial cells and to block tumor angiogenesis.

Recently, a different and more appealing indicative
symptom of the cancer development has been analyzed, i.e.
the tissue vascularization[Marzolaet al., 2004]. Roughly
speaking, vascular effect may precede, by a remarkably
long time interval, the effect on tumor growth. For these
reasons, the assessment of antiangiogenic compounds re-
quires imaging methods that can detect early vascular al-
terations.

DCE-MRI techniques play a relevant role in this field
[Marzolaet al., 2004]. The final aim is to provide quan-
titative measures that indicate the level of vascularization
in the cancer tissue, eventually treated with antiangiogenic
compounds, in anon-invasiveway.
Roughly speaking, the DCE-MRI analysis can be divided
in the following steps (see Fig.1)1: 1) injecting macromole-
cular contrast agents in the tissue being analyzed; 2) pro-
ducing MRI image sets of different slices of the tissue; 3)
extracting morphological and functional parameters such
as fractional plasma volume(fPV) and transendothelial
permeability(kPS), that model the tissue vascularization;
in practice, to each point of the MRI image is associated a
pair consisting offPV andkPS values; 4) manually select-
ing a Region Of Interest on the MRI slices, in order to iso-
late the highly vascularized local tumoral area; usually this
area is ring-shaped and separates a necrotic area (that lies
in the center of the ring) from the external healthy portion
of the tissue; 5) averaging the values offPV andkPS in
such ring-shaped area, obtaining for each slice a couple of
fPV andkPS mean values, that indicate the overall level
of vascularization. This process has been recently tested
using a well-known anti-cancer treatment[Marzolaet al.,
2005], evidencing that thefPV andkPS parameters well
describe the effectiveness of the treatment, as checked by
additional histological analysis; as we see in the following,
we take as experimental data-set the one coming from this
research.

In this paper, we strongly improve the process above,
providing an automatic method of data segmentation; the
proposed technique is applied to this particular kind of
analysis, but we suppose it can be also applied in general in
the DCE-MRI context. In detail, we focus on steps 3), 4)
and 5); our method takes as input the functional parameters
fPV andkPS obtained in step 3); in an automatic fashion,
it is able to segment areas that experimentally corresponds
to the tumoral area extracted by hands in step 4); note that
originally this step was driven by histological and physio-

1The procedure listed above comes from the investigation de-
tailed in [Marzola et al., 2005], that in turn presents additional
similar researches
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Figure 1: DEC-MRI analysis: example of DEC-MRI
analysys procedure; 1) contrast agent injection; 2) MRI im-
age acquisition 3)kPS,fPV extraction; for clarity, here the
bright zone highlights the tumor4) ring shape ROI drawing
by hand; 5) meankPS,fPV values computation

logical a-priori considerations, being the ring-shaped zone
segmented by hand by an human operator.

The advantage brought by the proposed approach is
twofold: firstly and mostly important is that, given a DCE-
MRI slice, we provide a region of points composed by an
ensemble offPV andkPS values that individuate separate
groups; note that the partition is histologically meaning-
ful, and not relies on a-priori manual settings. Secondly,
such a segmentation is produced automatically and quickly
( 5 seconds, versus the 4-5 minutes needed for an accu-
rate manual setting), thus fasting the analysis process listen
above.

4 Mean Shift
The Mean Shift procedure is a dated non-parametric
density estimation technique [Fukunaga, 1990;
Comaniciu and Meer, 2002]. The main underlying
idea is that the data feature space is regarded as an em-
pirical probability density function to estimate: therefore,
a big concentration of points that fall near the locationx
indicates a big density nearx.

The theoretical framework of the mean shift arises from
the Parzen Windows[Dudaet al., 2001] basic expression,
i.e. the kernel density estimator, that is

f̂(x) =
1
n

n∑

i=1

KH(x− xi) (1)

wheref̂(x) represents the approximated density calculated
in thed-dimensional locationx, n is the number of avail-
able points and

KH(x) = |H|−1/2K(H−1/2x). (2)

Here above,KH can be imagined as a weighted window
used to estimate the density, dependent on the kernelK
and the symmetric positive definited×d bandwidth matrix
H. The functionK is a bounded function with compact
support (for full details, see[Comaniciu and Meer, 2002]);

the bandwidth matrix codifies the uncertainty associated to
the whole feature space.

In the case of particular radial symmetric kernels (see
[Comaniciu and Meer, 2002]), K can be specified using
only a 1-dimensional function, theprofile k(·), equal for
each dimension. Moreover, if we assume independence
among the feature dimensions and equal uncertainty over
them, the bandwidth matrix can be rewritten as propor-
tional to the identity matrixH = h2I. Under such hy-
potheses, Eq. 2 can be rewritten as:

f̂h,k(x) =
ck,d

nhd

n∑

i=1

k

(∣∣∣∣
∣∣∣∣
x− xi

h

∣∣∣∣
∣∣∣∣
2
)

(3)

whereck,d is a normalizing constant,n is the number of
points available, andk(·) is the kernel profile; in Eq.(3) it
is easy to note thatk(·) models how strongly the points are
taken into account for the estimation, in dependence with
their distanceh to x.

Mean Shift extends this “static” expression, differentiat-
ing (3) and obtaining the gradient of the density, i.e.:

∇̂fh,k(x) =

2ck,d

nhd

[
n∑

i=1

g

(∣∣∣∣
∣∣∣∣
xi − x

h

∣∣∣∣
∣∣∣∣
2
)]


∑n

i=1 xig
(∣∣∣∣xi−x

h

∣∣∣∣2
)

∑n
i=1 g

(∣∣∣∣xi−x
h

∣∣∣∣2
) −x


(4)

whereg(x) = k′(x). In the above equation, the first term
in square brackets isproportional to the normalized den-
sity gradient, and the second term is theMean Shiftvector,
that is guaranteed to point towards the direction of maxi-
mum increase in the density[Comaniciu and Meer, 2002].
Therefore, starting from a pointxi in the feature space, the
mean shift produces iteratively a trajectory that converges
in a stationary pointyi, representing a mode of the whole
feature space.

5 The proposed method
Our segmentation method can be thought as a clustering
process, derived from the approach proposed in[Comani-
ciu and Meer, 2002]. Briefly speaking, the first step of such
process is made by applying the Mean Shift procedure to
all the points{xi}, producing several convergency points
{yi}. A consistent number of close convergency locations,
{yi}l, indicates a modeµl. The labeling consists in mark-
ing the corresponding points{xi}l that produces the set
{yi}l with the labell. This happens for all the convergency
locationl = 1, 2, . . . , L.

In this paper, we consider each point of the MRI as a
d-dimensional entity, living in ajoint domain. In specific,
eachxi is composed by the pairxs ∈ R2 of spatial coordi-
nates relative to thex,y image axes (theforming the spatial
sub-domain) and the pairxc ∈ R2 of fPV andkPS co-
efficients (forming thecoefficients sub-domain). For each
sub-domain we assume Euclidian metric.
In order to explore the joint domain, a multivariate kernel is
used[Comaniciu and Meer, 2002; Wanget al., 2004], that
has the form

Khs,hc
(xi) =

C

h2
sh

2
c

k

(∣∣∣∣
∣∣∣∣
xi,s

hs

∣∣∣∣
∣∣∣∣
2
)
k

(∣∣∣∣
∣∣∣∣
xi,c

hc

∣∣∣∣
∣∣∣∣
2
)

(5)
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wherexi,s indicates the spatial coordinates of thei−th
point and so on forxi,c; C is a normalization constant,
andhs,hc are the kernel bandwidths for each sub-domain.
These values give to each feature domain the intuitive con-
cept of “importance”: strictly speaking, the bigger the re-
lated kernel bandwidth, the less important that feature. In
other words, a big amplitude of the kernel tends to agglom-
erate points in few convergence locations, while a small
kernel highlights better local modes, encouraging cluster
separations.
In this paper, we use the Epanechnikov kernel[Comaniciu
and Meer, 2002], that can be described by the profile

k(x) =
{

1− x if 0 ≤ x ≤ 1
0 otherwise (6)

that differentiated leads to the uniform kernel, i.e. ad-
dimensional unit sphere.

6 Experiments
The experiments performed in this paper are related to a
series of investigations on the effects of a particular tumor
treatment, using DCE-MRI techniques. Here, human mam-
mary carcinoma fragments (13762 MAT B III) were subcu-
taneously injected in the right flank of 42 female rats at the
level of the median-lateral. The details about the experi-
ment outstand the scope of the paper (see[Marzolaet al.,
2005] for details); anyway, the interesting aspects are the
following: 1) after the injection of a contrast compound in
the animals, MRI images were acquired for tumor local-
ization and good visualization of extratumoral tissues. The
dynamic evolution of the Signal Intensity in MR images is
analyzed using a two compartments tissue model in which
the contrast agent can freely diffuse between plasma and
interstitial space. The kPS and fPV values are obtained
pixel by pixel by fitting the theoretical expression to exper-
imental data. After that, data were transferred on a PC for
analysis. Images were analyzed on a ring-like region-of in-
terest (ROI) basis to obtain the average value ofkPS and
fPV within it: in each animal, the central 5 slices of the
3D data set were analyzed.

In our case, we select a reasonable section of the MRI
slice, (Fig.2 (a); in principle, the analysis can be applied to
the entire slice); in this area, we calculate the relatedkPS
andfPV coefficients (Fig.2 (b) and (c)) and we perform
MS segmentation using a uniform kernel for each subdo-
main.

After the normalization of the data, that brought all
the values between 0 and 1, the kernel bandwidth widths
have been easily chosen. In particular, after some (less
than 10) trials the bandwidth values have been set to
[0.3, 0.3, 0.03, 0.06] for the spatial (first pair of values), and
the coefficient sub-domain (second pair of values), respec-
tively.

The current implementation of the proposed method is
working under the Matlab 7 environment. The segmenta-
tion process takes∼ 5 sec. each for each MRI slice.

A result obtained for the slice shown in Fig.2 is shown
in Fig.3 (b).
As comparative test, we perform the same analysis using
the approach based on the Bayesian development of the K-
Means, presented in[Castellaniet al., 2005]; the result is

(a)

(b)

(c)

Figure 2: DEC-MRI: (a) example of MRI slice, where a
contrast agent has been introduced into the tissue before
the image acquisition; a rough section of the tissue was se-
lected in order to apply our algorithm, highlighted by the
dotted circle; (b) intensity image representing thefPV val-
ues; (c) intensity image representing thekPS values; in b)
and c), the higher the values of the parameters, the brighter
the color of the correspondent pixels.

shown in Fig.3 (a). As one can see, our approach iden-
tify two clusters: both of them have a different histolog-
ical meaning; the darker cluster, roughly forming a ring,
indicates effectively the zone of the tumor more affected
by vascularization. This zone corresponds to the one seg-
mented by hand at steps 4) and 5) of the DCE-MRI analy-
sis discussed in Sect.3. The second cluster, that spreads
over the center, indicates another different zone, affected
by high permeability with respect to the contrast agent. The
result obtained using the X-Means based approach shows
slightly only the circular high vascularized ring.

With the same experimental setup, we perform another
two tests on the same DCE-MRI data set. As shown in
Fig.4 (b) and (d), in both the cases the resulting segmen-
tations show 2 clusters, i.e., an external high vascularized
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(a) (b)

Figure 3: Comparative results: (a) the segmentation ob-
tained using the X-means method; (b) our approach

ring and a central necrotic spread zone, with precise histo-
logical meanings, as written above.

(a) (b)

(c) (d)

Figure 4: DCE-MRI results: on the left, the MRI images
related to two different experiments, with the tumoral zone
highlighted. On the right, the resulting segmentations

7 Conclusions
In this paper, we introduce a multidimensional segmenta-
tion technique derived by the Mean Shift (MS) procedure,
aimed at improving the analysis and the characterization of
tumor tissues. Briefly speaking, the multidimensional out-
put obtained by a recent and non invasive tissue analysis,

namely, the Dynamic Contrast-Enhanced MRI (DCE-MRI)
technique is considered; the output of this technique, com-
posed by spatial, morphological and functional tumor pa-
rameters is projected in a joint space, where anautomatic
clustering-based segmentation is performed; this process
results in a histologically meaningful partition, that indi-
viduates tissue zones differently involved with the devel-
opment of the tumor. The goals of the proposed method
are two: 1) we permit an analysis of the tissue more precise
and 2) fast than the manual analysis currently performed;
these two results assess that the non-parametric paradigm
derived from the MS strategy well behaves with medical
segmentation issues, related to the DCE-MRI context. Fur-
ther research is currently under study, specially devoted to
make automatic the phase of kernel selection.
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Abstract

This paper presents the first results from a study
on automated filtering of monitoring data that
are automatically recorded in information sys-
tems. Monitoring data often contain erroneous
measurements and artifacts. In practice, experi-
enced clinicians ignore particular measurements
that they consider as unreliable when inspect-
ing and using monitoring data. In this study,
we investigate to what extent this clinical filter-
ing of monitoring data can be imitated by basic
smoothing techniques. We developed a proce-
dure for automated filtering of monitoring data
in which smoothing is used to classify measure-
ments as artifacts and non-artifacts. In the pro-
cedure, clinical judgement of monitoring data is
used as gold standard. The procedure is applied
to ICU monitoring data, and evaluated for three
different smoothing techniques.

1 Introduction
The intensive care unit (ICU) is one of the most data in-
tensive environments in medicine. The treatment aims to
keep a close watch to a patient’s physiological condition
and to intervene immediately when needed. Therefore, au-
tomated monitoring systems measure many physiological
variables with high frequency to continuously check the pa-
tient’s status. In modernly equipped ICUs, these measure-
ments are automatically recorded in an ICU information
system, a replacement of the paper-based patient record: it
provides an comprehensive overview of the patient’s condi-
tion and recent medical history, and is regularly inspected
by the ICU physician to adjust treatment and instruct the
nursing staff. ICU information systems are increasingly
equipped with computerized medical assistants for support-
ing these tasks[Miksch et al., 1996; Michelet al., 2003;
Charbonnier, 2005].

A necessary condition for optimal functioning of these
information systems is that reliable patient data be recorded
in these systems. Monitoring data, however, often contain
inaccurate and erroneous measurements, also calledarti-
facts. These measurements can, for instance, be due to
movements of the patient, or to equipment malfunction.
These measurements hamper clinical interpretation of the
data. In practice, experienced clinicians ignore particular

measurements that they consider as unreliable when in-
specting and using monitoring data. Computerized medi-
cal assistants as implemented in information systems do not
discern artifacts in monitoring data, though, and may there-
fore provide inaccurate support based on these measure-
ments. Therefore, the monitoring data should be cleaned
from artifacts and measurement errors prior to data usage.

Except for measurements that take theoretically impossi-
ble values (e.g., negative blood pressures), it is often not ev-
ident which measurements are artifacts. Although the gen-
eral course of monitoring data is a smooth pattern without
large changes within short periods of time, sudden changes
cannot be considered as artifacts by definition. Sudden
changes may reflect actual clinical events and may there-
fore contain information of patient’s health state.

This paper presents the first results from a study on au-
tomated, retrospective filtering of monitoring data. In this
study, we investigate to what extent basic smoothing tech-
niques can be used to imitate filtering of monitoring data by
experienced clinicians, without taking account of context
information and domain knowledge. We develop a proce-
dure for automated filtering of monitoring data in which
a smoothing technique is used. The intended application
of this procedure is prior to periodical consultations of the
data in the ICU information system by ICU physicians,
nursing staff, and computerized medical assistants. In the
procedure, clinical judgement of monitoring data is used
as gold standard: time series that are manually filtered by
physicians are used to tune the procedure for particular
types of physiological variable.

The paper is organized as follows. In Section 2, some
preliminaries of the automated data filtering procedure are
described. In Section 3, we introduce the monitoring data
that is used in this study. Subsequently, the procedure of
manual filtering by the ICU physicians and the procedure
for automated filtering are described. Section 4 describes
the results of manually filtering, and the results of applying
the automated filtering procedure to the monitoring data.
We conclude the paper with a discussion and conclusions
in Section 5.

2 Preliminaries
Artifact data are often recognizable by their large devia-
tion from the average level of the variable in question. A
common approach to detect such data points is therefore
to compare point-based values to averages of a series over
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time. The main difficulty with this approach is that also
mean values may change over time, and that such changes
are sometimes rapid and sometimes slow. The estimator
of the series average should therefore have the flexibility
to adapt to the data. However, it should not be so flexible
that it adapts to artifacts, as it is then no longer possible to
detect them.

In practice, (time-dependent) averages are usually esti-
mated by flexible regression techniques that originate from
the field of data visualization and smoothing. These tech-
niques are based on least-squares regression and obtain
flexibility by utilizing a notion of locality (in time). In this
study, we applied three conventional smoothing techniques
for filtering time series data: kernel smoothing, local re-
gression, and smoothing splines. We briefly describe these
techniques in this section.

Let x = (x1, . . . , xn) be a series of successive measure-
ments, andt = (t1, . . . , tn) be the associated measurement
times, i.e.,ti < ti+1, i = 1, . . . , n − 1. A smoothing es-
timateof x is a vectorf(t) = (f(t1), . . . , f(tn)) that is
‘close’ to x (i.e., the difference betweenxi and f(ti) is
generally small), but varies less thanx (i.e., the difference
betweenf(ti) and f(ti+1) is generally smaller than that
betweenxi andxi+1).

Kernel smoothingandlocal regressionare different gen-
eralizations of the simple moving average[Cleveland and
Loader, 1996]. In the simple moving average, the smoothed
seriesf(t1), . . . , f(tn) is composed of local averages of
the time series. That is, for each measurementxi, a lo-
cal average is calculated based on the measurement itself
and its neighborhood measurements. Increasing the neigh-
borhood size tends to increase the smoothness of the series
f(t1), . . . , f(tn).

In kernel smoothing, the neighborhood measurements of
xi are weighed using akernel functionto obtain a locally
weighted average. The kernel function gives higher weight
to the measurements in the neighborhood that are closer
to ti and lesser weight to those that are further away. In
local regression, a polynomial regression function is fitted
for each measurementxi based on its neighborhood mea-
surements. The polynomial degree of these functions can
be zero (i.e., local linear regression), or higher.

Smoothing splinesare regression functions of piece-wise
polynomials that minimize a compromise between the data
fit and the degree of smoothness by calculating the penal-
ized residual sum of squares:

RSS(f, λ) =
n∑

i=1

{xi − f(ti)}2 + λ

∫
{f ′′(ti)}2dt

whereλ is a smoothing parameter. The first part of the
equation measures the closeness of functionf to the data,
and the second part penalizes its curvature based on the
second derivative of the function;λ establishes a tradeoff
between the two parts[Hastieet al., 2001].

In this study, we applied these three smoothing tech-
niques as implemented in the S-plus statistical software
package. For each smoothing technique, some parame-
ters can be chosen. We optimized the complexity of each
smoothing function for only one parameter: the number of
degrees of freedom for smoothing splines, and the neigh-
borhood size for kernel smoothing and local regression.

Common settings were used for the other parameters of
these latter two techniques, namely the gaussian kernel
function for kernel smoothing, and a polynomial degree
of two for local regression. Compared to the neighbor-
hood size, the choice of these parameters are less important
[Wand and Jones, 1995].

3 Data and methods

3.1 Monitoring data

In this study, monitoring data were used of the department
of Intensive Care Medicine of the Academic Medical Cen-
ter in Amsterdam, the Netherlands. At this department, the
critically ill patients are monitored by Philips monitoring
systems. During patient care, these monitoring data are
sampled with a frequency of one measurement per minute
to be recorded in the Metavision ICU information system
developed by iMDsoft1.

Our study is restricted to three physiological variables
that concern the cardiovascular system: mean arterial blood
pressure (ABPm), central venous pressure (CVP), and
heart rate (HR). These variables are recorded in the ICU
information system with equal frequency, but they differ
greatly in their variability. For instance, arterial pressure
and heart frequency are much more amenable to sudden
changes than venous pressure.

The study population consisted of 367 patients who un-
derwent cardiac surgery at the AMC in the period of April
2002 to June 2003. All available values for the three car-
diovascular variables were retrieved from the ICU infor-
mation system, yielding time series of several thousands
of measurements for each patient. Using visual inspection
of these data, 30 subseries with a relatively rough course
were selected for our experiment. Each of these subseries
included several hundreds of measurements (a duration of
two to five hours); they originated from 18 different pa-
tients. Overall, 10 ABPm, 13 CVP, and 7 HR subseries
were selected, with a total length of 2693, 3145, and 2005
minutes, respectively.

3.2 Manual filtering procedure

Four senior ICU physicians from the Academic Medical
Center (where the data were recorded) were asked to in-
spect the 30 time series and point out individual data points
that should be removed. The results of this manual filtering
were used as gold standard during tuning and evaluating
of the automated filtering procedure. The manual filtering
procedure was carried out in two steps.

First, all four physicians were provided with paper ver-
sions of the 30 time series, and asked individually to mark
data points they judged to be ‘questionable’. The formal
rule was to mark data points that they suspected to not re-
flect the actual health status of the patient at the time of
measurement, and that they would therefore neglect in clin-
ical practice. Removal of these points would therefore not
result in a loss of information with respect to the patient’s
health status, but rather clean the data from disturbances
that would be ignored by clinicians anyway. During this

1www.imdsoft.com
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Figure 1: Results of the manual filtering procedure on a series of 200 mean arterial blood pressure measurements. Shaded
circles represent data points that were judged to not reflect the actual health status of the patient, (a) by the four ICU
physicians individually, where the associated numbers correspond to the number of physicians having that judgement, and
(b) after reaching agreement during the consensus meeting.

task the physicians were provided with context informa-
tion of the time series to be judged, such as measurements
of other physiological variables that were recorded simulta-
neously on the same patient, and data of concurrent therapy
(e.g., medication) and fluid administration.

Second, a consensus meeting was organized in which
the four ICU physicians involved were asked to harmonize
their individual judgements. During this meeting, two ad-
ditional researchers (MV, NP) were present to guard con-
sistency in the consensus judgements. Again, context in-
formation was provided, as well as the initial judgements
of all four physicians.

3.3 Automated filtering procedure
In the automated filtering procedure, the measurements in
the time series were classified as artifacts and non-artifacts
by their deviance from the time-dependent average level of
the variable. For that purpose, a smoothing technique was
applied to the time series to obtain smoothed estimates of
the measurements, and the deviance of the measurements
was quantified in terms of the squared residuals. Based on
these residuals, we examined to what extent measurements
with a large deviance are judged as artifacts by physicians.

We use the following notation to describe the procedure
in more detail. Let each time series of variable typev
(i.e., ABPm, CVP, HR in this study) again be denoted by
x = (x1, . . . , xn), and the associated measurement times
by t = (t1, . . . , tn). Furthermore, lety = (y1, . . . , yn)
denote a binary variable with the associated clinical judge-
ment of the time series as obtained in the manual filtering
procedure;1 is used to encode the artifacts and0 to encode
the non-artifacts.

The procedure was tuned and evaluated in five steps.
In the first step, we obtained smoothed estimates of the
time series of variablev, and calculated the corresponding

squared residuals. These analyses were performed at the
level of time series. So, we analyzed each of the time se-
ries of variablev as follows. We applied a given smoothing
technique to the time series for a large number of parame-
ter settings (i.e., the neighborhood size in kernel smoothing
and local regression, and the number of degrees of freedom
in smoothing splines in our study), and obtained a vector
f(t) = (f(t1), . . . , f(tn)) with smoothed estimates for
each parameter setting. For each measurementxi in the
time series, we defined the squared residual as

r2
i = (xi − f(ti))2,

and obtained a vectorr2 = (r2
1, . . . , r

2
n) with residuals for

each parameter setting.
The analysis was subsequently continued at the level of

variablev. For that purpose, these vectors with residuals
and the associated clinical judgement of all time series of
variablev were combined in a single data set, and the re-
sulting set was randomly split into a training and test sam-
ple.

In the third step of the analysis, the optimal smoothing
parameter was chosen based on the training sample. For
each parameter setting, the probability of being judged as
artifact in the manual procedure was estimated for each
residualr2

j with a logistic regression function:

P (yj = 1|r2
j ) =

eβ0+β1r2
j

1 + eβ0+β1r2
j

,

whereβ0 andβ1 were optimized on the training sample.
Based on the estimated probabilities, the log likelihood of
the residuals of each parameter setting with respect to the
clinical judgement of the time series was calculated. We
applied this in a 10-fold cross validation procedure. The
parameter setting with maximal cross validated log like-
lihood was selected as optimal parameter setting for the
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Figure 2: Results of the automated filtering procedure on a series of 200 central venous pressure using smoothing splines:
(a) shows the time series, the smoothed function (in bold), and the data points considered as artifacts by the manual filtering
procedure (shaded circles) and by the automated procedure (large circles); (b) shows the corresponding residuals and the
classification threshold.

given smoothing technique as applied to the time series of
the variablev.

Subsequently, the optimal threshold value to classify
measurements as artifacts and non-artifacts was chosen on
the training sample. For each squared residualr2

j in the
training sample, we defined

cj =
{

1, if r2
j ≥ τv,

0, otherwise.

Thresholdτv was chosen by minimizing the classification
error of cj with respect toyj . We assigned equal weight
to the two different types of error, false positives (i.e., non-
artifacts incorrectly classified as artifacts) and false neg-
atives (i.e., artifacts incorrectly classified as non-artifacts).
In case of a tie, the classification threshold was chosen con-
servatively (i.e., the highest threshold value). This amounts
to assigning additional weight to the false positive errors to
minimize the risk of classifying non-artifacts in future time
series as artifacts and removing them incorrectly from the
series.

Finally, after tuning of this procedure on the training
sample, the procedure was applied and evaluated on the test
sample; in practice, these will be new monitoring data.

3.4 Experiments and evaluation
We applied our procedure for automated filtering to the 10
ABPm, 13 CVP, and 7 HR time series. The procedure was
applied to these variables using kernel smoothing, local re-
gression, and smoothing splines as smoothing technique
with the aim to compare the performance of the procedure
for these different smoothing techniques. So, we performed
nine experiments.

To make optimal use of the available data, we evaluated
the performance of the procedure in each experiment using
10-fold cross validation. We used the clinical judgement of

the measurements as obtained in the manual filtering proce-
dure as gold standard, and we quantified the performance
in terms of the sensitivity (i.e., the proportion of artifacts
that have been classified as such by the automated filter-
ing procedure) and the positive predictive value (i.e., the
proportion of measurements that have been classified as ar-
tifacts by the automated procedure that are artifacts accord-
ing to clinical judgement). As the non-artifacts were over-
represented in the time series (> 97%), we do not report
the specificity and negative predictive value; the number of
incorrectly classified non-artifacts can be derived from the
reported positive predictive value.

4 Results
In this section, we describe the results of filtering of the
30 time series by the ICU physicians. Subsequently, the
results of applying the automated filtering procedure to the
time series are described.

4.1 Manual filtering procedure
The four ICU physicians judged respectively 12, 57, 46,
and 49 of the 2693 measurements that compose the 10
ABPm time series as ‘questionable’, 18, 18, 51, and 73 of
the 3145 measurements in the 13 CVP time series, and 46,
58, 42, and 16 of the 2005 measurements in the 7 HR time
series. In the consensus meeting, the individual judgements
were harmonized to a consensus judgement, and 22 mea-
surements (0.8%) in the ABPm time series were judged as
artifacts, 22 measurements (0.7%) in the CVP time series,
and 46 measurements (2.3%) in the HR time series.

Figure 1 illustrates the results of the manual filtering pro-
cedure for a mean arterial blood pressure series. In Fig-
ure 1a, the shaded circles represent data points that one or
more ICU physicians considered as ‘questionable’; the as-
sociated numbers correspond to the number of physicians
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Table 1: Results of applying the automated filtering procedure to the ABPm, CVP, and HR time series using kernel
smoothing, local regression, and smoothing splines. The performance is quantified in terms of the 10-fold cross validated
sensitivity and positive predictive value (PPV) in the set of time series.

Variable (unit) Smoothing technique Neighborhood size /
degrees of freedom

Threshold Sensitivity PPV

ABPm (mmHg) Kernel smoothing 10 1477 13/22 13/14
Local regression 30 1544 13/22 13/15
Smoothing splines 30 1648 12/22 12/14

CVP (mmHg) Kernel smoothing 5 123 12/22 12/15
Local regression 10 103 13/22 13/16
Smoothing splines 40 165 9/22 9/11

HR (beats/min) Kernel smoothing 200 1727 18/46 18/23
Local regression 200 1197 13/46 13/19
Smoothing splines 2 1425 17/46 17/25

having that judgement. All non-shaded circles represent
data points that were judged to be reliable. In Figure 1b,
the same series is shown, now after consensus was reached
among the four physicians: the shaded circles represent
data points that were considered as artifacts.

4.2 Automated filtering procedure
We applied the automated filtering procedure to the ABPm,
CVD and HR time series. Figure 2 illustrates the applica-
tion of the procedure to a central venous pressure series
using smoothing splines. Figure 2a represents the time se-
ries, and the data points considered as artifacts by the man-
ual filtering procedure (shaded circles), and by the auto-
mated procedure (large circles); the bold line represents the
smoothed curve. The corresponding squared residuals are
shown in Figure 2b. Based on these residuals, we would
be able to perfectly classify all measurements in this series,
e.g., by using a classification threshold of 100. However, in
the procedure, the threshold was optimized on all CVP time
series (horizontal line). Using this threshold, one artifact in
this series was incorrectly classified as non-artifact.

Table 1 lists the results of the nine experiments. For each
experiment, the optimized parameter settings are reported,
i.e., the neighborhood size for kernel smoothing and local
regression, the number of degrees of freedom for smooth-
ing splines, and the classification threshold. Furthermore,
the cross validated sensitivity and positive predictive value
are listed. So, 9 of the 22 artifacts in all CVP time series
were correctly classified using smoothing splines. In total,
11 measurements were classified as artifact in this experi-
ment, of which 2 measurement incorrectly.

5 Discussion and conclusions
Effective data filtering of monitoring data is an important
requirement for reliable use of computerized medical as-
sistants. This is especially the case for applications that fo-
cus on extreme values of the data. Extreme values are, for
instance, used in several scoring models that quantify the
severity of illness of intensive care patients (e.g., the low-
est heart frequency in the first 24 hours of ICU stay)[Knaus
et al., 1991; Le Gallet al., 1993]. With the introduction of
ICU information systems, the task of extracting these items

from monitoring data can be performed automatically. It
has been shown, however, that this may result in more ex-
treme values, resulting in higher severity scores[Bosmanet
al., 1998]. The application of these techniques is therefore
highly dependent on preparatory artifact removal.

In this study, we investigate to what extent basic smooth-
ing techniques can be used to imitate filtering of monitor-
ing data by experienced clinicians, without taking account
of context information and domain knowledge. The first re-
sults show that about half of the artifacts in the time series
were correctly classified by our procedure (i.e., at most 13
of the 22 artifacts in the ABPm and CVP time series, and
at most 22 of the 46 artifacts in the HR series). As the
measurements were classified by their absolute deviance
from the smoothed time series, these were data points with
largest deviances. The number of measurements that were
incorrectly classified as artifacts was found to be low, espe-
cially for the ABPm and CVP time series. The three differ-
ent smoothing techniques were found to perform roughly
equally well. In the procedure, their parameter setting was
optimized per monitoring variable. It turned out that more
smoothing was required for the HR series (larger neighbor-
hood sizes and lower number of degrees of freedom) than
for the ABPm and CVP series.

This study is related to the work of M. Imhoffet al.
[Imhoff et al., 1998] in which time series of monitoring
data were analyzed with low-order autoregressive models
and phase space models to detect outliers, level changes
and trends. They evaluated the performance of their ap-
proach with clinical judgement of the time series, and both
types of model were found to be able to identify all outliers.
Compared to our study, a large number (134) of time series
were analyzed. These series were judged by one senior
ICU physician, for whom a high intrarater reliability was
found. However, the interrater reliability among physicians
in judging monitoring data is relatively low, as appeared in
our study. Therefore, the evaluation in this study is more
subjective than in our study. Their approach was found to
be useful in retrospective analysis of monitoring data, but
not for routine bedside clinical use, as the applied models
are semiautomatic and require that the user has an explicit
knowledge of statistics. Our procedure for automated fil-
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tering using simple smoothing techniques does not suffer
from these disadvantages, and is expected to be easily im-
plemented in an ICU information system.

In the patient monitoring and therapy planning system
VIEVENT [Miksch et al., 1996], an extensive procedure
for data validation is implemented to detect and repair er-
roneous measurements[Horn et al., 1997]. The procedure
employs data filtering in a hybrid approach using (clinical)
knowledge of the (course of the) variables and their interre-
lation in addition to statistical methods. Manually filtered
time series are sufficient for tuning our procedure, and there
is no further necessity to make knowledge of the variables
explicit.

A general problem in studies on artifact detection is that
the concept of ‘artifact’ is vague and hard to define. This
explains the low interrater reliability that we found among
the physicians’ judgements and has motivated harmoniza-
tion of the judgements through a consensus meeting. Yet
the resulting consensus judgement is at best an intersub-
jective, and not an objective, standard. We note however
that (inter)subjective standards may be equally well repro-
ducible by automated filtering techniques, and that is pre-
cisely what this study aims at.

One may suggest that the procedure will improve by ap-
plying the smoothing techniques in a leave-one-out design
to avoid that data artifacts attract the smoothing function.
In a leave-one out design, for each measurement in the
time series, the smoothing technique is applied to the time
series of which this measurement is excluded from, and
the resulting function was subsequently applied to obtain
a smoothed estimate of the particular measurement. We
also performed our experiments in a leave-one-out design,
but did not found an improvement of the performance of
the filtering procedure, though.

In our procedure, the stability of the time series was
not explicitly taken into account. The variance over time
contains important additional information for data filter-
ing, though, as physicians generally judge sudden small
changes in stable parts of the series as artifacts with more
certainty, than sudden larger changes in unstable patterns.
Therefore, in the future part of this study, we will derive
confidence intervals around the time series from bootstrap
samples, and perform filtering based on these intervals.

The time series that were used in this study were selected
for their relatively rough course, and stable time series were
underrepresented. Because of the aforementioned feature
of the current procedure, the sensitivity of the procedure
may therefore be overestimated in our experiments. To de-
termine the performance of the procedure for automated fil-
tering of monitoring data in general, the procedure should
be applied to randomly selected time series.

To conclude, the procedure for automated data filtering
using basic smoothing techniques and based on the
resulting residuals turned out to be highly predictive, but
moderately sensitive, and will therefore be refined in the
future part of this study.
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Abstract

In this paper we present a visual representation
of temporal patterns in abstractions of numerical
and timestamped data. We provide a curve-like
acquisition tool which supports domain special-
ists to develop and refine temporal knowledge in
an intuitive and effective manner. The resulting
patterns can be used to detect artifacts as well as
more complex phenomena, e.g., in order to de-
rive intelligent alarms.

1 Introduction
The temporal development of numerical data and its inter-
pretation, respectively, is of prime importance when moni-
toring patients in the medical domain, e.g., during surgeries
or in the context of an ICU. Here, the automatic abstraction
and interpretation of these continuously received parameter
values can support the medical staff, e.g., anesthetists, with
the tracking of the patient’s status.

Furthermore, the interpretation of parameter values and
their development is often difficult because they are super-
imposed by artifacts, e.g., an accidently dropped pulse sen-
sor. In consequence, the validation of received parameter
values preceding the actual interpretation is a crucial issue.

In this paper we present an approach for a visual repre-
sentation of temporal abstraction and validation knowledge
allowing for an intuitive and precise formalization. The ap-
plied visual patterns were adopted from knowledge engi-
neering interviews taken with the domain specialists and
were refined in order to allow for a formal and precise in-
terpretation of the modeled temporal knowledge.

The visually acquired patterns will be translated to a tex-
tual representation in order to be integrated into a rule-
based formalism. This enables a combination of temporal
patterns and non-temporal rule conditions including con-
junctions, such asand, or andnot expressions.

The context of our work is an intelligent monitoring and
alarm system to be used during surgeries or in IC units,
there supporting the work of anesthetists.

The paper focuses on the development of high–level ab-
stractions, i.e., deriving meaningful alarms or artifacts, al-
though the handling of basic abstractions derived from raw
data streams is also an important task.

The derivation of intelligent alarms is two-folded in our
system: In the first step we try to detect defined states of ar-

tifacts within previously abstracted data streams and anno-
tate the data with possibly found artifacts (thus enabling for
a high-level data validation). In the second step we inves-
tigate the annotated data streams for defined alarm states,
e.g. insufficient anesthesiaandhypovolemia.

2 A Visual Representation for High-Level
Abstractions

The manual definition of complex patterns of the particular
parameter changes over time is a difficult and error–prone
task. For this reason we introduce an intuitive and visual
representation for describing such patterns, i.e.,Abstract
Temporal Curves (ATC), which can be interpreted as con-
ditions for temporal rules for deriving high-level abstrac-
tions, i.e. artifacts and alarms. The representation offers a
curve-like description of the temporal behavior of parame-
ters, thus describing certain phenomena.

2.1 Abstract Temporal Curves

In the following, we introduce simple graphical elements
that enable a description of basic events occurring in ab-
stract parameter courses. Thereafter, we define temporal
constraints that can be applied to events in order to describe
the temporal behavior. A more complex temporal pattern
is described by a set of events, attached constraints and a
maximum duration restricting the entire pattern.

The modeling basis of an ATC contains layers for each
involved parameter (Figure 1). Horizontal lines denote the
corresponding abstract parameter values. There exist two
basic elements that can be combined in different ways in
order to describe the possible events.

Edges are horizontal lines describing a persistent value the
specified parameter may take. Parallel edges of the
same parameter define alternative and possible values
for the parameter.

Nodes are markers placed on edges at arbitrary positions.
They define changes of parameter values and thus ba-
sically declare temporal constraints.

Changes in the specified parameter behavior must be
separated by nodes. Additionally, further nodes can be
placed at any position, as it has been done with the first de-
fined node in Figure 1. Here the decrease of the abstracted
parameter valueAP (arterial blood pressure) is specified
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AP

critical

normal

low

high

Edge
Node

Figure 1:Edges and nodes in a parameter sequence in an ATC.
Nodes can be defined at arbitrary positions on edges. They denote
events expressing value changes and value persistence.

starting with valuecritical then falling to eitherhighor nor-
mal and finally decreasing to the valuelow.

We extend the notation bytemporal constraintsbetween
the nodes. A temporal constraint consists of a pair of nodes
connected by a period. It denotes that the enclosed events
need to occur within the specified time range. There are
three alternatives to connect nodes by temporal constraints;
Figure 2 depicts different types of constraints: Asequence
(c) defines a time span for a certain event flow, occurring
on a single parameter. It is required to occur within the
given period. A second alternative for a definition of tem-
poral constraints areintervals (a). An interval connects two
nodes of different parameter courses, which means that the
corresponding events need to occur in the given time span.
With the third alternative, i.e., thepoint-interval (b), we
directly connect nodes in order to express that the corre-
sponding events are required to occur simultaneously. The

AP
high

normal
low

Tmax

[5,10]s

HR
high

normal
low

[10,15]s (c) sequence

(a) interval

(b) point-
       interval

Figure 2: An ATC with temporal constraints defined between
some nodes on the courses of the parametersAP (arterial blood
pressure) andHR (heart rate).

additional global constraintTmax on top of the pattern de-
scription implies that the duration of the entire scenario is
restricted to the time-interval(0, Tmax].

2.2 Translation of ATCs to Temporal Rules
The presented visual notation allows for an intuitive de-
scription of temporal events. These events will be compiled
to a textual representation consisting of temporal events
and expressions. The resulting temporal patterns can be
combined with non-temporal rule conditions. Thus, they
can be integrated into a rule-based formalism. For exam-

ple, the rule framework ofd3web[Baumeister, 2004] al-
lows for a definition of complex rule conditions built up by
non-terminal constructs, e.g.and, or andnot. This enables
the intuitive definiton of complex temporal patterns.

3 Results and Discussion
The presented work was implemented in the context of a
medical project aiming for an intelligent detection of ar-
tifacts and alarms during surgeries. Two medical experts
were involved with the formalization and refinement of the
temporal knowledge including a variety of typical artifact
and alarms. It turned out that the domain specialists got fa-
miliar very quickly with the meaning of the visual knowl-
edge representation. This was not surprising since the rep-
resentation was adopted from the observations made dur-
ing knowledge acquisition interviews conducted with the
domain specialists. In fact, similar curves were drawn on
paper during the interview sessions to explain the partic-
ular events. Consequently, almost no training phase was
required and the initial model was discussed and imple-
mented in about 5 minutes for each pattern. However, the
main effort consisted in testing and refining the collected
patterns. The most complex task was the appropriate defin-
ition and refinement of temporal constraints included in the
patterns. These adaptations required frequent testing cy-
cles. For simple patterns, e.g., mostly artifacts, the refine-
ment phase took about 10 minutes, whereas more complex
patterns required more than 30 minutes for adaptation and
testing.
In the literature, representations for high-level abstractions
are mostly graph-based. A related approach to our visual
representation can be found in[Chittaro and Combi, 2003].
There, three alternative visual vocabularies representing in-
tervals and their relations (as subset of Allen-Relations),
based on objects from the physical world, are presented.
But, explicit temporal periods (e.g.[10s, 30s]) can not be
modeled, as it is possible in our approach.
In the future we are planning to integrate a fuzzy definition
of abstraction thresholds and temporal expressions, since
an exact definition turned out to be one of the most diffi-
cult tasks. Visualizations of temporal uncertainty has been
accomplished e.g. in[Kosara and Miksch, 1999]. Further-
more, we consider the semi-automation of the refinement
process of the patterns by adapting discovery algorithms
for this task.
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Intelligent Data Analysis (IDA) is the interdisciplinary study concerned with the 
effective analysis of data. The ever increasing and variety of data in biomedicine have 
provided one of the most fertile grounds for testing existing analysis techniques and 
providing great motivations for investigating new IDA methods. For over ten years, 
the IDA group at Brunel have been working on the interface between artificial 
intelligence, dynamic systems, image and signal processing, pattern recognition and 
statistics, and have been applying this research to challenging problems in biology 
and medicine, e.g. microarray data analysis, managing glaucoma and muscular 
dystrophy. In this talk, I shall introduce some of our work in this area, particularly 
those involving temporal data analysis. Key research issues covered will include data 
quality control, multivariate time series analysis, and biomedical evaluations. Finally 
some useful lessons we have learnt will be discussed. 
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Abstract 
Sequence and structure of gene regulatory pro-
moter regions determine the genetic response 
programs of cells according to their internal state 
and environment. Computational inference of the 
relation between structure of promoter regions 
and gene expression can help us to understand 
the underlying genetic programs and can greatly 
assist in experiment planning. It most often relies 
on a large data base of regulatory elements (i.e. 
putative or known transcription factor binding 
sites) and then infers rules that relate promoter 
structure and gene expression. The principal ob-
stacle it faces is combinatorial explosion of rules 
to test. We developed a rule-based clustering 
method that uses gene expression distance to 
guide rule inference and searches only the most 
promising part of the vast and expressively rich 
rule-space. We also developed a set of effective 
visualizations to present and explore the shared 
structural promoter features of discovered gene 
clusters. Cross-validation confirms the ability of 
the proposed rule-based clustering method to 
find rules with good predictive power. 

1 Introduction 
Regulation of gene expression is a complex key mecha-
nism in the biology of eukaryotic cells. Cells carry their 
function and respond to the environment by an orchestra-
tion of signaling molecules and transcription factors that 
influence gene expression. Resulting products regulate 
expression of other genes thus forming diverse set of 
regulatory pathways. To better understand gene functions 
and gene interactions we need to discover and analyze the 
programs of gene regulation. Computational analysis of 
gene regulatory regions can greatly speed-up and to a cer-
tain extent automate the normally tedious discovery proc-
ess performed by geneticists.  

Gene’s regulatory (promoter) region is defined as a 
stretch of DNA, normally located upstream of the gene’s 
coding region. Transcription factors are special proteins 
that can bind to sequence-specific binding sites in regula-
tory regions, and by doing so inhibit or excite gene ex-
pression of their target genes. Regulation by binding of 
transcription factors is just one of the many mechanisms 

of gene expression regulation. Expression is also deter-
mined by chromatin structure, epigenetic effects, post-
transcriptional, translational, post-translational and other 
forms of regulation [Wasserman and Sandelin, 2004]. 
Because there is a lack of these kinds of data, most current 
studies focus on inference of relations between gene regu-
latory content and their expression as measured using mi-
croarray technology. 

Determining the regulatory region and putative binding 
sites are the first crucial steps in such analyses. Regula-
tory regions differ from coding regions in nucleotide and 
codon frequency. This fact is successfully used by many 
prediction algorithms [Bajic et al., 2004]. Genome pro-
moter sequences are readily available for download for 
most organisms (for yeast see www.yeastgenome.org).  

The next more important and well studied step is to de-
termine transcription factors’ putative binding sites in 
promoter regions. These are 4 to 20 nucleotide long DNA 
sequences [Wasserman and Sandelin, 2004] which are 
highly conserved (with low sequence variation) in the 
promoter regions of regulated genes. A matrix representa-
tion of binding sites is normally used in computational 
analysis.  The matrix defines the frequency of the four 
nucleotides (A, T, G, C) at each position in the binding 
site (see Table 1 and Figure 2 for example). The binding 
site is often also presented as a single consensus line (see 
Table 1), or graphically as a logo (see Figure 2). Experi-
mentally confirmed and computationally inferred putative 
binding sites are now available in data bases such the 
TRANSFAC data base [Wingender et al., 1996]. When 
analyzing genes with unknown regulators, one can find 
candidate binding sites using local sequence alignment 
programs such as the MEME program [Bailey and Elkan, 
1994] that can identify short, frequent sequences. A de-
tailed description and evaluation of such tools is presented 
in [Tompa et al., 2005]. 

Most of contemporary methods to relate gene structure 
and expression start with gene expression clustering. 
Next, they determine cluster-specific binding sites. The 
success of such approach is heavily dependent on number 
(usually a parameter to clustering method) and composi-
tion of gene clusters. A slight change in initial conditions 
or parameter values for clustering can lead to different 
groupings with substantially different sets of binding sites. 
Another problem with such approach is its inability to 
discover overlapping subgroups; it is biologically known  

Rule-based clustering for gene regulation pattern discovery 
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position 0 1 2 3 4 5 6 7 8 9 10 11

A 0 0 0 0.2 0.1 0 0 0 0 0.1 0.6 0.1
C 0 0 0 0 0 0 0 0 0 0 0 0 
G 0 0.5 0 0.4 0.4 0.1 0 0.8 0.4 0.8 0 0.6
T 1.0 0.5 1.0 0.4 0.5 0.9 1.0 0.2 0.6 0.1 0.4 0.3

single 
line 

consensus 
T K T K K T T G K G A K 

Table 1. Matrix presentation of an example putative binding 
site. A single line consensus sequence presentation, giving the 
most frequent nucleotide at each position, is also used (coded 
with standard FASTA codes, e.g. K indicates G or T). 
 

 
Figure 2. Logo representation of the putative binding site from 
Table 1. Information of nucleotides at each position is given. 

that same gene can respond in many different ways and 
perform various functions. 
 An alternative to above is to start with information 
about binding sites and search for descriptions shared be-
tween similarly expressed genes. An example is the ap-
proach proposed by [Chiang et al., 2001] where for each 
binding site and corresponding set of genes their method 
calculates the correlation of gene expression profiles. This 
correlation is then statistically compared with the one ob-
tained from the same-sized randomly drawn set of genes. 
If the observed difference is statistically significant, the 
method reports on the rule for the particular binding site. 
The method fails to model combinations of two, three or 
more putative binding sites. This could be regarded as a 
major deficiency as it is biologically known that regula-
tion of gene expression can be highly combinatorial and 
requires the coordinated presence of many bound tran-
scription factors. More advanced methods try to infer 
rules that describe the structure of regulatory regions with 
more than one, but rarely more than two putative binding 
sites [Pilpel et al., 2001; Beer and Tavazoie, 2004]. The 
principal bottle-neck is the complexity of exhaustive 
combinatorial search that these methods employ, which 
quickly becomes prohibitive when exploring combina-
tions of binding sites. For example, the number of all pos-
sible combinations of three binding sites, from a base of 
thousand binding sites available for modeling, quickly 
grows into hundreds of millions. Transcription is also 
affected by absolute or relative orientation and distance 
between binding sites and other landmarks in the pro-
moter region (i.e. the translation start ATG), making ex-
haustive search that would include such models unpracti-
cal. 
 To overcome these limitations we have developed a 
heuristic rule search method that is able to efficiently 
identify complex structural descriptions of gene regula-
tory regions. The proposed rule-based clustering method 
is guided by the information on the similarity of gene ex-
pression and explores only the most promising (coherent) 
subgroups of genes with similar regulatory content.  

2 Rule-based clustering method 
We devised a rule-based clustering approach with the goal 
to find potentially complex rules that describe the shared 
regulatory structure of genes with similar expression pro-
files. Similarity in gene expression is assessed using Pear-

son correlation, but other distance measures could be used 
instead. Rules are of the form “IF structure THEN expres-
sion profile”, where structure is an assertion over the 
binding sites in the gene promoter sequence and uses a 
description language defined below, and expression pro-
file is a average profile of genes that match the structure. 

2.1 Descriptive language and rule search 
We have defined a rich descriptive language which, be-
sides being able to describe presence of a binding site, can 
be used to define conditions on the distance of putative 
binding sites from transcription and translation start site 
(ATG) and other landmarks, the distance between putative 
binding sites and their relative and absolute orientation 
relative to a given reference point (see Figure 3). 
 

+s1
−s2

d1

d2

+s1
−s2

d1

d2  
Figure 3. The descriptive language for gene’s structure can in-
clude conditions on distance (d2) between two binding sites (s1 
and s2), distance from ATG (d1) and orientation of binding sites 
in the sense (+s1) or non-sense reading direction (-s2). 
 
We based our heuristic rule search method on the ap-
proach of clustering trees developed by [Blockeel et al., 
1998]. We developed a general rule search method that is 
guided by the information on example distance (gene dis-
tance in our applications) and only the most promising 
parts of the vast rule-space are searched. Every next step 
in the group (or cluster) discovery process is selected 
based on the correlation of gene expression in currently 
discovered groups. Further refinements of rules are per-
formed on only those rules describing the most promising 
groups. 

The method requires a “target” set of genes for which 
we want to find rules describing their promoter regions 
and cluster them into subgroups. The target set can be the 
full genome or can be a set of differentially expressed 
genes in one or many experimental conditions (mutation 
of a gene, outside chemical, temperature or other influ-
ence) measured with DNA microarrays. The algorithm 
starts with the set of all genes, which is represented by the 
conditional part of the initial rule “True.” The algorithm 
then tries to refine the current rule set B by adding condi-
tional parts. For example, the conditional part of rule 
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“M1” requiring only the presence of binding site M1 can 
be refined into “M1+” requiring the orientation of M1 to 
be in sense direction. The initial condition “M1” can be 
refined to require binding site M1 to be at a distance −100 
to −80 nucleotides relative to ATG, which is stated by the 
rule’s condition “M1@−100..−80(ref:ATG).” Another 
binding site (e.g. M2) can be used as a reference point, 
which we write as “M1@−100..−80(ref:M2).” The initial 
rule can also be refined into “M1 and M2” requiring both 
binding sites to be present in the promoter region. 

Every refined rule has to cover fewer genes than the 
original but at least N target genes (parameter N is set by 
user). If not, it is completely discarded from further con-
sideration. Also, the similarity in gene expression within 
the newly refined group must significantly increase com-
pared to the similarity in the original group. The signifi-
cance in decrease of variance is tested using F-test. Rules 
that pass this test are added into set B and used for further 
refinements (size of set B is limited to L best rules, pa-
rameter L set by user. Set B is usually referred as 
“beam”.) Otherwise the rule is scored based on the group 
average intra-distance, which must be lower than parame-
ter D (parameter set by user), and moved into the final set 
of rules R where only K best rules are kept and returned 
as result of the rule-based clustering algorithm (parameter 
K set by user). For the basic step of the search algorithm 
see Figure 4, for the algorithm see Algorithm 5. 

Note that because the algorithm starts with the entire 
genome, the discovered rules can cover genes outside the 
target set. The method can be applied to search for genes 
that were initially left out of a target set but should have 
been included based on their regulatory content and gene 
expression. 

The proposed rule-inference method differs from clas-
sic rule-coverage algorithms (e.g. CN2 described by 
[Clark and Niblett, 1989]) because it allows the discovery 
of overlapping groups of genes. The basic CN2 algorithm 
has a relatively small beam (size of beam set B in our al-
gorithm is bigger) and iteratively removes examples 
(genes in our case) that can be described by the best rule 
discovered in current iteration. The procedure is then re-
peated on the reduced set until no examples are left to 
cover. Our proposed method uses a larger beam and 
searches for rules until refinements are possible. No actual 
gene coverage is considered in these steps. After the 
search is completed, all discovered rules are sorted by 
their score. We then traverse the ordered list and check the 
average cumulative gene group coverage of each rule. If 
average cumulative coverage is less than parameter M (set 
by user) then the rule is selected and the genes’ cumula-
tive coverage updated accordingly, otherwise the rule is 
discarded. This procedure selects the final set of best rules 
that are presented to the user. 

Exhaustive search of even relatively simple rules can 
quickly grow into a prohibitively hard problem due to 
combinatorial explosion. The main distinctive feature of 
our method is its ability to efficiently derive rules describ-
ing a higher combinatorial regulation involving three or 
more binding sites by starting from a base set of thou-
sands putative binding sites. We give an example of the 
number of rules search by our heuristic method and com-

pare it with the number of all possible combinations that 
would be inspected by exhaustive search. 

 
True

P1 P2 PM…

True

P1 P2 PM…

True

P1 P2 PM…

True

R1 R2 RM…

a) b)True

R1 R2 RM…

a) True

R1 R2 RM…

a) b)b)

 
Figure 4. a) Rule refinement is the basic step of the search algo-
rithm. b) The intra-group gene expression similarity of genes 
covered by the refined rule (bottom  nodes) must increase sig-
nificantly compared to the group described by the original rule 
(top node). Different refinements of same rule lead to differently 
homogeneous groups (check mark indicates a significant in-
crease in the group intra-similarity, cross represents a not sig-
nificant increase compared to expression of original group). 
 
1 beam B is a set of maximum L best rules for  

further refinement: B = {True} 
2 R = {} is a set of K best discovered rules 
3 WHILE B ≠ {} 
4  take best rule Rb from set B 
5  FOR EACH k IN 1..number of binding sites 
6  refine Rb by using binding site Mk,  

create new rule Rn 
7   IF rule Rn acceptable AND significant 

increase between Rb in Rn THEN  
8    Add Rn into B (keep best L rules in B). 
9 add rule Rb into R if among K best 
10 return K best discovered rules in set R 
 
Algorithm 5. The search algorithm. Rule Rb is refined into Rn 
(line 6) by adding conditions on presence, orientation and dis-
tance of a new binding site (Mk) relative to binding sites already 
described in other terms of rule Rb. 

2.2. Visualization of results 
The rich descriptive language and the method’s ability to 
discover overlapping gene groups can result in a large 
number of discovered rules. We implemented three graph-
based visualizations that facilitate a better insight into the 
common structural features of discovered rules and gene 
groups (see Figure 6). Gene network graph is the simplest 
way to visualize the discovered groups (Figure 6a). Nodes 
represent genes and we connect two nodes if the two 
genes are covered by same rule. Presence of many over-
lapping groups can quickly render this visualization satu-
rated. The next level of abstraction is group graph (Figure 
6b). Nodes represent groups of genes (that can be de-
scribed by one or more rules) and we connect two nodes 
(groups) if they share an arbitrary number of genes (pa-
rameter set by user). This visualization is useful for explo-
ration of regulatory or functional overlaps in discovered 
subgroups of genes. By varying the threshold one can 
observe how the initial grouping of genes breaks into less 
connected subgroups. The last level of abstraction is motif 
graph (Figure 6c). Nodes represent terms (parts of rules 
requiring specific characteristics for a binding site; bind-
ing site is also called “motif,” hence the graph name) and 
two nodes are connected if they appear in same rule. This 
can be used to identify common and rule-specific binding 
sites appearing in discovered rules indicating potential 
general and group-specific regulators respectively. 
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Figure 6. Three visualizations for presenting results. Conditional 
parts for three simple rules are visualized in this example. Rule 
“R1 = M1“ requires the presence of binding site M1. Rule “R2 = 
M2 and M3+ and M4” requires the presence of three binding sites 
(M3 must be in sense direction) and rule “R3 = M3 and M5@-
200..-180(ref:ATG)” requires two sites one of which must be 
relative to ATG. Rules’ gene coverage is shown in graphs. a) 
Gene network graph. b) Group graph. c) Motif graph. 

3 Case study and experimental validation 
We tested the proposed rule-based clustering method on 
the data set from a microarray transcription profiling 
study where budding yeast S. cerevisiae cells were in-
duced to proliferate peroxisomes – organelles found in 
most organisms and cell types that compartmentalize sev-
eral oxidative reactions – as a result of cell’s regulated 
response to absence of glucose or glycerol and exposure 
to fatty acid oleate as the sole carbon source [Smith et al., 
2002]. Each gene in the data set is described with a tran-
scription profile that consists of six microarray measure-
ments from oleate induction time course and two meas-
urements in “oleate vs. glucose” and “glucose vs. glyc-
erol” growth conditions. In total, we used eight microar-
ray measurements of gene expression to calculate the dis-
tance between genes. We defined the distance function to 
be 1.0-Pearson correlation in gene expression for the 
given gene pair. 

For the target group we selected a set of 224 genes that 
were identified in the study to have similar expression 
profiles to those of genes involved in peroxisome bio-
genesis and peroxisome function. The goal of our analysis 
was to further divide the target group into smaller sub-
groups of genes with common elements in promoter struc-
ture and possibly identify genes that were inadvertently 
left out but should have been included in the target group 
based on their expression and promoter structure. 

Our analysis included information on 2,135 putative 
binding sites that were identified using a local alignment 
software tool MEME [Bailey and Elkan, 1994]. We then 
searched for presence of these binding sites in one thou-
sand bases (1Kb) long promoter regions which were taken 
upstream from the translation start site (ATG) for ~6,700 
yeast genes. The search identified ~302,000 matches (i.e. 
occurrences) of putative binding sites that were then used 

to infer rules by the rule-based clustering algorithm. The 
algorithm searched for rules describing groups with at 
least six target genes (N=5) and average group intra-
correlation above 0.5 (i.e. the maximum allowed intra-
distance was set to D=1.0−0.5=0.5). We limited the rule 
search beam to one thousand best rules for further refine-
ments (L=1000). Distances between binding sites were 
rounded to increments of 40 bases; the maximum possible 
distance of 2Kb (given the promoter length, relative dis-
tances can be in range from -1Kb to +1Kb) was thus re-
duced to 50 (=2000b/40b) different values. This largely 
reduced the number of possible subintervals that needed 
to be considered when inferring rules. 

The search resulted in 41 rules describing and dividing 
114 target genes (out of total 224 target genes) into 37 
subgroups (see Figure 8). No rule could be found for the 
remaining 110 target genes. Most discovered gene groups 
are composed of five genes with high pair-wise intra-
group correlation (all are above 0.927). Many genes are 
shared (overlap) between the 37 discovered groups result-
ing in six major groups visible in Figures 8 and 9. Seven 
genes outside the target group were also identified by the 
method (marked in red in Figure 8). For example, the 
smallest eight gene group in the top-left corner in Figure 8 
includes two outside genes (INP53 and YIL168W - also 
named SDL1). Gene ontology analysis shows that INP53 
is involved together with two target genes (ATP3 and 
VHS1) in the biological process phosphate metabolism. 
Gene SDL1 is annotated to function together with the 
group’s target gene LYS14 in the biological process 
amino acid metabolism and other similar parent GO terms 
(results not shown). These examples confirm the method’s 
ability to identify functionally related genes that were not 
initially included in the target group.   
 

 
Figure 8. Gene network inferred on the peroxisome data set 
where 37 different subgroups were discovered. Genes are clus-
tered in six major groups. Target gene nodes are colored green. 
Nodes with genes originally not included in the target group are 
colored red. 
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Figure 9. Group graph of discovered 37 subgroups that cluster 
114 target and 7 outside genes into six major gene groups. 
 
 

 
Figure 10. Distribution of distance in predicted and actual gene 
expression for matching rules. Red vertical line marks average 
distance 0.72 (average intra-correlation is 0.28). 
 

Majority of discovered rules include conditions that are 
composed of three terms, each term describing a putative 
binding site’s orientation and distance relative to ATG or 
binding sites included in the rule. An exhaustive search 
for all possible rules composed of three binding sites with 
defined orientation (three possible values: positive, nega-
tive, no preference) and distance (50 different values) 
would require checking a relatively huge number of rules: 
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Our method checked 9102.11 ⋅  of the most promising 
rules, or less than 0.00004% of the entire three-part rule 
space. The search took 40 minutes on a Pentium 4, 
3.4 GHz workstation. 

3.1 Cross-validation of rule-based clustering 
To asses the predictive ability of the inferred rules we 
applied five-fold cross-validation using the same data and 
parameter values as described in the section above. The 
data was randomly divided into five folds. The split was 
stratified, i.e. each fold contained one fifth of the 224 tar-
get genes and one fifth of the remaining ~6500 non-target 
genes. In each step of the cross-validation procedure the 
training part of the data was used to infer rules and iden-
tify clusters of genes. Discovered rules were then tested 
on genes from the test set. If a rule matched the promoter 
region of a test gene then the average distance (in expres-
sion) between the test gene and all training genes covered 
by the rule was calculated. These distances are plotted in 
the histogram in Figure 10. The achieved average distance 
is 0.72 (the average correlation is 1.0-0.72 = 0.28) which 
is a good indication of a good predictive quality of in-
ferred rules. 

4 Conclusion 
Experimental results show the ability of the proposed 
rule-based clustering method to efficiently identify groups 
of similarly expressed genes with similar structure of 
regulatory region. In contrast with other contemporary 
methods that mainly use information on presence of bind-

ing sites in promoter region, the principal novelty of our 
approach is the use of a rich language to describe the 
structure of regulatory elements and a heuristic approach 
to find associated rules. To summarize the findings of our 
analysis we have also implemented three different visuali-
zations that can help in understanding and biological in-
terpretation. We believe that the main application of our 
method is the search for additional evidence that genes 
from theoretically or experimentally defined group actu-
ally share some common regulatory mechanisms or regu-
lators. The biologist can then gain insight by looking at 
the presented evidence and can better decide which in-
ferred hypotheses to test in the lab.  
 We experimentally confirmed the ability of the pro-
posed method to infer rules that describe a complex regu-
latory structure and can reliably predict gene expression 
from regulatory content. We are currently implementing a 
web-based application allowing biologists to easily ana-
lyze their own data using the proposed rule-based cluster-
ing method. 
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Abstract

Bayesian statistical methods based mainly on
Markov chain models have recently proposed in
the literature and provide powerful tools to an-
alyze population substructures on the basis of
molecular markers such as SNPs. The SNPs se-
quences are used to classify individuals into their
population of origin. These SNPs sequences may
contain markers which are not relevant for this
clustering process and they may blur the cluster-
ing assignation. In this paper we present the use
of a powerful Bayesian model averaging algo-
rithm for clustering which includes in the learn-
ing process a kind of implicit Bayesian variable
selection. Therefore the algorithm is able to deal
with irrelevant variables and then it is appropri-
ated to analyze the population substructures. On
the other hand, we also develop a two-step algo-
rithm based on mutual information that can be
used to obtain, from the clustering model, the set
of SNPs which are considered relevant for clus-
tering purposes. Hence, the proposed Bayesian
approach not only offers to retrieve the popula-
tion substructure, but also to obtain the set of rel-
evant SNPs to retrieve this population substruc-
ture. The algorithm has been applied to both syn-
thetic and real datasets, and the obtained results
outperform the commonly used Structure soft-
ware.

1 Introduction

Most genetic variation among different people can be
characterized by single nucleotide polymorphisms (SNPs),
which are single point mutations in the nucleotide sequence
that have occurred during human history and are inherited
among generations. There are lots of these nucleotide mu-
tations that exist in a few or only one individual. How-
ever, it has been estimated that there are about 7 million
common SNPs (with minor allele frequency of at least
5%) among the different human populations [Botstein and
Risch, 2003].

Most studies of human variation begin by sampling indi-
viduals from a certain population. This population is usu-
ally defined in terms of subjective aspects such as religion,
culture or geographical location, but these aspects do not

necessarily reflect underlying genetic relationships. Indi-
viduals in the same population share certain genetic infor-
mation that can be used to identify them. The problem of
recovering the underlying group structure from a set of in-
dividuals is know as population substructure problem and
it is well-studied in population genetics [Rosenberg et al.,
2002]. Apart from the evolutionary perspective, the es-
timated group structure can provide a useful insight into
many applications such as correcting for population strat-
ification in association studies [Sillanpää et al., 2001]. In
addition clinical trials can suffer from false positive of re-
duction of power due to population substructure [Pritchard
et al., 2000b].

From a purely machine learning approach, population
substructure problem can be seen as a clustering problem
where each SNP in the DNA sequence represents a pre-
dictive variable and the population substructure, the clus-
ter variable that remains hidden. However, this clustering
problem has certain special characteristics such as the oc-
currence of independent random mutation across the se-
quence and the presence of irrelevant variables (not all
the SNPs available in the sequence may be relevant to re-
trieve the underlying group structure). This situation can
make the problem not very amenable for distance-based
clustering methods. Recently, Bayesian statistical meth-
ods based on Markov chain models have shown to pro-
vide powerful tools for the analysis of genetic popula-
tion structure and to assign individuals or chromosomal
segments into clusters using multilocus molecular mark-
ers [Pritchard et al., 2000a; Corander et al., 2004]. Other
recently proposed techniques also include the use of mu-
tual information-based metrics to obtain the best popula-
tion partition [O’Rourke et al., 2005].

On the other hand, the special characteristics of the
problem make the application of other particular cluster-
ing techniques very interesting. Specifically, the Bayesian
model averaging of naive Bayes proposed in [Santafé et al.,
2006] is a method which is suitable to be used in the pop-
ulation substructure problem. This is a Bayesian clustering
method based on naive Bayes model, which is a kind of
Bayesian network successfully used in many other biolog-
ical problems [Barash and Friedman, 2002].

The naive Bayes model assumes that all the predictive
variable are conditionally independent given the cluster
variable. However, the Bayesian model averaging of naive
Bayes [Santafé et al., 2006] accounts for model uncertainty
by taking into consideration that each predictive variable
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may or may not be relevant for clustering purposes. Since
in population substructure problem mutations in the se-
quence are considered independent and not all SNPs may
be relevant to reveal the underlying group structure, the
naive Bayes model learned with this Bayesian model av-
eraging algorithm is an appropriated method to tackle this
problem. Moreover, the model averaging process incor-
porates into the learned model a kind of implicit variable
selection that can be used to decide which SNPs are more
relevant to cluster individuals into their populations of ori-
gin. Therefore, in the same process in which we obtain the
clustering structure of the data, we are able to obtain the
set of relevant SNPs for this clustering process. In contrast
to other SNPs selection methods such as the ones based on
supervised classification models, the proposed method is a
clustering approach, which is not guided by a predefined
group structure. Clustering methods are supposed to be
preferred in population substructure problem because not
always the population assignation is known or, in the case
where it is known, there may be unknown subpopulations
groups inside the know groups or some individual, from
the point of view of their genetic sequence, may be closer
to other population than to the population that they have
been assigned a priori.

The selection of a informative subset of SNPs that con-
tains enough information to differentiate between popu-
lations under study may be very useful not only to cor-
rect population stratification in association studies or in
admixture-mapping studies [Patterson et al., 2004] but also
to reduce the economical cost of sequencing samples for
this studies.

In this paper we propose the use of the Bayesian
model averaging algorithm (EMA algorithm) introduced
in [Santafé et al., 2006] to tackle population substructure
problem. Furthermore, we develop a two-step mutual in-
formation test that allows the use of the model obtained by
the EMA algorithm to select those SNPs which are relevant
to retrieve the underlying structure from the dataset.

The rest of the paper is organized as follows. Section 2
overviews the theoretical aspects of the EMA algorithm in
the context of the population substructure problem. This
section shows how to learn the clustering model from data
as well as how to use this model to select the most relevant
SNPs or variables for clustering purposes. Section 3 tests
the behavior of the EMA algorithm in a toy example prob-
lem and in a real problem with SNPs data. Finally, Section
4 presents some conclusions yielded from the paper as well
as future work.

2 Methodology
The target that we are aiming for is to obtain a cluster-
ing model that provides a posterior distribution among the
dataset and thus allows us to cluster the instances into dif-
ferent partitions or populations. For this purpose we use the
EMA algorithm [Santafé et al., 2006] which is a Bayesian
model averaging approach to learn a naive Bayes model for
clustering. The method obtains, in an efficient way, a naive
Bayes model as a result of a Bayesian model averaging over
all the possible selective naive Bayes (see Figure 1). The
method itself is an adaptation of the well-known EM algo-
rithm [Dempster et al., 1977] that allows us to extend effi-
cient model averaging techniques for complete data [Dash

and Cooper, 2004] to clustering problems. The EMA al-
gorithm is a greedy iterative algorithm that is comprised of
two steps: expectation (E step) and model averaging (MA
step). This last step accounts for model uncertainty by an
approximation of the averaging over all the selective naive
Bayes models.

X1 X2

C

X1 X2

C

X1 X2

C

X1 X2

C

Figure 1: Selective naive Bayes structures with two predic-
tive variables: each predictive variable can be dependent on
or independent of C. That is, each predictive variable can
be considered relevant or irrelevant for clustering purposes.

Let the predictive variables X = {X1, . . . , Xn} denote
the molecular marker loci, specifically SNPs in our case.
The cluster variable, C, represents the population group-
ing of the given h haploid sequences D = {x(1), . . . , x(h)}
with x(l) the SNPs alleles of the l-th individual x(l) =
{x(l)

1 , . . . , x
(l)
n } and l = 1, . . . , h. Note that the algorithm

assumes that the number of clusters is know, although it
can be varied across independent runs of the algorithm in
order to select the best number of population groups.

For each locus Xi, following the idea of model averaging
over selective naive Bayes models, we consider two kind of
parameters: if the the locus is relevant for clustering pur-
poses, we denote θijk as the unknown relative frequency of
the allele k at the i-th locus in population j. On the other
hand, if the information of the i-th locus is irrelevant to
decide the population to which a sequence belongs, the al-
lele frequency does not depend on the population to which
each sequence is assigned and therefore θ i−k denotes the
relative frequency of allele k at locus Xi. This last relative
allele frequency can be calculated directly from the dataset
D. Additionally, θC−j represents the unknown relative fre-
quency of population j in the dataset D.

As was said before, the EMA is an iterative algorithm.
At each iteration t, a naive Bayes model for clustering is
calculated by means of a Bayesian model averaging over
selective naive Bayes where each naive Bayes structure is,
a priori, equiprobable. That is, the θ

(t)
ijk parameter of the

model at the t-th iteration is calculated taking into account
not only the parameter θijk , but also θi−k .

In order to perform the model averaging calculations ef-
ficiently, it is necessary to assume that the allele frequen-
cies θijk and θi−k for any locus Xi and any population j
and allele k are distributed following a Dirichlet distribu-
tion with parameters αijk and αi−k respectively, and that
θijk , for any population j and allele k, is independent of
other θi′jk with i �= i′. Similarly, θi−k is independent of
any other θi′−k. This is known as parameter independence
assumption. Moreover, it is assumed that there is no miss-
ing values for the predictive variables X in the dataset.

The whole set of parameters for the model learned at it-
eration t, θ

(t)
ijk and θ

(t)
C−j for any i, j and k, is denoted as

Θ(t). The EMA algorithm successively performs the E and
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MA steps until the difference between parameter set of the
models calculated in two consecutive iterations is less than
a given parameter, ε. The first parameter set, Θ(0), is usu-
ally taken at random.

For a better understanding of the EMA algorithm, we
attempt to give some intuition about the calculations per-
formed at E and MA steps, at each iteration t, in the fol-
lowing two sections.

2.1 E Step (Expectation)
Intuitively, we can see this step as a probabilistic assig-
nation of each individual to each population on the basis
of the current model Θ(t). Actually, this step computes,
given the current model Θ(t), the expected number of in-
dividuals from a population j that present allele k at the
i-th locus when the locus is considered relevant for clus-
tering purposes, E(Nijk|Θ(t)), and the expected number
of individuals classified into population j, E(NC−j |Θ(t)).
The number of individuals of the dataset that present allele
k at locus Xi, Ni−k, is also necessary for model averag-
ing calculations. This value does not depend on population
assignments, therefore, it is constant throughout the algo-
rithm.

After the E step at each iteration t, we have some infor-
mation about the population membership of each individ-
ual. To distinguish between the dataset D and the dataset
after the E step where this information has been already
computed, we refer to the dataset after the E step at itera-
tion t as D(t).

2.2 MA Step (Model Averaging)
In this step, the EMA algorithm calculates a new set of
parametes, Θ(t+1), for a naive Bayes model by averaging
over all the selective naive Bayes models. These calcula-
tions are given by the following equation:

p(cj, x|D(t)) =
X

S

p(cj , x|D(t), S)p(S|D(t)) (1)

=
X

S

Z
p(cj , x|S, Θ) p(Θ|S, D(t))dΘ p(D(t)|S)P (S)

where S denotes a specific selective naive Bayes model that
sets which loci are considered relevant for clustering pur-
pose and which are not. We abuse the notation by using c j

and x to denote the fact that the cluster variable C takes the
j-th value and the molecular marker loci X take a specific
SNP alleles x. For a more simple notation, when we write
x, we assume that each SNP Xi takes its k-th allele value.

The general idea of an efficient model averaging over se-
lective naive Bayes is that Equation 1 can be approximated
in terms that only depend on each locus (variable X i) or on
each locus and the population membership (X i and C).

On the one hand, the integral in Equation 1 can be ap-
proximated by the maximum a posteriori (MAP) parameter
configuration.

p( cj , x|D(t), S) ≈ αC−j + E(NC−j|Θ(t))

αC + h
·

nY
i=1

αijk + E(Nijk|Θ(t))

αij + E(Nij |Θ(t))
= θ̃S

C−j

nY
i=1

θ̃S
ijk (2)

where θ̃S
ijk and θ̃S

C−j denote the MAP parameter configu-
ration for a selective naive Bayes structure S. Additionally,

αij =
∑

k αijk and E(Nij |Θ(t)) =
∑

k E(Nijk |Θ(t)),
and similarly for values related to C, where αC−j repre-
sents the Dirichlet parameter for θC−j . Note that S sets
if a variable Xi is dependent on or independent of C.
Therefore, if S sets that the locus Xi is independent of
C, we should use θ̃S

i−k and Ni−k instead of the θ̃S
ijk and

E(Nijk|Θ(t)) respectively in Equation 2, and substitute
Ni− for E(Nij |Θ(t)) with Ni− =

∑
k Ni−k = h.

On the other hand, the marginal likelihood can also be
written in terms that only depend on X i or on Xi and
C. This is given by the well-known close formula for
p(D|S) [Cooper and Herskovits, 1992] adapted to our spe-
cific problem. Note that, while p(D|S) is resolvable in
closed form when the value of C is known (the dataset is
complete), in our case D(t) is not a complete dataset, there-
fore we are not able to calculate the sufficient statistics Nijk

and NC−j but only approximations given the current model
Θ(t). Hence, the adaptation of Cooper and Herskovits’ for-
mula gives an approximation to p(D (t)|S).

p(D
(t)|S)≈ Γ(αC)

Γ(αC + h)

Y
j

Γ(αC−j + E(NC−j |Θ(t)))

Γ(αC−j)
·

nY
i=1

Y
j

Γ(αij)

Γ(αij + E(Nij |Θ(t)))

Y
k

Γ(αijk + E(Nijk|Θ(t)))

Γ(αijk)
(3)

where Γ(·) represents the gamma function. Of course,
again it is S which sets if we should use αi−k, Ni−j and
Ni− instead of the originals in Equation 3. The approxi-
mation given by this equation in the model averaging pro-
cess, have been compared to a Monte Carlo approximation,
which is a more accurate and computationally expensive
technique to approximate p(D|S), obtaining similar results
[Santafé et al., 2006].

At this point, as a consequence of parameter indepen-
dence assumption, we can state that if two different selec-
tive naive Bayes structures set the same relationship be-
tween locus Xi and C (in both structures Xi is relevant or
irrelevant for clustering purposes) the calculations related
to locus Xi in Equations 2 and 3 are the same for both struc-
tures. This is essential for an efficient model averaging cal-
culations since it allows to eliminate the dependence on S
in the model averaging calculations performed in Equation
1. That is, using the approximations given by Equations
2 and 3 in Equation 1, and grouping these calculations in
terms that depend on each variable X i, each one of these
groups will contain only two kind of terms: the ones that
consider Xi relevant for clustering, ρijk , and the ones that
consider Xi irrelevant for clustering, ρi−k. Therefore, the
model averaging calculations from Equation 1 can be ap-
proximated as follows:

p(cj , x|D(t)) ≈ ρC−j

nY
i=1

(ρi−k + ρijk) (4)

where ρC−j is the term which groups the calculations re-
lated only to the cluster variable. Thus, the new set of pa-
rameters, Θ(t+1), can be calculated from ρC−j , ρi−k and
ρijk . The expression of terms ρC−j , ρi−k and ρijk is given
in Equation 5.
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ρC−j ∝ θ̃C−j
Γ(αC)

Γ(αC + h)

Y
j

Γ(αC−j + E(NC−j |Θ(t)))

Γ(αC−j)
(5)

ρi−k ∝ θ̃i−k

Y
j

Γ(αi)

Γ(αi + h)

Y
k

Γ(αi−k + Ni−k)

Γ(αi−k)

ρijk ∝ θ̃ijk

Y
j

Γ(αij)

Γ(αij + E(Nij |Θ(t)))

Y
k

Γ(αijk + E(Nijk|Θ(t)))

Γ(αijk)

where αi =
∑

k αi−k . Therefore, the calculation of the
parameters for the naive Bayes model at t+1 step are given
by:

θ
(t+1)
ijk = ρi−k + ρijk θ

(t+1)
C−j = ρC−j

2.3 Multi-start EMA
The EMA is a greedy algorithm that is susceptible to be
trapped in a local optima. The results obtained by the al-
gorithm depend on the random initialization of the param-
eters. Therefore, we propose the use of a multi-start algo-
rithm where m different runs of the algorithm with differ-
ent random initializations are performed. In [Santafé et al.,
2006] different criteria to obtain the final model from the
multi-start process are proposed.

In our case, we use the best choice multi-start EMA,
where the best model, in terms of likelihood, among the
m models calculated by the multi-start process is selected
to be the final model. This is not a pure Bayesian approach
to the model averaging process but, in practice, it works, at
least, as well as other more complicated criteria.

2.4 Selecting the most relevant SNPs for
clustering

The model averaging process performed by the EMA al-
gorithm can be seen as an implicit unsupervised variable
selection that is incorporated in the final model. In fact,
although the EMA algorithm obtains a naive Bayes model
where all the predictive variables (maker loci) are indepen-
dent given the value of C (population assignation), the pa-
rameters of the resultant naive Bayes model are calculated
by a model averaging over selective naive Bayes and thus,
these parametes should reflect the significance of each lo-
cus for clustering purposes.

In this section we propose a two-step test that can be
used to obtain information about relevant locus that is im-
plicitly contained in the final naive Bayes model calculated
by the EMA algorithm. This test is based on mutual in-
formation. It is known [Cover and Thomas, 1991] that the
statistic 2NI(Xi, C) asymptotically follows a Chi-square
probability distribution with (ri − 1)(rC − 1) degrees of
freedom. In our case, ri is the number of alleles that a lo-
cus Xi can present and rC the total number of populations.

The mutual information of a locus X i and the cluster
variable, or the mutual information of two predictive vari-
ables Xi′ and Xi′′ with i′ �= i′′ can be calculated using
the naive Bayes model obtained by the EMA algorithm.
Thus, a Chi-square test can be performed to decide which
marker loci are relevant for the clustering process. In the
first step, we set a test threshold prel and use a Chi-square

test to filter out those predictive variables which are con-
sidered not relevant for clustering purposes. This first step
selects the relevant SNPs but the set of selected SNPs may
contain redundant information. As a consequence, we de-
velop a second step to filter out redundant SNPs by again
using a Chi-square test with a test threshold pred. In this
second step we calculate the pairwise mutual information
of the variables selected in the first step and use this value
to decide whether or not two variables are redundant. Fig-
ure 2 describes the two-step algorithm to obtain the set of
SNPs, Xrel, which are relevant to obtain the underlying
group structure.

Xrel = (X1, . . . , Xn)

– STEP 1 –

for i = 1 to n
if 2NI(Xi, C) < χ2

(ri−1)(rC−1);1−prel

remove Xi from Xrel

end if
end for

– STEP 2 –

for all Xi′ , Xi′′ with Xi′ , Xi′′ ∈ Xrel and i′ �= i′′

if 2NI(Xi′ , Xi′′) < χ2
(ri′−1)(ri′′−1);1−pred

if I(Xi′ , C) < I(Xi′′ , C)
remove Xi′ from Xrel

else
remove Xi′′ from Xrel

end if
end if

end for

Figure 2: Pseudo-code for SNPs selection.

The thresholds prel and pred can be used to control the
number of selected variables. On the one hand, the bigger
prel is, the less variables are selected as relevant for clus-
tering. On the other hand, as pred decreases, the number of
variables considered redundant increases and therefore, the
final number of selected variables is smaller.

3 Results
In order to show how the characteristics of the EMA al-
gorithm can fit properly to the population substructure
problem, we firstly use the toy example introduced in
[O’Rourke et al., 2005]. The dataset for this toy example
is composed of individuals represented by 50-character bit-
strings. We generate three ancestral sequences with relative
Hamming distances 2, 3 and 5. Each ancestral sequence is
used to generate a set of 19 new clone individuals in which
random mutations may happen at each position of the string
with a mutation rate 0.05. Thus, we obtain 60 individuals
grouped into three different populations with an expected
Hamming distance of 2.5 between a mutant and its ances-
tral sequence. The individuals from the three different pop-
ulation are differentiated by 5 positions of the sequence and
the rest of the positions may only differ from one individ-
ual to another because of random mutations. In fact, it is
enough with only 2 of the 5 positions to differentiate be-
tween individuals from the three populations because there
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is redundant information.
We use a multi-start EMA algorithm with ε = 0.01 and

m = 1000 runs in the multi-start process to cluster the
60 individuals into 3 clusters. Since the EMA algorithm
is not deterministic, we perform 10 runs of the multi-start
algorithm that, on average, classify 95% of the sequences
into their original population with null standard deviation.
Moreover, the naive Bayes model obtained by the multi-
start EMA at each run is used to obtain the set of relevant
positions to decide the clustering membership. The test de-
scribed in Section 2.4 with parameters prel = 0.01 and
pred = 0.01 is used to obtain these relevant positions. All
the 10 runs yield the selection of only two positions of the
five positions that diffentiate between the three populations.
Thus, the algorithm correctly selects the minimum number
of positions to differentiate between populations.

Moreover, the Structure software [Pritchard et al.,
2000a] with default parameters and 10, 000 models for
the burning period and also 10, 000 iterations to learn the
model is able to classify, on average over ten runs, only
79.64% of the sequences into their population of origin
with standard deviation 9.91%.

The proposed toy example shows that the EMA algo-
rithm presents a good behavior for clustering sequences
from different populations and where random mutation
across the sequence positions may happen. In the following
section we apply the EMA algorithm to a real dataset.

3.1 Human Population Substructure

For this experiment, we use the dataset of common SNPs
reported in [Hinds et al., 2005]. This dataset contains about
1.5 million SNPs uniformly distributed across the human
genome and which are common to, at least, individuals
from the three human populations under study: European,
African and Asian. The data came from the genotype of 71
unrelated individuals: 24 European-American, 23 African-
American and 24 Han-Chinese from the Los Angeles area.

Following the experimental description from [O’Rourke
et al., 2005], and in order to avoid linkage disequilibrium
from proximity in the genome, we only use every thou-
sandth SNP, leaving a total of 1, 520 marker loci. The EMA
algorithm, proposed in this paper to tackle the population
substructure problem, uses haploid data. Therefore, each
individual gives rise to two haplotype sequences belonging
to the same population. Hence, the dataset is made up of
142 sequences with 1, 520 SNPs each. On the other hand,
this dataset with 1, 520 SNPs contains information about
SNPs from all over the human genome. However, in other
real problems, not all this information is always available.
Sometimes only SNPs from one or several chromosomal
segments are provided and then, the population substruc-
ture is more difficult to retrieve. In order to simulate these
situations, we split the dataset into 19 datasets with only 80
SNPs. In the experiments we refer to the dataset that con-
tains all the 1, 520 SNPs as dsSNPs. The smaller datasets
with 80 SNPs are denoted as ds1, . . . , ds19.

Table 1 shown the percentage of individuals, on aver-
age over 10 independent runs, correctly assigned to their
population of origin using both multi-start EMA and Struc-
ture algorithms for each dataset. The parameters used for
both algorithms are the same as those used in the toy ex-
ample. A Man-Withney test at 0.01 level is performed to

Structure EMA
Dataset Mean Std Mean Std
ds1 87.28 0.55 95.07 0.47
ds2 88.27 1.35 93.24 0.36
ds3 88.48 0.48 93.38 1.49
ds4 91.27 0.34 95.77 0.00
ds5 83.75 7.67 93.94 0.36
ds6 84.53 0.51 86.13 0.48
ds7 92.20 0.25 96.48 0.00
ds8 74.79 2.66 82.75 2.11
ds9 81.86 0.62 86.06 1.78
ds10 85.28 0.74 89.08 1.11
ds11 87.25 0.38 90.14 0.00
ds12 89.59 0.35 91.55 0.00
ds13 90.72 0.38 94.37 0.00
ds14 89.41 0.26 95.99 0.48
ds15 86.08 0.30 90.07 0.52
ds16 84.96 0.84 93.45 0.48
ds17 88.34 0.17 93.52 0.30
ds18 81.16 0.53 86.55 2.92
ds19 82.65 0.86 86.62 0.00
Mean over ds1-
ds19

86.20 — 91.27 —

dsSNPs 96.78 0.09 100 0.00

Table 1: Percentage of correctly assigned individuals to
their population of origin (mean and standard deviation
over 10 runs) using both EMA and Structure algorithms.

check if the difference between the two algorithms is sta-
tistically significant. Those values which are significantly
better are written in bold in Table 1. We can see that the
results obtained by the multi-start EMA algorithm outper-
form the structure software, and the differences are statisti-
cally significant for all the datasets.

The SSCC method proposed in [O’Rourke et al., 2005]
also obtain 100% of correct classications for dsSNPs
dataset. In the case of the dataset with only 80 SNPs, only
the mean value over the 19 datasets is reported in the pa-
per. The multi-start EMA algorithm obtains, on average
over the 19 datasets, 91.27% of correct classified individu-
als. This figure is very close to the precision obtainded by
the SSCC, 91.80%

Another important characteristic of the EMA algorithm
is its ability to select the set of relevant SNPs for clus-
tering purposes. Using the dsSNPs dataset and setting
prel = pred = 0.01, the 10 runs of the multi-start EMA
algorithm give rise to 10 sets of selected relevant SNPs.
These datasets contain, on average, 277.1 relevant SNPs
and 146 of them are common to the 10 sets. Note that each
set of relevant SNPs is selected on the basis of a different
naive Bayes model learned with the multi-start EMA algo-
rithm. Therefore, although two sets of relevant SNPs share
many SNPs, some of them may be different. The fact that
two sets of relevant SNPs contain different SNPs does not
necessarily mean that one set is better than the other be-
cause they may contain different subsets of non-redundant
SNPs. In order to evaluate the sets of relevant SNPs ob-
tained by the multi-start EMA algorithm, we run the Struc-
ture software with the same parameters on these datasets.
The percentage of correctly classified individuals is, on av-
erage over the 10 different sets of relevant SNPs, 94.98%
with standard deviation 4.66%. Note that the reduction in
the number of SNPs in the dataset is very big while the
percentage of correctly classified individuals is similar.
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4 Discussion
In this paper we propose the use of the EMA algorithm,
originally introduced in [Santafé et al., 2006], in popula-
tion substructure problems. This algorithm learns a naive
Bayes model for clustering by means of a Bayesian model
averaging over selective naive Bayes models. That implies
that the Bayesian model averaging includes in the learned
model a kind of implicit variable selection of relevant pre-
dictive variables. This special characteristic make the algo-
rithm appropriated for the considered problem. Moreover,
in the same clustering process we are able to retrieve the
underlying population substructure and to obtain the set of
relevant markers used to retrieve this population substruc-
ture. In order to show this, we evaluate the algorithm in a
toy example but also in a real problem. In the experiments
performed in the paper the multi-start EMA algorithm out-
performs other common used algorithms such as Structure.

In the literature, we can find some algorithms based on
Structure that obtain quite good results [Rosenberg et al.,
2002; Patterson et al., 2004]. By contrast, the EMA al-
gorithm provides a probabilistic tool that can be used to
identify unknown genetically related subgroups of samples
and identify the set of SNPs that is providing most of the
relevant genetic differences among the identified groups.

The current version of the EMA algorithm can not deal
with missing values in the predictive variables. This could
be a problem for a general use of the EMA algorithm in the
population substructure problem since it is very common
that not all the marker loci can be sequenced for all the
individuals from a study. However, this assumption can be
easily relaxed by modifying the E step.

On the other hand, the parameters of the EMA algorithm
may influence the obtained results. Specifically the selec-
tion of the thresholds prel and pred affects the number of
selected SNPs. The aim of SNP selection is to select as
smaller set of SNPs as possible but this subset of SNPs
should contain enough information to describe the obtained
clustering structure. It would be interesting an empirical
evaluation of the impact of these parameters on the per-
formance of the SNPs selection. Other future work may
include the use of several runs of the algorithm with differ-
ent number of clusters in order to evaluate how it is able to
detect subpopulations in the dataset.
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Abstract
A critical aspect of gene regulation is the pres-
ence of cyclic control structures: in this paper
we present an approach to identify feedback loop
mechanisms from gene expression time series.
Our approach is based on dynamic Bayesian net-
works and we apply it to the analysis of gene ex-
pression data measured during cell cycle in a hu-
man cell line. Cell cycle control mechanisms are
fundamental in the development and treatment of
tumors and the identification of feedback control
loops can highlight central genes in the regula-
tion and promising pharmacogenomics targets.

1 Introduction
Inference of gene expression networks from DNA microar-
ray temporal data is nowadays one of the most challenging
problems in functional genomics. In particular, the study
of temporal profiles is considered very promising for the
discovery of functional relationships among genes, as it al-
lows to observe regulatory mechanisms in action and can
help to identify genes taking part in the same cellular pro-
cesses. A critical modelling aspect of any regulatory mech-
anism is the presence of cyclic control structures: here we
present an approach to identify feedback loop mechanisms
from gene expression time series measured through DNA
microarrays. Our approach is based on dynamic Bayesian
networks (DBNs), a special class of Bayesian networks
particularly suited to study dynamic gene expression data,
that is time series of expression measurements [Murphy
and Mian, 1999; Sebastiani et al., 2005a]. DBNs allow
us to overcome the inability of Bayesian networks to rep-
resent cycles among variables and thus make the discovery
of feedback loops in gene regulatory networks feasible.

2 Background
Bayesian networks (BNs) are a formalism for the repre-
sentation and the use of probabilistic knowledge widely
employed in various fields such as Artificial Intelligence
and Statistics. BNs are becoming an increasingly pop-
ular modeling framework for different types of genomic
and proteomic data. They offer indeed a number of sig-
nificant advantages over other methods: they are able to
model stochasticity, to incorporate prior knowledge and

to handle hidden variables and missing data in a princi-
pled way. Bayesian networks have been applied to the
analysis of gene expression data [Friedman et al., 2000;
Segal et al., 2003], protein-protein interactions [Jansen et
al., 2003] and genotype data [Sebastiani et al., 2005b].

Dynamic Bayesian networks (DBNs) are a particular
type of BNs which models the stochastic evolution of
a group of random variables over time. A traditional
Bayesian network is only able to offer a static view of the
system under analysis, useful in the case one is interested in
modeling its steady state. DBNs are instead able to model
how genes regulate each other over time.

Murphy and Mian in 1999 were the first to propose the
suitability of DBNs for modeling time series gene expres-
sion data: they reviewed different learning techniques but
they did not apply them to a real biological dataset [Mur-
phy and Mian, 1999]. When microarray data availability
increased, works in which DBNs were used to analyze real
gene expression data started to be published. Ong et al.
used time series data measured in E. Coli to infer a DBN
network with a discrete model of regulation and showed
that this network was able to identify genes in a common
regulatory pathway [Ong et al., 2002]. Perrin et al. pro-
posed to treat gene expression variables as continuous and
used a dynamical system model with Gaussian noise [Per-
rin et al., 2003], while Kim et al. presented an algorithm
in which the variables were still treated as continuous but
described with a nonparametric regression model [Kim et
al., 2003]. Husmeier performed simulation studies to as-
sess how the network inference performance varied accord-
ing to changes in a number of factors, such as the training
set size or the inclusion of further, sequence-based infor-
mation [Husmeier, 2003]. Yu et al. exploited simulated
data as well to test a few proposed advances for dynamic
Bayesian network inference algorithms, especially in the
context of limited quantities of expression data [Yu et al.,
2004]. More recently Zou et al. proposed an approach
aimed at increasing the accuracy and reducing the compu-
tational time by limiting potential regulators to those genes
with either earlier or simultaneous expression changes (up-
or down-regulation) in relation to their target genes [Zou
and Conzen, 2005]. Bernard and Hartemink presented an
interesting method for jointly learning dynamic models of
transcriptional regulatory networks from gene expression
data and transcription factor binding location data [Bernard
and Hartemink, 2005]. In our paper we employ a DBN ap-
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proach based on Linear Gaussian models to describe gene
relationships. This approach, which is described in the fol-
lowing Section, is very useful for a first level, genome-wide
analysis of high throughput dynamic data.

3 Method
A DBN is a directed acyclic graph that encodes a joint
probability distribution over a set of random variables:
the nodes in the graph represent these stochastic variables
and directed arcs represent the dependencies among them,
which are quantified by conditional probability distribu-
tions.

Supposing expression values for n genes in p consecu-
tive time points are available, it is possible to indicate with
Y (t) = {Y1(t), Y2(t), . . . , Yn(t)} the set of random vari-
ables representing gene expression values at time t. We
assume that the process under study (the dynamics of gene
expression) is
• Markovian, i.e. p(Y (t + 1)|Y (0), . . . , Y (t)) =

p(Y (t + 1)|Y (t)) and
• stationary, i.e. the transition probability p(Y (t +

1)|Y (t)) is independent of t.
Furthermore, we assume that a certain time lag is neces-
sary for the expression of a gene to affect the expression of
other genes, so that no instantaneous relationship between
the expression levels of two genes is possible. Given these
three assumptions, it is necessary to learn only the tran-
sition network between expression values at time t and at
time t + 1 [Friedman et al., 1998].

The use of DBNs allows us to overcome the inability of
Bayesian networks to represent cycles among variables and
thus makes the discovery of feedback loops in gene net-
works feasible. Indeed, the necessary acyclic structure of
the directed graph that encodes the dependencies between
the network variables is no longer a limitation in the frame-
work of DBNs. Considering for example two genes A and
B and indicating with the subscripts t and t + 1 their ex-
pression values in two consecutive time points, if two links
At → Bt+1 and Bt → At+1 are found through the learn-
ing of a DBN, it is possible to say that there is a feedback
loop connecting these two genes, either directly or through
other genes.

As Bayesian networks, DBNs can be learned from the
data. To this aim, a probability model and a search
strategy must be chosen. We assume that the variables
Y1, . . . , Yn are all continuous, and that the conditional dis-
tribution of each variable Yi given its parents Pa(yi) =
(Yi1, . . . , Yip(i)) follows a Gaussian distribution with mean
µi that is a linear function of the parent variables and con-
ditional variance σ2

i
[Sebastiani et al., 2005a]. The depen-

dency of each variable on its parents is thus represented by
the linear regression equation:

µi = βi0 +
∑

j

βijyij (1)

that models the conditional mean of Yi at time t + 1 given
the parent values yij , measured at time t.

In accordance with the Bayesian literature, we look for
the network associated with the maximum posterior prob-
ability with respect to the data. As an exhaustive search

over the space of all possible networks encoding the proba-
bilistic dependencies among the n analyzed variables is not
feasible, we exploit a finite horizon local search and we ex-
plore the dependency of each variable on all the variables
at the previous time point [Cooper and Herskovitz, 1992;
Sebastiani et al., 2005a].

4 Data analysis and discussion
We decided to focus our investigation on the cell cycle,
a process of critical importance where feedback control
loops are expected to play a central regulatory role. The
analysis of cell cycle regulation is indeed one of the most
important areas of research in the medical and biological
community, as an understanding of how cells divide and
proliferate is crucial for the study of various diseases, most
notably cancer. In this analysis, the discovery of feedback
loop mechanisms could be extremely useful in highlighting
genes which play a key role in cell cycle control and which
thus constitute potential targets for an effective cancer ther-
apy.

For this purpose, we use a database of gene expres-
sion data measured in a human epithelial cell line de-
rived from a cervical carcinoma [Whitfield et al., 2002].
This database, available from the web (http://genome-
www.stanford.edu/Human-CellCycle/Hela/), includes data
coming from 5 different experiments. In particular, in one
of these, gene expression values were measured every hour,
from 0 to 46 hs, using cDNA microarrays containing about
40000 probes. This dataset currently represents one of
the most extensive collections of gene expression tempo-
ral data. Its abundant amount of samples (47 time points)
constitutes a significant advantage for the inference of the
network. In fact, a problem often encountered in the learn-
ing is that the number of variables (genes/probes) is nor-
mally very high, while the available measurements (gene
expression values) are usually very few, thus often leading
to a low degree of sensitivity and specificity in the inferred
networks [Husmeier, 2003].

We are currently analyzing a set of 1000 probes identi-
fied as periodical in [Whitfield et al., 2002]: the authors,
employing a Fourier transform and correlation to known
cell cycle yeast genes, calculated a periodicity score for
each of the probes and selected about 1000 probes whose
score exceeded a carefully chosen threshold. We analyzed
their time profiles with the algorithm presented in the previ-
ous Section. The inferred DBN is very parsimonious, with
a number of parents for every node that ranges from 0 to 2.

Starting from this DBN, we reconstructed a gene regula-
tory network, in which nodes referring to the same variable
at consecutive time points (eg. At and At+1) were col-
lapsed into a single node. This regulatory network is not a
Bayesian network anymore and can instead contain loops.
Figure 1 presents an example of how a gene regulatory net-
work is reconstructed from the transition network.

The reconstructed gene regulatory network is shown in
Figure 2. The analysis of this network led us to concen-
trate our attention on a group of 12 probes that appear to be
involved in various feedback loops. Some of these probes
map to well characterized cell cycle genes, while others
highlight potential new key players in cell cycle regulation.
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Figure 1: Example of translation of the transition network
inferred by the DBN algorithm into a gene regulatory net-
work.

We statistically validated the obtained model, both eval-
uating the goodness of fit of the network and assessing its
predictive accuracy. The fitting appeared to be satisfac-
tory, as it is visible in Figures 3 and 4. Figure 3 presents an
example of the measured and fitted profiles relative to two
genes. Figure 4 presents instead diagnostic plots relative
to the network learnt. The symmetry of the standardized
residuals, together with the closeness of the fitted and ob-
served values and the lack of any significant patterns in the
scatter plot of the fitted values vs the standardized residu-
als suggest that the model used is able to provide a good
approximation of the analyzed temporal profiles.

The predictive accuracy was evaluated on an indepen-
dent test set constituted by the data coming from another
of the 5 experiments performed by Whitfield et al.: here
a different cell synchronization method was employed and
expression values were measured from 0 to 36 hours, every
2 hours. Results of the predictive analysis show that our
model provides a good description also of the expression
profiles measured in this dataset.

5 Conclusions

Linear Gaussian Networks are a powerful instrument to
represent gene interactions. The results showed in this pa-
per confirm the suitability of these networks for a first level
analysis of high-throughput gene expression data. We have
now undertaken an experimental validation of the func-
tional implications of our model to assess the regulatory
role of the genes involved in the feedback loops.

Moreover we are devoting additional efforts to under-
standing to what extent Linear Gaussian Networks are able
to infer the complex dynamic interactions among cellular
variables. For this reason, we have undertaken a study on
simulated data aimed at quantitatively evaluating the per-
formance of these networks, comparing the inferred con-
nections with the “real” ones [Ferrazzi et al., 2006]. Re-
sults are encouraging and generalizations of the linear re-
gression model employed in this paper may provide addi-
tional flexibility in modeling the analyzed temporal pro-
files.

Figure 2: Gene regulatory network inferred using the data
relative to the 1000 probes identified as cell cycle regulated
in [Whitfield et al., 2002]. The nodes in a darker color are
involved in feedback loops.

References
[Bernard and Hartemink, 2005] A. Bernard and A. J.

Hartemink. Informative structure priors: joint learning
of dynamic regulatory networks from multiple types of
data. Proceedings of the Pacific Symposium on Biocom-
puting, pages 459–70, 2005.

[Cooper and Herskovitz, 1992] G. F. Cooper and E. Her-
skovitz. A Bayesian method for the induction of proba-
bilistic networks from data. Machine Learning, 9:309–
347, 1992.

[Ferrazzi et al., 2006] F. Ferrazzi, P. Sebastiani, I. S. Ko-
hane, M. F. Ramoni, and R. Bellazzi. Dynamic Bayesian
networks in modelling cellular systems: a critical ap-
praisal on simulated data. Proceedings of the 19th IEEE
Symposium on Computer-Based Medical Systems, 2006.

[Friedman et al., 1998] N. Friedman, K. Murphy, and
S. Russel. Learning the structure of dynamic proba-
bilistic networks. Proceedings of the Fourteenth Con-
ference on Uncertainty in Artificial Intelligence (UAI),
pages 139–147, 1998.

[Friedman et al., 2000] N. Friedman, M. Linial, I. Nach-
man, and D. Pe’er. Using Bayesian networks to ana-
lyze expression data. Journal of Computational Biology,
2000.

[Husmeier, 2003] D. Husmeier. Sensitivity and specificity
of inferring genetic regulatory interactions from mi-
croarray experiments with dynamic Bayesian networks.
Bioinformatics, 19:2271–2282, 2003.

[Jansen et al., 2003] R. Jansen, H. Yu, D. Greenbaum,
Y. Kluger, N. J. Krogan, S. Chung, A. Emili, M. Sny-
der, J. F. Greenblatt, and M. Gerstein. A Bayesian net-

IDAMAP 2006 Page 59 of 106



Figure 3: Measured and fitted profiles for two analyzed
probes.

works approach for predicting protein-protein interac-
tions from genomic data. Science, 302:449–53, 2003.

[Kim et al., 2003] S. Kim, S. Imoto, and S. Miyano. In-
ferring gene networks from time series microarray data
using dynamic Bayesian networks. Briefings in Bioin-
formatics, 4:228–235, 2003.

[Murphy and Mian, 1999] K. Murphy and S. Mian. Mod-
elling gene expression data using dynamic Bayesian net-
works. Technical Report, Berkeley, CA Computer Sci-
ence Division, University of California, 1999.

[Ong et al., 2002] I. M. Ong, J. D. Glasner, and D. Page.
Modelling regulatory pathways in E. coli from time
series expression profiles. Bioinformatics, 18 (Suppl
1):S241–8, 2002.

[Perrin et al., 2003] B. E. Perrin, L. Ralaivola, A. Mazurie,
S. Bottani, J. Mallet, and F. D’Alche-Buc. Gene
networks inference using dynamic Bayesian networks.
Bioinformatics, 19 (Suppl 2):II138–II148, 2003.

[Sebastiani et al., 2005a] P. Sebastiani, M. Abad, and M.F.
Ramoni. Bayesian networks for genomic analysis.

(a) Histogram of standardized residuals

(b) Fitted vs observed values (c) Fitted values vs standardized res.

Figure 4: Diagnostic plots for the network model learnt.

Genomic Signal Processing and Statistics. EURASIP
Book Series on Signal Processing and Communications,
2005.

[Sebastiani et al., 2005b] P. Sebastiani, M. F. Ramoni,
V. Nolan, C. T. Baldwin, and M. H. Steinberg. Genetic
dissection and prognostic modeling of overt stroke in
sickle cell anemia. Nature Genetics, 37:435–40, 2005.

[Segal et al., 2003] E. Segal, M. Shapira, A. Regev,
D. Pe’er, D. Botstein, D. Koller, and N. Friedman. Mod-
ule networks: identifying regulatory modules and their
condition-specific regulators from gene expression data.
Nature Genetics, 34:166–176, 2003.

[Whitfield et al., 2002] M.L. Whitfield, G. Sherlock, A.J.
Saldanha, J.I. Murray, C.A. Ball, K.E. Alexander, J.C.
Matese, C.M. Perou, M.M. Hurt, P.O. Brown, and
D. Botstein. Identification of genes periodically ex-
pressed in the human cell cycle and their expression
in tumors. Molecular Biology of the Cell, 13(6):1977–
2000, 2002.

[Yu et al., 2004] J. Yu, V. A. Smith, P. P. Wang, A. J.
Hartemink, and E. D. Jarvis. Advances to Bayesian
network inference for generating causal networks from
observational biological data. Bioinformatics, 20:3594–
603, 2004.

[Zou and Conzen, 2005] M. Zou and S. D. Conzen. A new
dynamic Bayesian network (DBN) approach for iden-
tifying gene regulatory networks from time course mi-
croarray data. Bioinformatics, 21:71–9, 2005.

IDAMAP 2006 Page 60 of 106



Visualisation of Associations
Between Nucleotides in SNP Neighbourhoods

Kimmo Kulovesi∗,†, Juho Muhonen∗, Ilkka Lappalainen‡, Pentti T. Riikonen§,
Mauno Vihinen¶ ,†, Hannu Toivonen∗

,

‖ and Tomi A. Pasanen∗

Abstract
A large number of single nucleotide polymorph-
isms have been mapped onto the human genome.
Mutations are induced through endogenous and
exogenous processes, and these procedures have
been shown to be sequence-dependent. Associa-
tion mining is a powerful tool for analyzing se-
quence neighbourhoods; however, visualisation
is essential for pattern recognition because of the
abundance of resulting association rules.
A software tool was developed to visualize posi-
tion interdependencies within the sequence vari-
ation data. The software is capable of interac-
tive reorganization of the association rules, en-
abling fast and easy exploration of the data us-
ing a standard web browser. The software and
its complete source code is freely available at:
http://www.cs.helsinki.fi/group/bioalgss/asvis/

1 Introduction
A single nucleotide polymorphism (SNP) is a site in DNA
where at least two different nucleotides occur in a specific
population, the less frequent nucleotide(s) occurring at a
frequency of 1% or more. The nucleotide variation be-
tween individuals forms the genetic background responsi-
ble for biological and physical differences such as colour
of hair, susceptibility to a disease or response to specific
treatment. The International HapMap project aims to char-
acterise the common human sequence variations [Interna-
tional HapMap Consortium, 2005]. The data is publicly
available in the dbSNP database [Wheeler et al., 2005].

New mutations arise by errors in endogenous processes
involved in maintaining genomic stability, or are induced

∗Department of Computer Science, FI-00014 University of
Helsinki, Finland

†Institute of Medical Technology, FI-33014 University of
Tampere, Finland

‡Department of Chemistry, Cambridge University, CB2 1EW
Cambridge, UK

§Department of Information Technology, FI-20520 University
of Turku, Finland

¶Research Unit, Tampere University Hospital, FI-33520 Tam-
pere, Finland

‖Department of Computer Science, University of Freiburg, D-
79110 Freiburg, Germany

by various exogenous agents, such as UV radiation [Jiricny,
1998]. The efficiency and specificity of these processes is
DNA sequence dependent [Cooper and Krawczak, 1993].
Data mining can be used to analyze the sequence neigh-
bourhoods of neutral and disease-causing SNPs in order
to better understand the genetic differences that underlie
pathogenic conditions.

Association rules are suitable for this task. Discovery of
association rules is popular in data mining and it has a wide
variety of applications. In principle, individual association
rules describing co-occurrences of sets of attributes in the
input data are straightforward to interpret. However, the
very large number of resulting association rules seriously
hinders their analysis. General-purpose visualisation tools
are ill-suited for association rules, and the few available as-
sociation visu-alisation tools are not suitable for position-
dependent SNP neighbourhoods. Furthermore, the existing
tools for visualizing SNP neighbouring-nucleotide biases
are not applicable to association rules (for example, [Zhang
and Zhao, 2005]). Here we introduce a new, publicly avail-
able visualisation tool with interactive controls for the se-
lection and arrangement of association rules obtained from
SNP data. The tool has a novel position-dependent display
of association rules. It can also be used with other similar
data, such as protein sequences. The tool provides simple
and legible graphical output.

2 System and Methods
For demonstration in this paper, sequence variation data
was extracted from the dbSNP (build 124). Only true poly-
morphisms that could be located within gene coding re-
gions of the human genome (build 35) were used. We con-
sider a sequence neighbourhood of each mutation site that
extends up to ten nucleotides on both sides. The mutation
position is numbered zero, while positive and negative po-
sition numbers denote the distance of following and pre-
ceding nucleotides, respectively.

Our software consists of two programs, Firm and AsVis.
Firm is used for application-independent discovery of as-
sociation rules. As an example, the rule {0:’C→T’} ←−
{+1:’G’} indicates that the substitution of cytosine (C) by
thymine (T) is probable when the mutation site is immedi-
ately followed by guanine (G) (see Figure 1). To rank the
association rules, Firm yields a number of measures for the
strength and generality of each rule within the data. Sup-
port is the number of records that fully match the rule. Con-
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Figure 1: Example association rules (above) visualised by AsVis (below). No information is lost in the visualisation, but
the positional nature of the rules is immediately apparent.

fidence of a rule is the conditional probability of the con-
sequent (e.g. {0: ’C→T’}) given the condition ({+1:’G’}).
Lift is simply the ratio of confidence over the relative fre-
quency of the rule consequent, whereas J-measure [Smyth
and Goodman, 1992] is an information-theoretic measure
describing the amount of information that the condition
gives about the consequent.

Association rules are suitable as such for exploratory
data analysis, and a large amount of them can be discovered
efficiently, without setting a strong focus on any particular
attributes. Usually only support and confidence thresholds
are used to limit the number of rules, and algorithms such
as Apriori [Agrawal et al., 1996] produce all association
rules between any sets of attributes that exceed the thresh-
olds. A rule can have any number of conditions and conse-
quents, but with reasonable threshold values, our data did
not give any strong associations for complex dependencies
with more than one consequent.

To facilitate visual browsing and exploration of thou-
sands of rules, an interactive web interface, AsVis, was de-
veloped. AsVis graphically renders the rules into a form
that visually reflects the sequential nature of the data, tak-
ing advantage of the relatively small number of dimen-
sions (positions). The association rules are listed in a table,
where each row represents a single rule, and each column
corresponds either to a position relative to the point of mu-
tation or to a strength or generality measure for the rule (see
Figure 1). Consequents and conditions are colour-coded in
the positional columns.

The interface enables the user to explore the most in-
teresting rules. Clicking on the column header of a mea-
sure sorts the rules by that measure, with the best scores
at the top. Clicking on a positional column header limits
the display to only those rules that have either a condition
or a consequent in that position, while keeping the current
sorting. This approach is somewhat similar to the TASA
system [Klemettinen et al., 1999].

This simple approach enables quick visual scanning of
the rules for an overview of dependencies between posi-
tions. The measures for each rule are for closer inspection,
providing the full scope of information discovered by the
data mining process.
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Abstract
Dynamic limited-memory influence diagrams
(DLIMIDs) have been developed as a framework
for decision-making under uncertainty over time.
We show that DLIMIDs constructed from two-
stage temporal LIMIDs can represent infinite-
horizon decision processes. Given a treatment
strategy supplied by the physician, DLIMIDs
may be used as prognostic models. The theory
is applied to determine the prognosis of patients
that suffer from an aggressive type of neuroen-
docrine tumor.

1 Introduction
An important task in medicine is making an accurate prog-
nosis for a particular patient given the patient’s history.Ac-
curate prognosis facilitates patient feedback and allows the
physician to adjust the treatment strategy but is non-trivial
in a world that is characterized by change and uncertainty.
In our research, we have been engaged in the construc-
tion of a prognostic model for high-grade carcinoid tumors
of the midgut, which are an aggressive type of neuroen-
docrine tumor[Modlin et al., 2005]. The model has been
constructed in collaboration with an expert physician of the
Netherlands Cancer Institute (NKI).

The aim of this paper is to show how prognostic mod-
els may be constructed using an approach that is based on
limited-memory influence diagrams(LIMIDs) [Lauritzen
and Nilsson, 2001]. We extend the definition of LIM-
IDs to dynamicLIMIDs, which explicitly take time into
account. We show that dynamic LIMIDs allow the han-
dling of infinite-horizon and partially observable Markov
decision processes (POMDPs)[Aström, 1965] whenever
they are representable as a so-calledtwo-stage temporal
LIMID (2TLIMID). Infinite-horizon POMDPs cannot be
dealt with using standard (limited-memory) influence dia-
grams, and contrary to POMDPs, the 2TLIMID represen-
tation makes explicit a factorization of the state-space that
is defined by the variables in the domain1. This is advanta-
geous, from a computational point of view, since it allows

∗This research was sponsored by the Dutch Institute Madrid
and by the Dutch Science Foundation under grant number
612.066.201.

1Much recent POMDP research has been concerned with tak-
ing advantage of such factorizations[Boutilier et al., 1996a].

for more efficient inference algorithms, and also from a
representational point of view, since it allows us to describe
the model in terms of the relations that hold between do-
main variables (see e.g.[Peek, 1999]). Given the strategy
of a decision maker, a 2TLIMID can be transformed into
a two-stage temporal Bayes network[Dean and Kanazawa,
1989], and prognosis then proceeds by means of probabilis-
tic inference using this Bayesian network.

In contrast to classical approaches to prognosis, such as
Cox’s proportional hazard model[Cox, 1972], we take a
model-basedapproach that aims to represent as accurately
as possible the causal relations that hold between domain
variables. It has been argued that models which capture
cause-effect relationships are more meaningful, accessible
and reliable than models which capture empirical associa-
tions [Druzdzel, 1997]. Causal models are also richer in
representational power than non-causal models, since they
allow for reasoning under interventions[Pearl, 2000]. In
the context of decision support in medicine, causal models
have several advantages. They allow for capturing expert
knowledge, which is a valuable commodity in itself, and
are more easily modified when new knowledge becomes
available (i.e. they are lessbrittle than models based on
empirical associations). Furthermore, they facilitate the ex-
planation of drawn conclusions, which may increase the ac-
ceptance of decision-support systems in medicine[Teach
and Shortliffe, 1984; Lacave and Dı́ez, 2002]. However,
building causal models often proves to be non-trivial, as it
is difficult to elicit the needed qualitative and quantitative
knowledge.

We proceed as follows. Section 2 describes required
preliminaries. Dynamic LIMIDs and 2TLIMIDs are intro-
duced in Section 3. Section 4 presents a formalization of
prognosis, where we use 2TLIMIDs to represent prognos-
tic models. Section 5 describes the prognostic model for
high-grade carcinoids as an illustration of the theory. Sec-
tion 6 describes some results concerning prognostic model
performance. The paper is concluded in Section 7.

2 Preliminaries
Bayesian networks[Pearl, 1988] provide for a compact fac-
torization of a joint probability distribution of a set of ran-
dom variables by exploiting the notion ofconditional in-
dependence. One way to represent conditional indepen-
dence is by means of an acyclic directed graph (ADG)G
whose nodesV (G) correspond to random variablesX and
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the absence of arcs from the set of arcsA(G) represents
conditional independence. Due to this one-to-one corre-
spondence we will use nodesv ∈ V (G) and random vari-
ablesX ∈ X interchangeably. ABayesian network(BN)
is then defined as a pairB = (G, P ), such that the joint
probability distributionP is factorized according toG:

P (X) =
∏

X∈X

P (X | πG(X))

whereπG(X) denotes theparentsof X : {X ′ | (X ′, X) ∈
A(G)}. We also say thatX is thechildof someX ′ ∈ π(X)
where we drop the subscriptG when clear from context. In
this paper, we say that a (random) variableX takes values
x from a setΩX and usex to denote an element inΩX =
×X∈X ΩX for a setX of (random) variables.

Limited-memory influence diagrams are models for
decision-making under uncertainty[Lauritzen and Nils-
son, 2001]. They generalize standard influence-diagrams
(IDs) by relaxing theno-forgettingassumption[Howard
and Matheson, 1984]. This assumption states that, given
a total ordering of the decisions, the information known
when making decisionD is also available when making
decisionD′, if D precedesD′ in the ordering. Alimited-
memory influence diagram(LIMID) is defined as a tuple
L = (C,D,U, G, P ). Here,C is a set ofchance variables
(graphically depicted by circles), which are random vari-
ables as in a Bayesian network that represent the stochastic
component of the model.D is a set ofdecision variables
(graphically depicted by squares), which take on a value
from a set of choicesΩD that represent the decisions that
may be externally manipulated by a decision maker.U is a
set ofutility functions(graphically depicted by diamonds),
which represent the utility of being in a certain state as de-
fined by configurations of chance and decision variables.G
is an ADG, where nodesV (G) correspond toC ∪ D ∪ U.
Again, due to this correspondence, we will use nodes in
V (G) and corresponding elements inC ∪ D ∪ U inter-
changeably.P is a family of probability distributions that
specifies for each configurationd ∈ ΩD a distribution:

P (C : d) =
∏

C∈C

P (C | π(C))

that represents the distribution overC when the decision
maker has setD = d [Cowell et al., 1999]. Hence,C is
not conditioned onD, but rather parameterized byD.

The meaning of an arc(X, Y ) ∈ A(G) is determined
by the type ofY . If Y ∈ C then the conditional proba-
bility distribution associated withY is conditioned byX ,
as in a Bayesian network. IfY ∈ D then the state ofX is
available to the decision maker prior to deciding uponY . If
Y ∈ U thenX takes part in the specification of the utility
functionY such thatY : Ωπ(Y ) → R. Utility nodes cannot
have children and the joint utility functionU is assumed to
be additively decomposable such thatU =

∑
U∈U U .

In contrast to standard influence diagrams, the order in
which decisions are made in a LIMID should only be com-
patible with the partial order induced byG, and making a
decisionD is based solely on its direct parentsπ(D). A
stochastic policyfor decisionsD ∈ D is defined as a dis-
tributionPD(D | π(D)) that maps configurations ofπ(D)
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Figure 1: Structure of a 2TLIMID.

to a distribution over alternatives forD. If PD is degener-
ate (i.e. consisting of ones and zeros only) then we say that
the policy is deterministic. LetV denoteC∪D. A strategy
is a set of policies∆ = {PD : D ∈ D} which induces the
following joint distribution over the variables inV:

P∆(V) = P (C : D)
∏

D∈D

PD(D | π(D)).

Using this distribution we can compute the expected utility
of a strategy∆ as

E∆(U) =
∑
v

P∆(v)U(v).

The aim of any rational decision maker is then to maxi-
mize the expected utility by finding the optimal strategy
arg max∆ E∆(U).

3 Dynamic LIMIDs
In this section we demonstrate how to use dynamic LIM-
IDs that are constructed by means of a structure that we
term atwo-stage temporal LIMID(2TLIMID). When deal-
ing with time, we useT ⊆ N to represent a set of time
points, which we normally assume to be an interval{u |
t ≤ u ≤ t′, {t, u, t′} ⊂ N}, also written ast : t′. We
assume that chance variables, decision variables and util-
ity functions are indexed by a superscriptt ∈ T, and use
CT, DT andUT to denote all chance variables, decision
variables and utility functions at timest ∈ T, where we
abbreviateCT ∪ DT with VT. If T = 0 : n, where
n ∈ {1, 2, . . .} is the horizon, then we suppressT alto-
gether, and we suppress indices for individual chance vari-
ables, decision variables and utility functions when clear
from context.

3.1 Constructing Dynamic LIMIDs
A dynamic LIMID (DLIMID) is simply defined as a
LIMID (C,D,U, G, P ) such that for all pairs of variables
Xt, Y u ∈ V∪U it holds that ift < u thenY u cannot pre-
cedeXt in the partial ordering that is induced byG. If the
first-order Markov assumption holds that the future is con-
ditionally independent of the past given the present, then
we can define a DLIMID in terms of a two-stage temporal
LIMID (Fig. 1).
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Definition 3.1. A two-stage temporal LIMID
(2TLIMID ) is a pair (L0,Lt) with prior model L0

= (C0,D0,U0, G0, P 0) and transition model Lt =
(Ct−1:t,Dt−1:t,Ut, G, P ) such that chance and decision
variablesV t−1

i in Vt−1 have no parents.

The prior model is used to represent the initial distribu-
tion P 0(C0 : D0) and utility functionsU ∈ U0. The tran-
sition model is not yet bound to any specifict, but if bound
to somet ∈ 1 : n, then it is used to represent the con-
ditional distributionP (Ct : Dt−1:t) and utility functions
U ∈ Ut where bothG andP do not depend ont. We define
the interfaceof the transition model as the setIt ⊆ Vt−1

such that(V t−1
i , V t

j ) ∈ A(G) ⇔ V t−1
i ∈ It.

Given a horizonn, we mayunroll a 2TLIMID for n time-
slicesin order to obtain a DLIMID such that we obtain the
following joint distribution:

P (C,D) = P 0(C0 : D0)
n∏

t=1

P (Ct : Dt−1:t). (1)

Let ∆t = {PD(D | πG(D)) | D ∈ Dt} be the strategy for
time t and∆ = ∆0 ∪ · · · ∪ ∆n. Given a strategy∆0, L0

defines the following distribution over variables inV0:

P∆0(V0) = P 0(C0 : D0)
∏

D∈D0

PD(D | πG0(D)).

Likewise, given a strategy∆t with t > 0, Lt defines the
following conditional distribution over variables inVt:

P∆t(Vt | Vt-1) = P (Ct : Dt:t−1)
∏

D∈Dt

PD(D | πG(D)).

Combining these equations, given a horizonn and strat-
egy∆, a 2TLIMID induces the following distribution over
variables inV:

P∆(V) = P∆0(V0)
n∏

t=1

P∆t(Vt | It). (2)

Let U0(V0) =
∑

U∈U0 U(πG0(U)) stand for the joint
utility for t = 0 and letU t(Vt−1:t) =

∑
U∈Ut U(πG(U))

denote the joint utility for time-slicet > 0. We redefine the
joint utility function for a dynamic LIMID as

U(V) = U0(V0) +
n∑

t=1

γtU t(Vt−1:t)

whereγ, with 0 ≤ γ < 1, is adiscount factor, representing
the notion that early rewards are worth more than the same
rewards earned later in time.

3.2 Representing Observed History
It is clear from Eq. 1 that DLIMIDs constructed from a
2TLIMID take into accountat mostall chance and decision
variables in two subsequent time-slices, sinceπ(D0

i ) ⊆ V0

andπ(Dt
i) ⊆ Vt−1:t. Observations made earlier in time

are not taken into account and as a result, states that are
qualitatively different can appear the same to the decision
maker, leading to suboptimal policies. This phenomenon
is known asperceptual aliasing[Whitehead and Ballard,
1991]. In this paper we usememory variablesto take into

Figure 2: Dealing with perceptual aliasing by introducing
memory variables (black circles). Memory variables are
used instead of associated observed variables (shaded cir-
cles) as the informational predecessor for a decision vari-
able (squares).

account (part of) the observed historyv′ with V′ ⊆ V0:c

and current timec, as depicted in Fig. 2.
Note that if we represent the full observed history, infer-

ence becomes intractable for long histories since the states
of a memory variableM ∈ C associated with a variable
V ∈ V are given byΩn

M , whereΩj+1
M = Ωj

M ∪(Ωj
M ×ΩV )

andΩ0
M = ΩV . However, by restricting the length of the

observed history and/or by usingaggregationtechniques
[Boutilieret al., 1996a] that group states which are indistin-
guishable from the point of view of the decision maker, we
can both use the limited-memory assumption of LIMIDs
and deal with perceptual aliasing2. Examples of variables
that fulfill the role of memory variable areBMDHIST and
TREATHIST in Fig. 3, which maintain information regard-
ing complications and previous treatments respectively. An
additional advantage of the use of memory variables is the
fact that we retain the first-order Markov assumption. Due
to this property DLIMIDs can take benefit from efficient
algorithms for probabilistic inference.

3.3 Inference using 2TLIMIDs
To perform inference with a LIMIDL = (C,D,U, G, P )
given a strategy∆, we convertL into a Bayesian network
B = (G′, P ′) that is subsequently used for inference pur-
poses. As has been remarked, a strategy∆ induces a dis-
tribution over variablesV (viz. Eq. 2). Hence, given∆,
we may convert decision variablesD into random variables
XD with parentsπG(D) such that

P ′(XD | πG′(XD)) = PD(D | πG(D)).

Additionally, it is possible to convert utility functionsU
into random variablesXU . Let πG′(XU ) = πG(U) where
ΩXU

= {0, 1}. We associateP ′(XU | π(XU )) with XU

by means of a transformation

P ′(XU =1 | x′) =
U(x′) − minx U(x)

maxx U(x) − minx U(x)

with x,x′ ∈ Ωπ(U), as defined in[Cooper, 1988]. We
useB(L, ∆) to denote this transformation. If the strat-
egy is stationary for each time-slicet ∈ {1, . . . , n} then
we can apply the transformation to a 2TLIMID(L0,Lt),
to obtain a so-calledtwo-stage temporal Bayes network

2In the context of POMDPs, methods that rely on the use of a
finite history are common[Aberdeen, 2003].
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Figure 3: The prognostic model, where shaded nodes are observed and rounded rectangles denote internal structure.

(TBN) (B0,Bt) that is often used to construct adynamic
Bayesian networkor DBN [Dean and Kanazawa, 1989;
Boutilier et al., 1996a; Peek, 1999]. For online infer-
ence, efficient algorithms exist that exploit the structureof
a 2TBN. In our work, we have used theinterface algorithm
[Murphy, 2002], which allows for online filtering, where
the space and time taken to computeP (Xt | Xt−1) is in-
dependent of the number of time-slices.

4 Prognosis with 2TLIMIDs
Informally, we interpret prognosis asthe prediction of the
future status of the patient given the patient history, con-
ditional on a treatment strategy. This is a non-trivial task
since the physician often has incomplete information upon
which to base treatment and treatment itself can have un-
certain effects. LetC andD be sets of chance and decision
variables respectively. Leto0:c with Ot ⊆ Ct, t ∈ 0 : c,
represent the observed evidence until thecurrent timec
and letn denote the horizon. We use thequery variable
Q ⊆ C ∪ D to denote the variable of interest, and define
prognosis given a 2TLIMID as follows:

Definition 4.1. A prognosis for a query variable Q
and a horizonn is a conditional probability distribution
P∆(Qc:n | o0:c) overQc:n.

In order to computeP∆(Qc:n | o0:c), we assume that
the prognostic model is defined by

(
(L0,Lt), (∆0, ∆t)

)
,

where(L0,Lt) is a 2TLIMID and (∆0, ∆t) is a pair of
strategies. Prognosis then proceeds as follows:

1. Define
(
(L0,Lt), (∆0, ∆t)

)
.

2. Create(B0,Bt) =
(
B(L0, ∆0), B(Lt, ∆t)

)
.

3. Recursively computeP∆(Qc:n | o0:c) using(B0,Bt).

Although the processes we consider in medicine are fi-
nite since they are bounded by patient’s life-span, we de-
scribe them as infinite-horizon processes where the process
has some probability of terminating at each time-slice. In

computing the prognosis however we assume that the hori-
zon n is finite. In the next section we develop the actual
model for prognosis of high-grade carcinoid tumor patients
using the theory developed so far.

5 The High-Grade Carcinoid Model

A carcinoid tumor is a type of neuroendocrine tumor that
is predominantly found in the midgut and is normally char-
acterized by the production of excessive amounts of bio-
chemically active substances, such as serotonin[Modlin et
al., 2005]. In a small minority of cases, tumors are of high-
grade histology which, although biochemically much less
active than low-grade carcinoids, show much more rapid
tumor progression. Therefore, aggressive chemotherapy in
the form of an etoposide and cisplatin-containing scheme
is the only treatment option[Moertelet al., 1991]. In this
section we develop the prognostic model for high-grade
carcinoid tumors, consisting of a 2TLIMID(L0,Lt) and
a strategy(∆0, ∆t), supplied by the physician. Patients
are admitted to the hospital at the initial timet = 0. Each
time-slice represents the patient status at three-month inter-
vals since patients return for follow-up every three months.
Since the aim is not to improve upon the provided strategy,
we omit utility nodes from the discussion.

The qualitative structure of the 2TLIMID that resulted
from our modeling efforts is depicted in Fig. 3. The pa-
tient’sgeneral health status(GHS) is of central importance.
In oncology, one way to represent the general health sta-
tus is by means of theperformance status[Oken et al.,
1982]. We defineΩGHS = {0, . . . , 5} where GHS = 0
stands for normal health status,GHS = 1 stands for mild
complaints,GHS = 2 stands for impaired age-appropriate
activity, GHS = 3 stands for confinement to bed for more
than 50% of the time,GHS=4 stands for intensive care and
GHS=5 stands for patient death. The general health status
depends on patient properties such asAGE, GENDER and
current general health status. Furthermore,GHS is influ-
enced by the tumor mass (MASS) and the treatment policy
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Figure 4: Kaplan-Meier curve, showing the cumulative probability of survival for patients A (dashed line) and B (solid
line) over a five year period, as predicted by the model (left), and the physician (right).

that is adopted. Chemotherapy (CHEMO), with ΩCHEMO =
{none, reduced, standard}, is the only available treatment,
where a reduced dose is at 75% of the standard dose.
Chemotherapy can have both positive and negative effects
on general health status; positive due to reductions in tumor
mass, and negative due to severe bone-marrow depression
(BMD) and damage associated with prolonged chemother-
apy. We useBMDHIST, with ΩBMDHIST = {no-bmd, bmd},
as a memory variable to represent whether or not the patient
has experiencedBMD in the past. SevereBMD is assumed
to be fully observable since patients are always tested for
it. We useTREATHIST, with ΩTREATHIST = {0, 1, 2, 3}, as
a memory variable to represent the patient’s relevant treat-
ment history, such thatTREATHIST = i represents contin-
ued chemotherapy over the past3 · i months. Reductions
in tumor mass due to chemotherapy are often described in
terms of tumor response (RESP).

The amount of tumor mass can be estimated by mea-
suring the plasmachromogranin Alevel (CGA) since it is
strongly correlated with tumor burden[Nobelset al., 1998].
SinceCGA levels are always measured we need not include
the decision variable whether or not to determineCGA
levels (i.e., the associated policy isblind). Severe bone-
marrow depression may cause patient death due to associ-
ated sepsis and/or internal bleeding[Moertelet al., 1991].
AGE andGENDER are risk factors that may lead to patient
death due to causes other than the disease.MASS andGHS
in Fig. 3 are compact representations of a Bayesian net-
work fragment. This representation has the advantage of
preventing unnecessary clutter in the graphical represen-
tation of a Bayesian network and provides a way to repre-
sentcontext-specific independence[Boutilier et al., 1996b].
Due to space restrictions, we will not discuss the internal
structure of these fragments.

To complete the model, we have to choose a treatment
strategy and assess the probabilities that parameterize the
model. We mention only the chosen treatment strategy. In
L0, π(CHEMO0) = {GHS0}, whereas inLt, π(CHEMOt) =
{TREATHISTt, BMDt, GHSt}. The policy for chemotherapy
in ∆0 is to apply standard chemotherapy only if the gen-

eral health status is good enough (GHS0 ≤ 3); otherwise
no chemotherapy is applied. The policy used in∆t is as
follows:

(TREATHISTt =0 ∧ GHSt≤3 ∧ BMDHISTt =x)∨
(TREATHISTt =1 ∧ GHSt <3 ∧ BMDHISTt =x)
→ CHEMOt =y

wherex = no-bmd⇔ y = standardandx = bmd⇔ y =
reduced. In all other cases, we do not give chemotherapy.

6 Experimental Results
In this section we use the prognostic model to answer the
following query:

What is the probability of patient survival over
the next five years?

We assume that the current timec = 0 and compare the
prognosis for the following two patients. Patient A is a 75
year old male of poor general health status (GHS0 =2) and
an initially extremeCGA level. Patient B is a 50 year old
female of average general health status (GHS0 = 0) and an
initially elevatedCGA level.

In order to compute the probability of patient survival
(Q) over the next five years, we assume thatQ ∈ C with
ΩQ = {alive, dead} , whereGHS is a parent ofQ, such that
P (Qt =alive | GHSt = x) is one ifx 6= 5 and zero other-
wise for0 ≤ t ≤ n. We have compared the prognosis made
by the model with the prognosis made by the physician, as
is shown in Fig. 5.

The physician felt that model predictions where some-
what too positive for patient A, whereas they where some-
what too negative for patient B. Of course, it is difficult
to decide how the model would perform in clinical prac-
tice, since the physician’s opinion is not necessarily the
gold standard with which to compare performance. Fur-
thermore, according to the physician, the predictions made
by the model do make sense from a qualitative point of
view in that it reflects a much worse prognosis for patient A
than for patient B. The evaluation and possible calibration
of the model in a clinical setting deserves further attention.
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7 Conclusion
We have defined DLIMIDs constructed from 2TLIMIDs
as a framework for decision-making under uncertainty and
used them as the basis for a prognostic model for high-
grade carcinoid patients. Although the repetitive struc-
ture of a 2TLIMID has been used implicitly in[Lauritzen
and Nilsson, 2001], the explicit use of a 2TLIMID and its
transformation to a 2TBN allows for the representation of
infinite-horizon POMDPs. This benefit comes at the ex-
pense of using policies that may suffer from perceptual
aliasing. This is resolved by means of memory variables
which represent the observed history that is considered rel-
evant by the physician. This approach is particularly useful
whenever the policy depends on a small subset of the ob-
served history, as is for instance dictated by a treatment
protocol. In general, we would also like to use 2TLIMIDs
in order to improve strategies for infinite-horizon partially-
observable Markov decision processes, which is a research
topic we are currently pursuing. The advocated model-
based approach allows for a computationally efficient prog-
nostic model that facilitates interpretation by the physician,
while the experimental results demonstrate the feasibility
of our approach to prognosis in medicine.
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Abstract

Treating ventilator-associated pneumonia in me-
chanically ventilated patients in intensive care
units is seen as a clinical challenge. In this pa-
per, we develop a dynamic-decision model that
explicitly captures the development of the dis-
ease over time. To represent the dependencies
between the variables involved in a compact way
we use a dynamic Bayesian network and com-
bine it with the framework of partially observ-
able Markov decision processes to choose opti-
mal antimicrobial therapy for respiratory tract in-
fections. We discuss implementation issues and
modelling advantages of our model and demon-
strate its use for a number of real patients.

1 Introduction
Many patients admitted to an intensive care unit (ICU) need
respiratory support by a mechanical ventilator, which pro-
motes the development of ventilator-associated pneumonia
(VAP) in these patients. Effective and fast treatment of VAP
is seen as an issue of major significance. The difficulty in
diagnosing VAP is in the lack of an accurate, non-invasive
(that is, patient-friendly) gold standard; VAP is therefore
diagnosed by taking a number of different clinical features
into account[9; 14].

A prominent role in the development of VAP is played
by two stochastic processes:colonisationof the laryngotra-
cheobronchial tree by pathogens and the onset and develop-
ment ofpneumonia. A dynamic Bayesian network, called
dVAP was developed that explicitly captures the temporal
relationships between the variables involved[5]. This net-
work takes into account the patient’s characteristics from
earlier days when performing diagnosis. The numerical
part of the network was constructed from estimations by
infectious-disease experts and from the literature. In a later
stage these probabilities were updated through machine
learning using collected patient data, which resulted in a
better diagnostic performance of the model.

The treatment of VAP is seen as a significant problem
by ICU doctors. Firstly, many of the patients suffering
from VAP are severely ill. Secondly, the presence of multi-
resistant bacteria in clinical wards, in particular the ICU,
makes prescription of antibiotics with a spectrum as narrow

as possible essential; the description of broad-spectrum an-
tibiotics promotes the development of antimicrobial resis-
tance, and should therefore be avoided when possible. In
this paper, we address optimal therapy selection using the
dVAP model. For this purpose, we focus on the frame-
work of partially observable Markov decision processes
(POMDPs)[1; 7; 12; 15] for sequential decision making.

Although the standard POMDP framework in essence al-
lows us to capture the main elements of choosing a therapy
of VAP, it cannot be used directly, mainly because: (1) the
number of parameters required can be huge, and (2) ex-
act methods for solving the problem are computationally
very demanding and only small problems can be solved ex-
actly. In view of these considerations, we extend the dVAP
network and construct a dynamic-decision model that in-
corporates the uncertainty included in the treatment proce-
dure. We then use the Perseus algorithm for its evaluation
[16]. Perseus is a point-based approximate value-iteration
algorithm for POMDPs that achieves competitive perfor-
mance both in terms of solution and speed comparing to
alternative (and more complex) algorithms in the literature
[3]. Perseus can moreover be easily implemented in prac-
tice [13]. Perseus, however, is designed for problems with-
out any structure among the variables representing the state
of the process. We enhance the applicability of Perseus for
our structured domain to take advantage of the factorisa-
tions and independencies among the variables included in
the dVAP model.

We tested the resulting model on a group of patients
drawn from the files of the ICU of the University Medical
Center Utrecht in the Netherlands. The solutions obtained
indicate that our dynamic-decision model provides a use-
ful framework for solving and analysing complex decision
problems. Our results in fact advocate further application
of Perseus in structured domains of other medical therapy
problems.

The remainder of this paper is organised as follows. In
Section 2, we describe the dVAP network for the diagnosis
of VAP. In Section 3 we describe the basics of the POMDP
framework and of the Perseus algorithm; in Section 4 we
discuss modelling and computational issues related to ap-
plying Perseus to decision making for patients with VAP.
Section 5 presents and discusses the results from an evalu-
ation study. Finally, the paper ends with our conclusions in
Section 6.
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2 Diagnosing VAP
We begin by discussing the pathophysiology of VAP and
then describe the dVAP model that captures the develop-
ment of VAP.

2.1 Pathophysiology of VAP
Ventilator-associated pneumonia is, when looking at a daily
level, a low-prevalence disease occurring in mechanically-
ventilated patients in critical care and involves infection of
the lower respiratory tract[2]. In contrast to infections of
more frequently involved organs (such as the urinary tract),
for which mortality is low, ranging from 1 to 4%, the mor-
tality rate for VAP ranges from 24 to 50% and can reach
76% for some high-risk pathogens. Variables that change
due to the development of VAP, among others, are an in-
creasedbody temperature, an abnormal amount of coloured
sputum, signson the chest X-ray, the duration ofmechani-
cal ventilation, and an abnormal number ofleukocytes.

The relationship between thecolonisationby pathogens
and the development ofpneumoniais captured as follows.
Periodically, a sample of the patient’s sputum is cultured
at the laboratory. When the culture shows a number of
colonies of a particular bacterium that is above a partic-
ular threshold, the patient is said to be colonised by this
bacterium. The seven groups of microorganisms that occur
most frequently in critically ill patients and cause colonisa-
tion, are modelled in thediagnostic partof the network.
Information about which bacterium or bacteria are cur-
rently present in a patient and the current signs and symp-
toms constitute the basis for choosing optimal antimicro-
bial treatment.

2.2 A dynamic model for diagnosis
A dynamic Bayesian network(DBN) is a graphical model
that encodes a joint probability distribution on a set of
stochastic variables, explicitly capturing the temporal re-
lationships between them. More formally, letVn =
(V 1

n , . . . , V m
n ), m ≥ 1, denote the set of variables at time

n. Then, a dynamic Bayesian network is a tuple(B1, B2),
whereB1 is a Bayesian network that represents the prior
distribution for the variables in the first time sliceV1, and
B2 defines the transitional relationships between the vari-
ables for two consecutive time slices, so that for everyn≥2

p(Vn | Vn−1) =
m∏

i=1

p(V i
n | π(V i

n))

whereπ(V i
n) denotes the set of parents ofV i

n, for i =
1, . . . ,m.

DBNs are usually assumed to be time invariant, which
means that the topology and the parameters of the network
per time slice and across time slices do not change. More-
over, the Markov property for transitional dependence is
assumed, which means thatπ(V i

n) can include variables ei-
ther from the same time slicen or from the previous slice
n − 1, but not from earlier time slices[10]. Then, by un-
rolling B2 for N time slices, a joint probability distribution
p(V1, . . . ,VN ) is defined for which the following decom-
position property holds:

p(V1, . . . ,VN ) =
N∏

n=1

m∏

i=1

p(V i
n | π(V i

n))

Figure 1: The dVAP network for the diagnosis of VAP;
clear variables are hidden, shaded variables are observable.
The dashed boxes indicate the hidden processes.

Monitoring in a DBN is the task of computing the proba-
bility distribution for a set of variables of interestXn ⊂ Vn

at timen given the observations that are available up to and
including timen.

2.3 Modelling and computational issues
An overview of the structure of the dynamic network con-
structed for the diagnosis of VAP[5] is depicted in Figure 1.
The dVAP network includes two interacting dynamic hid-
den processes, modelled by the compound variablescoloni-
sation(7 variables) andpneumonia(8 variables). The pro-
cess of colonisation is influenced by three input variables:
hospitalisation, mechanical ventilationand previous an-
tibiotics, and one hidden variableaspirationthat in essence
controls its dynamics. We note that the variableshospital-
isation andmechanical ventilationare observed for a pe-
riod that is longer than the transition interval of the model.
The variables thus are modelled as affecting adjacent time
slices. The variableprevious antibioticsrepresents the ef-
fect of previous medication to the patient on the process of
colonisation. The symptoms and signs of pneumonia are
depicted in Figure 2. These variables are included in the
diagnostic partof the network.

The practicability of the dVAP network depends to a
large extent on the computational burden of inference with
the network. For diagnosing patients with VAP, monitor-
ing is performed at each time. For this purpose, theinter-
face algorithmcan be applied[10]. This algorithm is an
extension of thejunction-tree algorithmfor inference with
Bayesian networks in general[6] and efficiently exploits
the forward interface of a dynamic network. Recall that the
forward interface is the set of variables at time slicen that
affect some variables at time slicen + 1 directly. Note that
the interface algorithm is linear in the total number of time
slices and for large time scopes, the computation time can
prove to be prohibitive in practice.

Recent results show that, in case consecutive similar ob-
servations are obtained, the probability distribution of the
hidden process converges to a limit distribution within a
given level of accuracy[4]. After some number of time
slices, therefore, there is no need for further inference as
long as similar observations are obtained. The phenomenon
of consecutive similar observations was evident for several
patients in the ICU files. For example, for these patients
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Figure 2: Symptoms and signs of pneumonia.

it was found that the same combination of values was ob-
served for all or almost all of the observable variables for a
number of consecutive days. On a set of ICU patients, test
results indicated that representing time explicitly and tak-
ing into consideration the history of the patient increased
diagnostic performance[5].

3 Therapy planning
In this section we describe our approach to solving the
dynamic-decision model for patients with VAP. We begin
with the theoretical background of POMDPs.

3.1 Basics of POMDPs
Partially Observable Markov Decision Processes
(POMDPs) constitute a common framework for deci-
sion making about complex dynamic processes where the
state of the process cannot be fully observed[1; 7; 15;
16]. A POMDP more specifically describes a stochastic
process of which the states are hidden and for which
decisions can only be based on observations seen and past
actions performed.

Formally, a POMDP is a 6-tuple(S, Θ, A, P, O,R)
whereS is a finite set of states of the hidden process;Θ
is a finite set of observations (findings, results of diagnostic
tests);A is a finite set of actions;P : S × A × S → [0, 1]
is a set ofMarkovian transition models, one for each action
α, such thatpα(s′ | s) represents the probability of going
from states to s′ with actionα; O : S×A×Θ → [0, 1] is a
set ofobservation models, one for each actionα, such that
pα(o | s′) represents the probability of making observation
o after taking actionα and transitioning to states′; andR
is a reward functionR : S × A × S × Θ → R, such that
R(s, α) represents the expected reward received in states
after taking actionα.

Given a POMDP, the goal is to construct acontrol policy
that maximizes anobjective (value) function. The objec-
tive function combines rewards over multiple time slices,
and typically is the expectation of the cumulative sum of
rewardsrn at each timen over afinite-horizonof N slices,
that isE(

∑N
n=1 rn), or over adiscounted infinite-horizon,

that isE(
∑∞

n=1 γnrn), where0 < γ < 1 is a discount rate.
In this paper we focus on the discounted infinite-horizon
model as in previous applications of POMDPs in medicine
[7].

A belief stateb assigns a probabilityb(s) to every possi-
ble states ∈ S. There thus are an infinite number of possi-

ble belief states over S. An optimal policy forb has avalue
functionthat satisfies the Bellman optimality equation

V ∗(b)=max
α∈A

[
r(b, α) + γ

∑

o∈Θ

p(o | b, α)V ∗(τ(b, α, o))
]

(1)
where

• r(b, α) =
∑

s∈S b(s)R(s, α);
• p(o |b, α)=

∑
s′∈S p(o |s′, α)

∑
s∈S p(s′ |s, α)b(s);

• τ(b, α, o)∝p(o |s, α)
∑

s′∈S p(s |s′, α)b(s′);

in whichr(b, α) represents the expected reward for a belief
stateb and current actionα, p(o | b, α) represents the prob-
ability of making observationo one time slice ahead under
current actionα for a belief stateb, andτ(b, α, o) is the
update of the belief state given a previous belief stateb and
actionα, and a current observationo. The optimal policy
µ∗ : b → A now selects the value-maximizing action

µ∗(b)=argmax
α∈A

[
r(b, α)+γ

∑

o∈Θ

p(o | b, α)V ∗(τ(b, α, o))
]

In order to compute the value functionV ∗(b) in equation
(1) we can use thevalue iteration algorithm[15], which
guarantees that the sequence of value function approxima-
tionsVi defined as

Vi(b)=max
α∈A

[
r(b, a)+γ

∑

o∈Θ

p(o |b, α)Vi−1(τ(b, α, o))
]

(2)
converges to the optimal solution. An important prop-
erty of this approximation sequence is that the value func-
tionsVi(b) in equation (2) are piecewise linear and convex,
which allows for computing the update in finite time for the
complete belief space[1]. However, the computational cost
of doing so is high for all but trivial problems, and thus sev-
eral methods have been proposed in the literature that try to
approximate the optimal value functionV ∗ [8].

3.2 The Perseus algorithm
Perseus is an efficient point based approximate value itera-
tion algorithm for POMDPs[16]. The main idea is to use
a set of reachable belief statesB that are sampled from
the belief simplex to perform value function updates, en-
suring that in each iteration the new value function is an
upper bound to the previous value function, as estimated
on the sampled set of belief states. The intuition behind
this approach is that in most practical problems the belief
simplex is sparse, in the sense that only a limited number of
belief states can ever be reached by letting the hidden pro-
cess interact with its environment. The algorithm performs
value function updates, making sure that in each step the
new value function estimateVi+1(b) is an upper bound for
Vi(b) for all b ∈ B. The major advantage of Perseus is that
in each iterationi it uses only a (random) subset of states
in B until the valueVi(b) of everyb ∈ B has improved or
remained the same. This property makes the algorithm effi-
cient even in problem domains with large state spaces com-
pared to other approximate methods[8]. We note, however,
that the Perseus algorithm has been designed for POMDPs
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Figure 3: The dynamic-decision network for therapy selec-
tion of VAP. Action choice is represented as a rectangle and
the reward function as a diamond. The observable variables
are excluded for clarity.

with flat belief state, that is, for states without any type of
internal structure. To incorporate Perseus into our approach
to solving the dynamic-decision model for VAP, we have to
enhance its applicability to more structured domains. We
discuss such modifications in the next section.

4 Decision making for VAP
The aim of our dynamic-decision model is to aid clinicians
in dealing with patients with suspected VAP. Optimal an-
timicrobial therapy for VAP is selected by balancing the
expected efficacy of treatment, which is related to the num-
ber of pathogens causing the infection, against the spec-
trum of antimicrobial treatment. Each of the seven mod-
elled groups of pathogens are susceptible to particular an-
tibiotics. Some of these pathogens are easy to cover. For
these pathogens, a narrow or even very narrow antimicro-
bial spectrum is sufficient. Some pathogens, however, are
more difficult to eradicate. Here, we need broader spec-
trum antibiotics. The problem of prescribing unnecessarily
broad-spectrum antibiotics is the occurrence of antibiotic
resistance, which means that pathogens are no longer sus-
ceptible to a particular antibiotic. Antibiotic resistance is
a well-known problem in health-care[2]. Our dynamic-
decision model now incorporates the idea of prescribing
antibiotic spectra as narrow as possible. The narrower
the spectrum, the higher the preference. How well the
pathogen is covered by an antibiotic times the preference of
the broadness of its spectrum gives the final utility of pre-
scribing this antibiotic[9]. The prescribed treatment thus
is a trade-off between maximising coverage and narrowing
broadness of spectrum.

To incorporate for decision making in the dVAP model,
we add a decision-theoretic part that represents the effect of
selected therapy on the probability distribution of VAP. Fig-
ure 3 depicts the resulting model. The dynamic-decision
model includes the hidden compound variablesusceptibil-
ity (8 variables) that represents the susceptibility of the sus-
pected pathogens to particular antibiotics. A causal in-
dependence model, known as the noisy-AND gate[9], is
used to model the conjunctive effect of antibiotics on the
susceptibility of pathogens. The model thus includes 24 bi-

nary hidden variables with224 possible configurations. The
therapyvariable includes 26 different antibiotics or combi-
nations of antibiotics and the value ”none” indicating that
the clinician does not prescribe any antibiotic to the patient.
These antibiotics have been further classified into four dif-
ferent groups from very narrow to very broad, according to
their spectrum. The reward function is thus based on these
four spectrum groups and has been assessed by a domain
expert[14]. Insight into the potential efficacy of treatment
can be obtained by entering symptoms and signs of a pa-
tient. In total, the model contains 13 observable variables
with 1382400 possible configurations.

At first sight, it seems impossible for Perseus or for any
other algorithm to solve our model since both|S| and|Θ|
are extremely large. However, an important feature of our
model is that its state and observation sets are not flat, but
structured in a factored way. More specifically, the states
and the observations of the model are not represented enu-
meratively but via hidden and observation variables respec-
tively. We further note that although the hidden state of our
model consists of 24 variables, only the variables pneumo-
nia and susceptibility are important for decision making.
Now, to make efficient use of the Perseus algorithm, we
compute the joint probability distribution of just these two
variables, which can be done in a similar manner to moni-
toring in the dVAP model. Our implementation of Perseus
in addition takes into account that some variables in the
forward interface are observable. Since, for example,im-
munological statusis always observed andcolonisationcan
be observed for some days, the belief state is modelled as
a hybrid state with an observed and a hidden component
[7]. Finally, we observe from Figure 2 that we have to con-
sider just six observable variables that are probabilistically
affected by pneumonia.

To decrease the computational burden of applying
Perseus, we further do not take all observable variables into
account when computing the summation in equation (2).
That is, upon applying Perseus we sample belief states re-
flecting realistic data settings only. For example, VAP by
definition may be initiated after a patient has been venti-
lated for more than two days. The state of the mechanical
ventilation variable can thus be selected in every iteration
of equation (2), from among just the states in which the
duration of the ventilation is greater than two days.

As a result of the above modifications, the setΘ in-
cludes to 768 possible combinations, and thus is smaller
in size than the original set by a factor 1800. The afore-
mentioned considerations were used initially to create a set
of reachable belief statesB and then to apply Perseus with
γ = 0.95. In our experiments on a 2.4 GHz Intel(R) Pen-
tium computer, creatingB took1.5 seconds per belief state,
while computing an optimal policy took approximately one
minute using a total of10000 sampled belief states.

5 Evaluation
We examined the performance of our dynamic-decision
model on5 patients diagnosed with VAP randomly selected
from a prospectively collected database of ICU patients.
Using the dVAP network we monitored these patients and
computed their belief state per day for a total of10 days.
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day p(VAP) + colon.path. antibiotic

2 0.2295
- none
- meropenem (b)

3 0.0049
Enterobacteria2 cotrimoxazol (n)

- none

4 0.0052
- cotrimoxazol (n)
- none

5 0.0848
- cotrimoxazol (n)
- none

6 0.3401
- none
- cotrimoxazol (n)

7 0.0363
- none
- erythromycin (vn)

8 0.0017
P.aeruginosa cotrimoxazol (n)

Enterobacteria2 none

9 0.0012
P.aeruginosa cotrimoxazol (n)

Enterobacteria2 none

10 0.0046
- cotrimoxazol (n)
- none

(a) patient A

day p(VAP) + colon.path. antibiotic

2 0.028
- none
- cotrimoxazol (n)

3 0.0344
- none
- cotrimoxazol (n)

4 0.1905
Enterobacteria2 cotrimoxazol (n)

S.aureus erythromycin (vn)

5 0.5929
- cotrimoxazol (n)
- erythromycin (vn)

6 0.5445
- cotrimoxazol (n)
- erythromycin (vn)

7 0.9823
- cotrimoxazol (n)
- erythromycin (vn)

8 0.9791
Acinetobacter ceftazidim (i)

- aztreonam (i)

9 0.9459
Acinetobacter cotrimoxazol (n)

S.aureus, S.pneumoniae meropenem (b)

10 0.9918
- cotrimoxazol (n)
- meropenem (b)

(b) patient B

Table 1: The best two recommendations (and their spectrum in parenthesis) at each time slice for two patients. Abbrevia-
tions for antibiotic spectrum: vn=very narrow; n=narrow; i=intermediate; b=broad.

Contrary to an earlier evaluation of the diagnostic perfor-
mance of the dVAP network[5], we took into account the
sparse colonisation data that existed in the datasets of some
patients. In contrast to the data for the observable variables
that were readily available, the colonisation data were pro-
vided by the laboratory from sputum cultures and took on
average 48 hours to become available. Also, these data con-
cerned only a (small) subset of colonisation pathogens and
were observed for a few days (maximum 3). To process the
colonisation data, we assumed that whenever there was a
positive culture for a specific pathogen on a specific day,
then the values of the other non-observed pathogens were
set to negative. We are aware that this assumption should
be used with care. More specifically, the transition matrices
estimated by the expert[5] suggested that, under particular
conditions, if a pathogen is positive (negative) on one day
then it cannot be negative (positive) on the next day. For
one patient for example, we noticed upon processing the
available data, that on day 8 we assumed the presence of
S.aureus and S.pneumoniae to be negative while these two
pathogens were actually observed to be positive on day 9.
To resolve this issue, we made no assumption about these
two pathogens on day 8 and left their value as unobserved.

We compared the recommended decisions from the
model with an expert opinion as to the most appropriate
antibiotics to cover the likely pathogens. The results were
not entirely satisfactory in the opinion of the expert. For
one patient, for whom no colonisation data were available,
we found that the decisions recommended by the model
were acceptable; for two patients the model recommended
too broad a spectrum antibiotics, while for the other two
patients the recommended antibiotics did not cover the ob-
served pathogens. A possible explanation of this subop-
timal performance of the model is that its decisions are
strongly affected by the probability of VAP at each time

and less by the colonising pathogens; that is, the prescrip-
tion of antibiotics is heavily dominated byp(VAP), while
less weight is given to the presence of colonisation data.
For example, if on a specific day a patient has a very small
p(VAP) but a positive colonising pathogen, then the model
will abstain from prescribing antibiotics and will not use
a narrow spectrum antibiotics as would be expected. An-
other reason is that the influence of the colonisation data
on the recommended decision diminished with time ac-
cording to the specification of the model. More precisely,
since colonisation data are sparsely observed, a colonisa-
tion pathogen found to be positive on one day will have
minor effect on the decision taken two days later because
of the Markov assumption underlying the dVAP network.

In view of the above considerations, we enhanced our
decision model to incorporate the influence of the colonisa-
tion data on the recommended decision in a more appropri-
ate fashion. For each colonisation (group of) pathogen(s)
found to be positive on a given day, we force the model to
prescribe antibiotics to cover this pathogen. In this way
our model considers a conglomeration of different deci-
sion plans that are influenced by the presence of positive
pathogens in the patient’s dataset. To cope with the spar-
sity of the colonisation data, we use the enhanced model
for the following two days as well. As a result, the clin-
ician is presented with a therapy plan that aims to cover
positive observed pathogens for at least three days. For the
remaining days for which no colonisation data were avail-
able, the original decision model was used. The evalua-
tion now showed now that the new recommendations better
comply with the expert’s recommendations.

We discuss the results for two patients in order to convey
how our dynamic-decision model might be employed clin-
ically, and to point out some of its limitations. For patient
A, the dVAP network assigns a small probability to VAP
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for almost all the days. As a consequence, the decision
not to prescribe any antibiotic is always recommended by
the model. However, positive cultures of pathogens are ob-
served for the days 3, 8 and 9. For these days (and for the
next two days) the antibiotic cotrimoxazol (narrow spec-
trum) is recommended first. This recommendation reflects
the ability of the model to prescribe an antibiotic even if the
probability of VAP is very small. We note, however, that
on day 2, the model suggests the antibiotic meropenem.
This recommendation is far too broad for this patient, and
raises the question whether alternative utility models might
alleviate this problem. For patient B, the dVAP network
assigns quite early (day 5) a relatively high probability to
VAP which even further increases in the following days.
In addition, positive cultures of pathogens are observed for
the days 4, 8 and 9. Our dynamic-decision model takes into
account both the high probability of VAP and the positive
cultures to recommend appropriate antibiotics that belong
to a narrow spectrum whenever possible. This is evident in
the recommendations for days 4 to 7, while for days 8 to 10
ther recommendation belongs to the intermediate or broad
spectrum. The predictions made and the therapy suggested
by the model for both patients are shown in Table 1.

6 Conclusions
We have described the development of a dynamic-decision
model that is able to assist clinicians in the clinical man-
agement of ventilator-associated pneumonia. For the pur-
pose of computing appropriate decisions from the model,
we applied the framework of partially observable Markov
decision processes for modelling the action-outcome un-
certainty and partial observability. The application and po-
tential of the POMDP framework to medical planning has
been discussed in[12] and successfully explored in[7]; in
the latter work, a hierarchical Bayesian network was used
to represent the disease dynamics and to decrease the com-
putational burden involved. Since exact computation in
a POMDP is intractable, we discussed the application of
the Perseus algorithm to our problem, in which the belief
state of the hidden process is structured. The solutions ob-
tained for a small set of patients from an initial evaluation
of our model showed that POMDPs could provide a useful
framework for solving complex decision problems. We feel
that the promising results justify further refinement and ex-
tension of our current model as well as application of our
framework to other complex structured decision problems
[11].
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Abstract

In medical reasoning, disease scenarios are of-
ten expressed in abstract terms, e.g., ‘multiple
organ failure during ICU stay’. In estimating the
probability of this type of scenarios from clini-
cal data two problems arise. First, the data are
expressed in terms of clinical observations, i.e.,
low-level data attached to specific time points,
whereas scenarios are expressed in terms of high-
level concepts, related to time intervals. Second,
the amount of data is often too small to directly
estimate the probabilities from the data.
This paper provides solutions for these problems.
First, the paper introduces a symbolic language
to describe multivariate, discrete data measured
at a low frequency, and to define abstract sce-
narios based on these descriptions. Second, the
paper proposes a model-based approach to arrive
at reliable estimates for the probabilities, using a
Markov model and Monte Carlo simulations.The
approach is illustrated with an example from the
area of Intensive Care.

1 Introduction
Time is an important concept in medicine. The dynamics
of a disease, i.e., changes that occur over time in the con-
dition of a patient, give an indication of the progression of
the disease. If the condition of a patient worsens, a negative
outcome of the disease becomes more likely. Physicians
therefore closely monitor changes that occur over time, as
these changes may reveal a necessity of changes in treat-
ment or additional examinations of the patient.

The condition of a patient is often described by a combi-
nation of variables. Together, the values of these variables
at a given time point describe thestateof a patient’s condi-
tion, and subsequent states form thescenarioof the disease.

Because of the tight relationship between changes in the
condition of a patient, treatment, and outcome, physicians
are interested in the scenarios that are likely to occur, in the
patient population in general or in a specific patient group.
In medical reasoning the focus is often not on the low-level
data observed at specific time points, but on high-level con-
cepts that are related to events during a time interval. E.g.,
a physician at the Intensive Care Unit (ICU) may not be

directly interested in patients who experienced liver failure
on the second day of their ICU stay and renal failure on the
third, but moreover in patients who suffered from liver fai-
lure early in their ICU stay and developed subsequent renal
failure.

Providing physicians with estimates of the probability
of this type of ‘abstract scenarios’ poses two problems.
First, the low-level data is to be abstracted to a more gen-
eral level. Most of the temporal abstraction methods that
have been developed through the years focus on univari-
ate, high-frequency measurement of continuous data. If the
state of the patient is jointly described by multiple, discrete
variables, measured at a low frequency, a different type of
temporal abstraction is required. Second, when directly es-
timating the probability of a complex scenario, which con-
sists of a combination of high-level concepts, from data, a
large amount of data is necessary, which is often not avai-
lable in real practice.

This paper provides a solution for these problems. We
introduce a symbolic language (based on set-theory) which
allows for the construction of high-level concepts by ab-
stracting from multiple, discrete variables, which describe
the changes in the condition of a patient. Using this lan-
guage the knowledge of clinical experts (expressed at a
high-level) can be related to clinical observations expressed
in terms of low-level data and vice versa. To arrive at
reliable estimates of the probability of a specific scenario
we propose a relatively simple model-based approach, by
constructing a Markov model and subsequently performing
Monte Carlo simulations.

Both the language and the approach are illustrated us-
ing an example from Intensive Care medicine, an area of
medicine in which insight into changes in the state of a pa-
tient plays a crucial role and can literally be life-saving.

The paper is organized as follows: Section 2 explains the
notation to describe data of this particular type. Section 3
describes the approach to arrive at reliable estimates. In
Section 4 we present the case-study that was undertaken
using this method in the area of Intensive Care. We discuss
our approach and relate it to other work in Section 5.

2 Describing scenarios
In this section we introduce a notation to describe the con-
dition of a patient, and changes therein, both in concrete
and abstract terms. The notation is applicable in situations
in which the condition of a patient is described by multiple
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discrete variables, measured at a low frequency at equidis-
tant time points.

State and time Let X = {x1, . . . , xm} be a set of dis-
crete random variables, each with a finite value domain.
For convenience, we will assume thatxi ∈ {0, 1} for each
1 ≤ i ≤ m, but the theory is easily adapted to more general
discrete variables. Formally speaking, the variables in the
setX are used to jointly describe the state of a stochastic
dynamic system; in our application, this “system” is a pa-
tient, and the variablesxi ∈ X describe different aspects
of his or her health condition. To describe temporal pro-
gression, we also assume that a discrete and ordered setT
of time points is given. It defines the time points where
the state of the system is observed; for convenience we will
assume thatT = {1, . . . , N}, N ∈ N+.

We note that as the length of the care process varies from
patient to patient,T will also vary per patient. The value
of N however is equal for all patients. This implies that
for a patient who has been observed at timet > N , only
the values observed at timest, . . . , N are considered. If
N is chosen sufficiently large though, most patients will
not reach timet = N . In the domain of intensive care for
example, if we chooseN = 65 (days), less than 1 out of
500 patients stays longer, in reality.

To capture the fact that most patients depart from the care
process before time pointt = N is reached, we require that
the setX contains a designated variable, calledexit , to
indicate that the patient leaves the process. There is at most
one time pointt ∈ T whereexit = 1; after that point, all
variables from the setX become meaningless. In our ap-
plication,exit = 1 at the day of ICU discharge.

Scenarios To describe state changes of the system over
time, we further extend our notation. Afact is an ex-
pression of the formxi(t) = c, and it denotes that variable
xi ∈ X takes valuec ∈ {0, 1} at time pointt ∈ T . A sce-
nario is a set of facts that are mutually consistent. That is,
two facts in a given scenario cannot refer to the same vari-
ablexi ∈ X at the same pointt ∈ T , otherwise these two
facts would contradict each other. We useΦ to denote the
set of all possible scenarios. Scenarios can be very general,
for instance when they contain just a single fact, or very
specific, when they involve a large number of facts. We say
that a given scenarioϕ ∈ Φ permitsscenarioψ ∈ Φ, and
write ϕ Ã ψ, whenϕ ∪ ψ is also a possible scenario (i.e.,
when the elements ofϕ andψ do not contradict each other).
Thus, the empty scenario,∅, is the most general scenario
and permits all scenarios.

As noted before, patients may depart from the care pro-
cess before the final time pointt ∈ N is reached, and this
is indicated by the variableexit . Thus far, the definition
of our languageΦ allows for improper assignments to this
variable. We therefore impose restrictions onΦ.

First, we defineopenandclosedscenarios. A scenario
that contains a fact{exit(t) = 1} is said to be closed;
all other scenarios are called open. Now, letmaxobs(ϕ)
be the largest time pointt covered by scenarioϕ, other
than through the exit variable. So, scenarioϕ contains in-
formation on the patient’s clinical state up to timet, but

not thereafter. We distinguishproper scenarios fromim-
proper ones, by definingϕ to be a proper scenario when
(i) there exists at most one time pointt such thatϕ con-
tains{exit(t) = 1}, and (ii) if so, thenmaxobs(ϕ) ≤ t.
In words, we require that the exit time is unique and ex-
ceeds all observation times. We useΦ∗ ⊆ Φ to denote the
set of all proper scenarios. Note that all open scenarios are
proper by definition.

We finally distinguish scenarios that describe all state in-
formation up to the patient’s exit time from those who do
not. Letϕ ∈ Φ∗ be a proper scenario. Nowϕ is complete
when either (i)ϕ is closed at time pointt and contains a fact
for each variablexi ∈ X at each time pointt′ ≤ t, or (ii)
ϕ is open, and contains a fact for each variablexi ∈ X at
each time pointt′′ ∈ T . In the second case, the patient left
the care process after timet = N , but we have complete
state information at each of the moments inT .

Abstract scenarios Whereas complete scenarios refer to
entire disease histories of individual patients, partial sce-
narios are more general and may permit many completions.
They are therefore associated with groups of patients in-
stead of with individuals. Yet, the languageΦ∗ still forces
us to be highly specific on the facts that constitute partial
scenarios: we must specify the exact values and time points
that are involved. In a data analysis, however, we are rather
interested in identifying groups of patients that share more
general characteristics; for instance, our attention could be
focused on all ICU patients that experienced multiple organ
failure at some time during their stay. This type of circum-
stance cannot be expressed in our language.

We therefore now introduce the notion of anabstract
scenario. An abstract scenarioσ is a set of (concrete)
proper scenarios, each of which is considered a possible
realization of the disease process. The elements ofσ may
be both partial and complete scenarios fromΦ∗, and they
may, but need not, be mutually exclusive.

As an example, consider the abstract scenario

σ = {{xi(1) = c}, . . . , {xi(N) = c}}. (1)

The elements ofσ are concrete, single-fact scenarios where
variablexi has valuec, but each of them refers to a different
point in time. We may therefore summarize this scenario as
“there was a point in time wherexi = c occurred”.

The notion of permittance is easily generalized to ab-
stract scenarios. We say that an abstract scenarioσ permits
concrete scenarioψ (written σ Ã ψ) when there exists at
least oneϕ ∈ σ that permitsψ.

Time and state abstractors To construct abstract scenar-
ios, we will make use of two additional types of variables,
time abstractorsandstate abstractors. A time abstractor is
a variablet that ranges over the setT of all time points, and
can be arbitrarily instantiated with elements from that set.
For instance,{xi(t) = c} covers all concrete scenarios of
the form{xi(t) = c}, t ∈ T , and is therefore a shorthand
nation for the abstract scenarioσ of Eq. 1.

A state abstractor is a variable that summarizes particu-
lar aspects of the patient’s condition, captured by multiple
state variables from the setX, and independent of time.
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We will often use a time abstractor to express that the state
abstraction holds at all time points. For instance, when
x1, . . . , xm represent distinct injuries, we may introduce
a state abstractory that indicates that two or more injuries
occur simultaneously. That is, we then define thaty(t) = 1
if and only if the abstract scenario
{{xi(t) = 1, xj(t) = 1} | 1 ≤ i, j ≤ m, i 6= j} (2)

holds. Again this is merely a shorthand notation for com-
plex expressions. So, we can now write

{y(t) = 1, xi(t) = 0} (3)
to define the abstract scenario where, at some point in time,
multiple injuries occur simultaneously, but not involving
the one described byxi.

We finally extend our language with basic arithmetic and
comparison operators for time abstractors. In abstract sce-
narios we allow for the inclusion of additional facts that
express relations between time abstractors, using one of the
operators ‘=’, ‘ >’, ‘≤’, ‘ <’, and ‘≤’. For instance,
{y1(t1) = 1, y2(t1) = 0, y2(t2) = 1, t2 > t1} (4)

expresses that both abstract statesy1 andy2 occur, and that
the former precedes the latter.

3 Estimating the probability of scenarios
Let D = {ψz|z = 1, . . . , n}, be a random sample of
complete, proper scenarios, and letσ be an abstract sce-
nario. The setD could describe, for instance, a retrospec-
tive sample of completed disease histories from patients
with a given diagnosis, andσ could describe a particular
type of malign disease progression for such patients. Then
we can estimate the marginal probability ofσ in D as

P (σ | D) =
1
n

n∑
z=1

I(σ Ã ψz), (5)

where I is the identity function. That is, we estimate
P (σ | D) by counting the number of complete scenarios
in D that are permitted byσ. Similarly, we can estimate
the conditional probability thatσ occurs, given that a sec-
ond scenarioσ′ applies:

P (σ | σ′,D) =
∑n

z=1 I(σ Ã ψz) I(σ′ Ã ψz)∑n
z=1 I(σ′ Ã ψz)

(6)

For instance, we could be interested in the frequency with
whichσ occurs among those who die from the disease, and
compare it to the frequency where this happens among the
survivors.

However, this approach of estimating probabilities di-
rectly from the data is not feasible when the second sce-
nario,σ′, is rare. In that case, there may be no scenarios
in D that are both permitted byσ andσ′; and even if they
exist, the numbers will be too small to make reliable esti-
mates. In summary, a nonparametric estimation approach is
feasible for simple, general scenarios that occur often, but
not for more complex scenarios with a lower prevalence.

To alleviate this problem, we propose amodel-basedap-
proach for estimating marginal and conditional probabil-
ities of abstract scenarios. The approach consists of two
steps: (1) describe the underlying stochastic dynamic sys-
tem as a Markov model, and (2) derive the probabilities of
interest by drawing inferences on this model. Both steps
are now described in more detail.

Markov model Let SX = {0, 1}m denote the set of all
possiblestatesof the system described byX, i.e. the
set of all 2m possible value assignments tox1, . . . , xm.
A transition probability functionfor X is a function
f : SX × SX → [0, 1] where, for each states ∈ SX , we
have that

∑
s′∈SX

f(s, s′) = 1.

A Markov modelis now defined as a pairM = (T, f),
wheref is a transition probability function forX. It as-
sumes that, at each time pointt ∈ T , t > 1, the system’s
state is conditionally independent of all earlier states, given
the state at time pointt− 1. The functionf describes the
conditional probability distribution of state changes at sub-
sequent time points, and is estimated from the datasetD;
in principle, it has22m parameters (one for each pair of
states). As the function itself is independent of time, the
underlying Markov process is assumed to be stationary.

In a multivariate Markov model, such as described here,
the joint transition probability functionf can be described
by separate functionsf1, . . . fm for each of state variables.
Reductions in the number of parameters that need to be
estimated can subsequently be obtained by (i) assuming
conditional independence among the state variables, and
(ii) using a parametric form for these functions. In Sec-
tion 4 we illustrate this approach by using logistic regres-
sion equations forf1, . . . , fm.

Inference Once the Markov model has been constructed,
we can use it to infer probabilities of interest such as those
in Eqs. 5 and 6. Roughly speaking, there are two options
for doing this. The first one is to describe the multivari-
ate Markov model as a dynamic Bayesian network, and to
use methods for exact probabilistic inference on such net-
works (e.g., the unrolled junction tree algorithm[Kjærulff,
1995]). However, this would require all state and time ab-
stractors to be modelled explicitly within the network. The
complexity of the model and the associated computations
would quickly increase when more abstractors are defined.

The second option, which is chosen here, is to use Monte
Carlo simulations of the model to randomly generate sce-
narios, and estimate the probabilities of interest from the
resulting simulated data[Robert and Casella, 2004]. When
the modelM fits well to the original datasetD, the esti-
mated probabilities will approximate the true probabilities
that generatedD. The procedure to generate scenarios is
summarized as follows:

1. sample values forx1(1), . . . , xm(1), and sett = 1

2. determine the probability distribution overx1(t + 1),
. . . , xm(t + 1) usingf

3. sample values forx1(t + 1), . . . , xm(t + 1) based on
this distribution, and incrementt by one

4. repeat steps 2 and 3 untilexit(t) = 1 or t = N .

We note that steps 2 and 3 can be repeated for a large num-
ber of times. At each iteration we test whether the sys-
tem occupies an exit state, and if the maximum time point
t = N is reached. The procedure thus generates scenar-
ios that are both proper and complete. If we chooseN to
be large, most of of the scenarios will also be closed (i.e.,
exit(t) = 1 beforet > N ).
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Two options exist to choose the starting values of a sim-
ulated scenario. They can be randomly sampled from sce-
narios in the original datasetD. This option is used to an-
swer questions of the form ‘Which scenarios do frequently
occur within the given patient population?’. A second pos-
sibility is to use a predefined set of starting values for
each simulation. In this case the question that is answered
amounts to the form: ‘Given that a patient arrives in this
particular condition, which scenarios are likely to occur?’.

The entire procedure is repeated a large number of times,
n, resulting in a datasetD∗ which contains a large number
of generated scenarios. For each scenario inD∗ the relevant
time and state abstractors are computed. Based on this data
the probabilities described in Eqs. 5 and 6 are calculated.

4 Case-study in intensive care

We have applied this approach in the area of intensive care
to investigate changes in organ failure. In this section we
first briefly introduce the role of organ failure in the ICU.
Then we describe how we applied the approach in this spe-
cific situation and the results of these experiments.

4.1 Organ failure at the intensive care unit

A major goal of treatment at the ICU is to stabilize the func-
tioning of organ systems and if necessary to temporarily
take over organ function using machinery and medication.
Changes in the functioning of specific organ systems are an
important indicator of progress of the disease. The devel-
opment of failure in more than one organ system (multiple
organ failure, MOF) requires specific attention, as it is a
major cause for mortality and morbidity in ICU patients
[Boneet al. , 1992].

In the ICU organ failure is described on a day-to-day ba-
sis using the Sequential Organ Failure Assessment (SOFA)
scoring system[Vincentet al., 1998], which consists of six
scores that indicate the function of six major organ systems:
circulation, respiration, kidney function, central nervous
system, the liver and coagulation. For each organ system
the degree of organ failure is quantified by an integer value
between 0 and 4 (with 0 indicating normal organ function
and 4 referring to complete failure). These scores are based
on the values of one or two (mostly physiological) vari-
ables related to the particular organ system. For example,
the score for the hepatic system is determined by the level
of bilirubin in the blood. The SOFA scores are measured
daily based on the preceding 24 hours of ICU stay.

Although the importance of MOF is well recognized and
the SOFA score is routinely collected in more and more
ICUs, physicians do not explicitly know which sequences
or combinations of organ failure occur more often than oth-
ers. In this study we use the SOFA score as a basis to dis-
cover scenarios of organ failure. We focus on scenarios that
describe the relation between MOF and outcome.

4.2 Data

This section gives a brief description of the dataset and
indicates which states, abstractor variables and scenarios
were used.

Characteristics of the dataset The experiments de-
scribed in this paper are based on data collected in the ICU
of the Onze Lieve Vrouwe Gasthuis (OLVG), an 18 bed
mixed medical-surgical ICU in a teaching hospital in Ams-
terdam. We used data from patients admitted between Jan-
uary 1st, 2002 and December 31st, 2004. We excluded pa-
tients admitted after cardiac surgery. For patients who were
readmitted to the ICU within the same hospital stay we only
used data on their first ICU admission. The dataset con-
tained information on 1508 patients of which 248 (16.4%)
died in the ICU. The median length of stay was 2 days, 587
patients were discharged or died after 1 day of ICU stay. In
total 6845 records on SOFA scores were available.

States Each of these records describes the state of
a particular patient at a given day. The clini-
cal condition of a patient is described by six vari-
ables,coag, hepa, circ, neuro, renal, resp, describing
the functioning of the coagulation, hepatic, circulatory,
neurological, renal and respiratory system respectively. In
the original data the SOFA scores were measured on a scale
ranging from 0 to 4, we dichotomized these values based on
the distribution of the scores in the dataset.

Next to these variables which describe theclinical aspect
of the state of a patient, we use three additional variables
that serve as the status indicator: theexit variable indi-
cates whether the patient has departed from the care pro-
cess. To explicitly distinguish between patients who died at
the ICU and those who were discharged from the ICU alive,
we introduce the variablesICU death andICU discharge
respectively. Ifexit = 0, these variables equal zero; in
caseexit = 1 exactly one of these variables equals 1.

The nine variables together describe the state of the pa-
tient. In total 66 different states are distinguished:26 dif-
ferent states whenexit = 0 and 2 additional states when
exit = 1 (eitherICU death = 1 or ICU discharge = 1).

Abstractors and scenarios Based on these variables we
define a number of time and state abstractors and scenarios
related to MOF and outcome. The state abstractorMOF2(t)
expresses whether the patient experienced organ failure in
at least 2 organ systems at any time point during ICU stay.
In analogy with Eq. 2,MOF2(t) = 1 if the following sce-
nario holds:

{{xi(t) = 1, xj(t) = 1}|, i 6= j}, (7)

wherexi, xj ∈ {coag, hepa, circ, neuro, renal, resp}.
In a similar fashion we defineMOF3(t), MOF4(t), MOF5(t),
MOF6(t) which evaluate to 1 if the patient experienced or-
gan failure in at least three, four, five, or in all organ sys-
tems respectively. To express the exact amount of organ
failure, we combine these abstractors as follows:

MOFexact2(t) = 1 ⇔ {MOF2(t) = 1, MOF3(t) = 0}. (8)

To arrive at scenarios of interest we can combine scenar-
ios based on these abstractors with concrete scenarios. For
example,

{ MOFexact2(t) = 1, hepa(1) = 1 } (9)
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expresses the scenario in which the patient was admitted
with liver failure and experienced failure in exactly two or-
gan systems at a given day during the ICU stay.

To investigate the relation between MOF and outcome,
we define the following scenarios:

died : {ICU death(t) = 1}, and (10)

MOF2exit : {MOF2(t1), exit(t2)|t2 = t1 + 1} (11)

which indicate respectively the scenario in which the pa-
tient died at the ICU and the scenario in which the patient
suffered from MOF at the day before leaving the ICU.

Finally, the abstract scenarioMOFmaxexit refers to the
scenario in which the maximum number of failing organ
systems was reached at the day before ICU discharge or
ICU death. For brevity we do not provide the definition
of MOFmaxexit here, we will however use this scenario in
our experiments.

4.3 Estimating probabilities
This section describes the transition probability function
we used and the resulting probabilities associated with par-
ticular scenarios based on these abstractions.

Transition probability function The number of possi-
ble states clearly shows the need for a parametric transition
probability function. We chose to describe the transition
probabilities using regression equations. The regression
equations express the probability that the value of the de-
pendent variable at time pointt equals1, given the values
of the covariates at time pointt− 1. As covariates we only
use the six variables that relate to the clinical condition of
the patient. The status indicator variables do not form part
of the covariates, as this would result in an improper sce-
nario once the the status indicator variable evaluates to 1.
The variablesICU death andICU discharge do however
serve as dependent variables. The combination of the re-
gression equations for these two variables makes a separate
equation usingexit as dependent variable redundant. So
in total eight regression equations are developed.

We note that we assume the variables at timet to be inde-
pendent of each other, given the values for the covariates at
time t − 1. Therefore we estimate the parameters in these
equations independently for all dependent variables using
normal regression procedures. As the variables in our data
are all binary, we used logistic regression analysis. A more
extensive description of the procedure we applied and the
resulting coefficients are given in[Peelenet al., 2006]. The
resulting Markov model is depicted in Figure 1.

Probability of scenarios Based on this Markov model
we generated 10,000 scenarios using Monte Carlo simula-
tion. The values forx1(1), . . . , xm(1) were sampled based
on the distribution in the original data. For bothD∗ (gen-
erated data) andD (OLVG data) the aforementioned ab-
stractors were calculated. Together with the time-indexed
variables these were used to estimate the probability of a
number of scenarios. To enable a comparison, these esti-
mates were based onD and onD∗.

renal renal

resp resp

hepa hepa

neuro neuro

circ circ

coag coag

ICU
discharge

ICU death

t t + 1

Figure 1: The resulting Markov model

Results Table 1 shows the results for four of these sce-
narios. Comparing estimates based onD andD∗, we note
that for simple scenarios both datasets yield similar results,
which indicates that our model is able to correctly repre-
sent the basic underlying processes in organ failure. Once
the scenarios get more complicated however, a difference
between the estimates occurs. The estimates based onD
are unreliable as they are based on few patients only (26 in
the fourth scenario). For the more complex scenarios we
therefore use the results based onD∗.

5 Discussion
This paper describes an approach to estimate the probabi-
lity of particular scenarios for a disease. The approach has
been illustrated with a case-study in the area of intensive
care. Temporal abstraction (TA) plays an important role in
our work. TA is often applied in the situation in which a
large time series describes the changes in a single variable
over time. Based on such a time series, TA results in a
description of subsequentstatesof a variable, andtrends,
i.e. changes in these states over time[Bellazziet al., 2000].
These abstractions can be purely based on statistics of the
data (e.g. by using the distribution of the data), or medi-
cal knowledge can serve as input in the TA process (e.g., in
defining state boundaries)[Verduijnet al., 2005].

In contrast to most of the work on TA, our approach ap-
plies to situations in which the condition of the patient is
described by multiple, discrete variables, sampled at a low
frequency. In these situationsknowledge-basedtemporal
abstraction is more appropriate. In our approach medical
knowledge is explicitly incorporated in the specification of
the time and state abstractors, and in the variables that are
included in the Markov model. Our time and state abstrac-
tors relate to the concepts of horizontal and vertical infer-
ence, respectively, as introduced by[Shahar and Musen,
1996].

Another aspect at which our approach differs from most
of the work on TA lies within theuseof the abstractions.
In other work TAs often provide a ‘summary’ of the time
series and serve as input for further modeling or reasoning.
In our approach TAs are defined apart from the data, and
we subsequently use the data to estimate the frequency at
which these TAs (or combinations thereof) occur.
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Scenario D (n = 1508) D∗ (n = 10000)
P (died) 0.164 (248/1508) 0.173 (1727/10000)
P ({hepa(1) = 1}|died) 0.214 (53/248) 0.213 (368/1727)
P ({hepa(1) = 1, renal(t) = 1}|died) 0.105 (26/248) 0.063 (108/1727)
P ({MOFmaxexit|{hepa(1) = 1, renal(t) = 1}, died) 0.462 (12/26) 0.676 (73/108)

Table 1: Probability of scenarios estimated based on original and simulated data

Markov models have been used in health care for var-
ious purposes since the 1970s[Beck and Pauker, 1983].
They have been implemented using Causal Probabilistic
Networks, e.g. by[Riva and Bellazzi, 1996; Andreassenet
al., 1999]. [Charitoset al., 2005; Kayaalpet al., 2001] used
dynamic Bayesian networks to model changes in the con-
dition of patients admitted to the ICU. In the latter study,
changes in SOFA scores were used, among other variables,
to predict ICU survival. They reduced the parameter space
by replacing a series of scores by a binary variable indicat-
ing whether a particular pattern was present. Conceptually
this relates to our abstract scenarios. However, our abstract
scenarios do not restrict to one particular variable.

We are aware that our approach has its limitations. An
important determinant of the success of the approach is the
Markov model. The first-order Markov assumption may be
too strict for many clinical applications. The assumption of
stationarity can be questioned for some disease areas and
might disturb the model’s fit to the data. It therefore seems
useful to somewhat relax these assumptions. Finally, the
parametric form chosen forf1, . . . , fm (in our application
logistic regression) should be appropriate. Therefore eval-
uation of the transition probability function is an important
aspect in the application of this approach.

We have chosen to estimate the probability of scenarios
using Monte Carlo simulations, instead of using methods
for explicit probabilistic inference. This saves us from the
necessity to model all abstractors explicitly. Furthermore,
adding abstractors would rapidly increase the complexity
of a dynamic Bayesian network, whereas the complexity of
performing Monte Carlo simulations increases in a linear
fashion. We do however realize that in the case of rarely
occurring scenarios, the number of simulations that is to be
generated also requires a large number of computations.

In our experiments on ICU data we assumed a very sim-
ple Markov model. In future work we will improve the
model by adding factors that are known to influence the
transition probabilities, such as admission type (medical or
surgical) and pre-existing chronic organ dysfunction (e.g.,
cirrhosis), and by adding “memory variables” that copy or
summarize information from earlier states. Another impor-
tant direction of future work lies within the development
of appropriate evaluation measures. Finally, until now we
have estimated the probabilities of scenarios that were de-
fined in advance. In future investigations we will apply data
mining techniques onD∗ to discover frequently occurring
scenarios.
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Abstract 
Abstraction of complex time-series data is a nec-
essary precursor to other higher-level activities; 
this is particularly true in the Intensive Care Unit. 
If we are to obtain a consensus as to the best 
ways to achieve these abstractions, different re-
search groups need to be able to experiment with 
data acquired from a variety of sources, and to 
apply algorithms developed elsewhere. This pa-
per sets out an infrastructure which has been de-
veloped to allow collaborative working of this 
kind. 

1 Introduction 
Imaging apart, the Intensive Care Unit (ICU) is arguably 
the clinical environment that generates the largest volume 
of data. The greatest contribution to this comes from the 
measurement of up to ten physiological variables often as 
frequently as every second, 24 hours a day (i.e. almost a 
million measurements per day). In addition there will be a 
number of data items which are entered sporadically – 
laboratory results, blood gases, medication, equipment 
settings, patient observations, etc.  
 These data can be processed for a number of purposes 
including: 

• the application of clinical guidelines and other deci-
sion support activities; 

• generation of textual summaries; 

• clinical audit; 

• data mining. 

 All of these activities share the same requirement as far 
as the raw data are concerned – namely that the volume of 
the data be reduced in some way, i.e. that abstractions be 
generated. This process of abstraction may involve time 
series from only one numerical variable or from several; it 
may also involve the data which are entered sporadically. 
It will almost certainly involve the removal of low level 
artifact arising from patient movement, ambient noise and 
clinical intervention – e.g. [Cao et al., 1999]; higher level 
abstractions may involve segmentation e.g. [Keogh et al., 
2001], trend detection, Markov modeling e.g. [Williams et 
al., 2006] and other sophisticated pattern matching tech-
niques. 

 At present, most of the analysis of time series data from 
the ICU is carried out by individual research groups, who 
apply techniques developed in their own laboratories to 
data generated by their own clinical collaborators. There 
is little sharing of data nor comparison of the effectiveness 
of different techniques when applied to the same data. 
 In part, I believe this to be due to the lack of a suitable 
infrastructure to enable this sharing of data and algorithms 
to take place. This paper presents such an infrastructure 
which allows sharing across the internet. Our vision is of a 
researcher in group A, being able to access data acquired 
by group B, and comparing a signal processing algorithm 
she has developed (say in MatLab) with algorithms devel-
oped by groups C (written in Java) and D (written in Del-
phi). She might even use a display technique written by 
group E. 
 I believe such collaboration to be necessary because: 

• the abstraction of complex ICU time series data is 
difficult; we do not know in advance which ap-
proach(es) will bear fruit; 

• people tend not to appreciate the advantages or dis-
advantages of the algorithms developed by others 
until they have tried them themselves; 

• it is dangerous to claim generality for a specific ap-
proach until it has been tested on data  from differ-
ent sources. 

 The basic architecture we propose (called TSNet) is, 
unsurprisingly, based on the standard client/server model. 
Before we describe it in more detail, we need to define 
some terms. 

2 Definitions 
2.1 Channels 
A channel consists of a named data stream. The data may 
be the raw data, or may be the result of some form of 
processing. Channels have two main sub-classes – equi-
sampled and interval. The data values in equi-sampled 
channels are (as the name implies) acquired at a regular, 
constant frequency. The data ‘values’ can be a variety of 
different types: 

• numerical (floating point); 

• Boolean; 

• enumerated (in the Pascal sense – i.e. sequential in-
tegers starting at 0); 

TSNet – A Distributed Architecture for Time Series Analysis  

Jim Hunter 
Department of Computing Science 

University of Aberdeen 
King’s College, Aberdeen, UK 
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• a vector of floating point values – typically a fre-
quency spectrum. 

 An interval channel consists of a set of temporal inter-
vals, each defined by: 

• start and end date/times; 

• an attribute name; 

• a value (of any type). 

 Intervals can be of zero length duration, known as 
events. Interval attributes can be organised into a tree 
structure, known as a descriptor tree. Irregularly sampled 
numerical channels can also be handled by an interval 
channel of events. 

2.2 Filters 
Within TSNet, any module which has zero or more chan-
nels as inputs and zero or more channels as outputs is 
known as a filter. A very simple example would be the 
family of moving window filters (mean, standard devia-
tion, median, slope, etc.) which take in one equi-sampled 
numerical channel and output a channel of the same class.  
Special sub-classes of filter are: 

• data sources, which have no inputs but whose out-
put channels provide the raw data from a particular 
source; of course there are inputs in the forms of 
files or databases, but the function of the raw data 
source is to hide the details of the format of that 
data from the rest of the system; 

• data sinks, which have one or more channels as in-
puts but no output channels; again, of course, there 
are outputs - one  type of data sink is the inverse of 
the raw data source, in that the input channels are 
written to a permanent medium. 

 The introduction of sinks and sources means that every 
channel is the output of some filter and acts as the input to 
one or more filters. 
 Filters can carry out more complex operations such as 
segmentation, where the filter takes in an equi-sampled 
numerical channel and outputs an interval channel - the 
intervals representing the segments.  Filters can even be 
complex rule-based pattern recognisers. One example is a 
filter that recognises the presence of a transcutaneous 
probe change [Hunter and McIntosh, 1999]. Another ex-
ample is the Asbru Guideline Execution Engine which 
takes in a number of processed channels (e.g. with arte-
facts removed) and outputs an interval channel containing 
the recommendations which result from the application of 
a particular guideline written in the Asbru language 
[Fuchsberger et al., 2005]. 
 One barrier to collaboration between groups is that they 
may well use different programming languages and are 
reluctant to devote time to translating their algorithms into 
languages that other groups can easily use. By defining 
standards for channels and for the interfaces to filters, 
TSNet enables filters to be written in a variety of lan-
guages including Java, Delphi, MatLab and CLIPS. 

2.3 Plots 
The most common type of data sink is the plot, where 
input channels are converted to a visual representation; 
although plots are sub-classes of filters, they are suffi-
ciently specialised that we will refer to them explicitly. 
The most common type of plot is that of the values of a 
variable against time, but different type of plot are appro-
priate for representing interval channels, descriptor trees, 
spectra, etc. 

2.4 Displays 
A display consists of a number of plots, laid out according 
to the wishes of the user. 

2.5 Channel/Filter Networks 
An output channel of one filter can be an input to another 
thus enabling the construction of complex channel/filter 
networks. Filters specify the classes of channel that they 
input and output and any network must respect these type 
constraints. A display will specify the plots it requires, a 
plot specifies its channels, a channel specifies the filter it 
is derived from (which in turn will specify other channels 
and filters) – see Figure 1, with display D, plots P1 and 
P2, and filters F1 to F5; channels are shown by arrows.  

2.6 Complex filters 
We can define a connected sub-graph of channel and filter 
classes as constituting a filter class in its own right; such a 
filter is said to be complex, in that it can be decomposed 
into further ‘hidden’ filters and channels. Figure 2 shows 
a complex filter has with two input channels, two output 
channels, three hidden filters and three hidden channels.  
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2.7 Contexts 
TSNet is designed to be flexible and incremental. To this 
end, contexts are defined and organised hierarchically. 
Typically a context corresponds to a specific data source 
and/or project. Contexts provide an environment for the 
definition of channels, filters (especially raw data sources) 
plots and displays. All contexts inherit from the ROOT 
context. As is usual with inheritance hierarchies, the ad-
vantage is that filters, channels etc. are inherited down the 
hierarchy. Filters which are used extensively (e.g. involv-
ing moving windows or segmentation) can be defined in 
the ROOT context, whereas more specialised filters can 
be defined at an appropriate level. An example of a deep 
hierarchy is found in the Neonate project [Hunter et al., 
2003a and b, Law et al., 2005]: 
 

 
ROOT 
 ICU 
  Neonatal ICU 
   Badger (the basic data collection system) 
    Neonate (including observational channels) 
     GraphVsText (a specific experiment) 
 

2.8 Catalogues 
A catalogue is a list of time periods (called data periods) 
which the researcher wishes to study. Contexts can have 
as many catalogues defined for them as is desired. Nor-
mally the catalogue is displayed to the user for her to se-
lect a data period for display, but it is possible to arrange 
for the same processing to be applied to all of the ele-
ments of a catalogue. 

2.9 TSNetClasses 
The TSNet architecture makes explicit the classes which 
are available and which can be referred to – these are im-
plementation independent. The base class is TSNetCom-
ponent: 
 

 
TSNetComponet 
 Catalogue 
 Channel 
  Equisampled 
   Numerical 
    EquisampledNumerical 
   EquisampledBoolean 
   EquisampledEnumerated 
  Interval 
 Context 
 Display 
 Filter 
  Plot 
 
 

2.9 Parameters 
All TSNetComponents can have associated parameters 
with the following class structure: 
 

 
String 
 Memo 
 DescriptorTree 
 FileName 
 URL 
 DirectoryName 
 Selection 
Integer 
 Colour 
Float 
Boolean 
 

 
For example, moving window filters need to know the 
width of the window, and the amount by which the win-
dow is advanced.  

3 TSNet Clients 
TSNet clients enable the user (i) to manage the cata-
logues; (ii) to configure channels, filter classes, plots and 
displays; (iii) to display the data from a selected data pe-
riod. Clients may implement filters internally or they may 
invoke external filters as TSNet services. 
 At present only one serious client, the Time Series 
Workbench (TSW) has been implemented (in Delphi); 
however a prototype is also being written in Java to dem-
onstrate that clients can be written in other languages. The 
TSW offers the following functionality. 

3.1 Catalogues 
Within the TSW, the contents of the catalogue may be 
determined by: 

• the structure of the raw data; if the data has been 
collected sporadically over an extended period, then 
the catalogue will represent those intervals over 
which data is available; 

• some other temporal structure in the data; for exam-
ple, in the Neonate project we were interested in 
those time periods where the baby was being manu-
ally ventilated; these intervals were available as the 
result of observations and could be made available 
as a catalogue; 

• intervals which someone (usually a clinical expert) 
has ‘marked up’ by hand while looking at other 
data; a good example would be where the expert has 
marked up the presence of artefact. 

3.2 Plots 
A plot is a visual representation of one or more channels. 
The simplest plot is a graph of value against time (referred 
to as a temporal plot) but there are many other possibili-
ties: 

• the descriptor tree associated with a channel; 
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• interval plots can list the attributes and values of the 
intervals forming an interval channel; 

• time slice plots show the values present in all chan-
nels at a particular point in time. 

 Figure 3 shows a temporal plot, a descriptor tree and an 
interval plot. 

3.3 Configuration 
The TSW allows interactive configuration of channels, 
plots and displays: 

•  Channel configuration includes the introduction of 
new raw data channels and channels derived from 
other filters, the deletion, copying and renaming of 
channels, the specification of the parameters of the 
channel and of the filter from which the channel is 
derived. 

•  In configuring a plot, the user specifies which chan-
nels are to be displayed. Interval channels may be 
displayed in a number of ways – as a solid bar, as 
lines indicating the start and end points of the inter-
val, as shading underneath numerical data, etc); the 
TSW allows these characteristics to be set interac-
tively. As with channels, plots can be created, de-

leted, copied and renamed. 

•  Within the TSW, a display consists of a number 
(currently three) of separate areas; see Figure 3. 
Each area can contain as many plots on selectable 
tabs as are required. Configuring a display means 
allocating specific plots to specific areas on the dis-
play. 

3.4  Execution 
Execution consists of displaying the data specified by an 
individual catalogue entry. In order to improve efficiency, 
only those channels which are required for plotting are 
computed; this subset of all possible channels is derived 
by working backwards from the plots through the chan-
nel/filter network.  
 A vital parameter for any filter class is Execution at; 
this defines whether the filter is implemented internally 
within the client or externally. It makes sense to imple-
ment some filters (especially simple ones which belong to 
the root context) within the client for the sake of effi-
ciency.  

 

Figure 3     TSW Client 
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4 TSNet Servers 
Servers make external filters available. Currently TSNet 
uses web service technology supported by Apache Tom-
cat. The primary interface on the server side is a filter 
manager which locates the filter concerned and arranges 
for the channel data to be presented to and recovered from 
it. Special case has been taken to optimize the structure of 
the SOAP messages to ensure rapid transfer of large vol-
umes of data. 

5 Collaboration 
As we have said, the main aim of TSNet is to allow col-
laboration between different sites (research groups). This 
means that channels, filter classes (including complex 
filters), plots and displays can be named and described by 
one group or individual in such a way that they can be 
used by others. This requires that mechanisms be found 
for managing name spaces and for exchanging definitions. 

5.1 Name spaces 
Groups and individuals are organized in a hierarchy of 
originators. At the root of this hierarchy is a super-user 
called CORE. This user corresponds to the TSNet admin-
istrator, and is responsible for those entities which are 
judged to be useful to all users. Such entities will belong 
to root context. Under CORE will be a number of sites 
and within each site a number of individuals.  
 An entity is fully named by the following tuple: 

• the context to which it belongs; 
• its originator; 
• its class; 
• a name which is unique within the space defined 

by context/originator/class. 

5.2 TSNetClass Definitions. 
The built-in TSNet classes were described in section 2.9; 
all of these classes belong to the ROOT context, are 
owned by the CORE originator and can not be altered. 
However subclasses of filter can be defined by other 
originators; for each subclass, the originator needs to pro-
vide: 

• the name of the class; 

• an abbreviation; 

• a list of the input channel classes; 

• a list of the output channel classes; 

• a list of the parameters which are applicable to 
this filter class (in addition to those defined for 
the generic filter) and default values; 

• a textual description - this is the only place where 
the semantics of the operation of the filter are pro-
vided; it is up to users to decide whether the filter 
provides functionality which is of use to them. 

 Whenever a new TSNet class is defined, it is tagged 
with the name of the originator. 
 All of the TSNet classes available to a given client are 
described in a database associated with that client.  

5.3 Instances of TSNetComponent  
Instances of channels, filters, plots, displays and studies as 
configured by the user are held in the same database as the 
TSNet classes. Each is tagged with the name of the origi-
nator and the context to which it belongs.  

5.4 Sharing 
The general architecture of TSNet is shown in Figure 4. 
Sharing of classes and instance takes place as follows. 
 An individual user will have her own TSNet database. 
Initially this will contain those classes and instances 
which are built-in to her client plus those that she has de-
veloped herself. Let us suppose that she has developed a 
new filter class. Once the class has been debugged, she 
copies the definition of the class to her site (server side) 
database and installs the class as a run time module on the 
site’s web server.  
 Each site participating in the collaboration will main-
tain a TSNet database containing those classes and in-
stances which originate from that site. These site data-
bases are visible (with password protection) to all other 
sites and users who are members of the collaboration. 
 Either by regular browsing of the TSNet sites, or by 
email notification, other users become aware of the exis-
tence of the filter and copy the definition into their own 
personal databases. Note that they are not importing the 
filter code, but only sufficient information for their client 
to refer to the filter and to configure it into channel/filter 
networks.  
 The TSNet client should ensure that imported entities 
are read-only so that definitions of named entities are 
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unique within the system. It is always open to users to 
modify copies of imported definitions, but the user who 
makes the copy will become the originator of the copy.
 When this other user comes to execute the filter on a 
particular data period, his client recognizes that the filter 
is external, and has enough information to locate the rele-
vant web-server. The client then interacts with that server, 
sending the data for the input channel(s) and recovering 
the output channel(s). 
 Such an arrangement has the advantage that the origina-
tor of the filter can make it available to the community 
without giving up ownership. We envisage that other lev-
els of access could be made available, such as allowing 
the copying of the compiled code, or eventually of its 
source. 
 It is possible for a site to expose the description of a 
complex filter (i.e. one composed of other filters) while 
retaining the knowledge about its internal workings. Thus 
an external user of such a complex filter exports the input 
channels to the site which ‘owns’ the filter. That site then 
takes responsibility for managing the passage of the data 
through the elements of the complex filter, even when this 
may involved exporting the data to a third site which 
owns filters which contribute to the operation of the com-
plex filter. 
 Confidentiality is important when it comes to exchang-
ing medical data. TSNet assumes that all input data sets 
have been fully anonymised before being made available. 

5 Discussion 
TSNet has much in common with the MEDIATOR archi-
tecture [Wiederhold and Genesereth, 1997] and specialisa-
tions thereof designed to handle time oriented data 
[Nguyen et al., 1997; Boaz and Shahar, 2005]. What dif-
ferentiates TSNet from these systems is its emphasis on 
the processing of large volumes of rapidly sampled data.  
The consequences of this emphasis may be implementa-
tional rather than conceptual, but they are none the less 
significant. 
 TSNet represents a serious attempt to enable collaborat-
ing research groups to work together in developing ways 
of analysing complex time series data.  Issues of standard-
ized schemas and vocabularies need to be addressed; 
however given that TSNet has been designed to foster 
collaborative research between a relatively small number 
of groups, this issue is perhaps less important than if it 
were attempting to offer a real-time service to a wider 
community. 
 The system has been fully implemented and a 
demonstration will be provided – over the internet if 
suitable access facilities are available. It is hoped that it 
can be evaluated by an interested user group in the near 
future. 
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Abstract
We have used supervised document classification
to investigate whether or not the ICPC diagno-
sis code used in the primary care patient record
complements the associated encounter note. Our
hypothesis is that diagnosis codes are set inde-
pendently from the notes and that the code ac-
cordingly provides additional information that is
not reflected in the note. To investigate this hy-
pothesis we built a set of document classifiers
using data from a primary care practice and at-
tempted to predict the correct diagnosis code for
each encounter note. At best we achieved a cor-
rect prediction rate of 51.6 %. Given our results
we discuss possible reasons behind misclassifi-
cations and find some indicators that the diagno-
sis code may add information that can not be in-
ferred from the encounter note.

1 Introduction
In this study we attempt to classify primary care clinical
encounter notes into their corresponding diagnosis groups.
We do so by learning document classifiers from a manu-
ally coded dataset collected from a Norwegian primary care
center. While being able to infer diagnoses from written
text may be a worthy goal in itself, e.g. for detecting incor-
rect diagnoses and improving electronic patient record sys-
tems, our main purpose is to explore if the diagnosis code
complements the written encounter note; that is, whether
or not it adds information that is not explicitly stated in the
written note. Research has shown that manual encoding
of primary care encounter notes tend to be of high qual-
ity [Nilsson et al., 2003]. Assuming that the diagnosis is
a relevant descriptor of the encounter note, we seek to use
classification as an estimate of the amount of overlap be-
tween the written note and the diagnosis. A lack of predic-
tive power might indicate that the encounter note can not
be viewed as a stand-alone entity and that surrounding in-
formation (diagnosis, prescriptions, etc) must also be taken
into account.

The electronic patient record (EPR) has gradually at-
tained widespread usage in primary care. In Norway, more
than 90 % of primary care physicians are routinely using
computer-based patient-record systems [Bayegan, 2002]
and many have been doing so for more than 15 years. A

typical feature of most commercial EPR systems in use
today is that the encounter note, which is the main docu-
mentation of the doctor-patient consultation, is written as
free-text narrative. There are perfectly practical reasons
for this: Unstructured free-text is easy to write and repre-
sents the traditional way of documenting patient treatment.
However, this makes the information within less suitable
for automated processing and thereby keeps the EPR from
fulfilling its potential as a useful tool for both research and
clinical practice. Attempts have been made to create EPRs
that impose varying degrees of structure on the clinical nar-
rative, but with varying success so far.

To alleviate this problem, many researchers have turned
to the use of natural language processing (NLP), text clas-
sification and text mining techniques on clinical narra-
tive. Some NLP systems have proven very useful in a
number of clearly defined domains, such as detection of
bacterial pneumonia from chest X-ray reports [Fiszman et
al., 2000], finding adverse drug events in outpatient med-
ical records [Honigman et al., 2001] and discharge sum-
maries [Melton and Hripcsak, 2005], and identifying sus-
picious findings in mammogram reports [Jain and Fried-
man, 1997]. A common feature of these systems is that
they restrict themselves to a narrow clinical domain with
a clearly defined vocabulary and a limited form of dis-
course, such as one would find in specialized hospital re-
ports. Our long-term goal is to draw on research from these
areas and explore the usefulness of similar techniques on
the primary care patient record. However, the lack of em-
pirical knowledge on the content in primary care documen-
tation raises the need for preliminary investigations on its
narrative structure. The main motivation behind this ini-
tial study is therefore to learn more about the informational
value and underlying documentational patterns in primary
care encounter notes.

2 Background
Among the characteristic features of primary care en-
counter notes are sparseness, brevity, heavy use of abbrevi-
ations and many spelling mistakes. The notes are normally
written during the consultation by the treating physician,
this in contrast with hospital patient records which are usu-
ally dictated by the physician and then transcribed by a sec-
retary. A typical encounter note might look something like
this:
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Table 1: ICPC chapter codes.

Chapter code Description

A General and unspecified
B Blood, blood-forming organs and im-

mune mechanism
D Digestive
F Eye
H Ear
K Circulatory
L Musculoskeletal
N Neurological
P Psychological
R Respiratory
S Skin
T Endocrine, metabolic and nutritional
U Urological
W Pregnancy, child-bearing, family

planning
X Female genital
Y Male genital
Z Social problems

Inflamed wounds over the entire body. Was
treated w/ apocillin and fucidin cream 1 mth.
ago. Still using fucidin. Taking sample for bact.
Beginning tmnt. with bactroban. Call in 1 week
for test results1.

The encounter note will often follow the Subjective-
Objective-Assessment-Plan (SOAP) structure, although
not necessarily in a strict manner [Nilsson et al., 2003].

To classify such notes we rely on the presence of manu-
ally coded diagnosis codes. The use of clinical codes in pri-
mary care is common in the United Kingdom, the Nether-
lands, and Norway [Letrilliart et al., 2000]. The motivation
for coding is both for reimbursement and statistical pur-
poses. In our experimental dataset the notes are coded ac-
cording to the ICPC-2 coding system. ICPC-2 is the sec-
ond edition of the International Classification of Primary
Care, a coding system which purpose is to provide a clas-
sification that reflects the particular needs and aspects of
primary care. Using a single ICPC code, each health care
encounter can be classified so that both the reasons for en-
counter, diagnoses or problems, and process of care are ev-
ident. Together, these elements make out the core parts of
the health care encounter in primary care. Moreover, one
or more encounters associated with the same health prob-
lem or disease form an episode of care [Hofmans-Okkes
and Lamberts, 1996].

ICPC-2 follows a bi-axial structure with 17 chapters
along one axis and 7 components along the other. The
chapters are single-letter representations of body systems
(Table 1) while the components are two-digit numeric val-
ues (Table 2). As an example, ”R02” is the ICPC code for
shortness of breath.

There are several examples of attempts to automate the
coding of diagnoses [Franz et al., 2000; Larkey and Croft,

1Translated from the Norwegian.

Table 2: ICPC component codes.

Number Range Description

1 01-29 Complaint and symptom
component

2 30-49 Diagnostic, screening, and
preventive component

3 50-59 Medication, treatment, pro-
cedures component

4 60-61 Test results component
5 62-63 Administrative component
6 64-69 Referrals and other reasons

for encounter
7 70-99 Diagnosis/disease compo-

nent

1996; March et al., 2004; Satomura and do Amaral, 1992;
Vale et al., 2003], all of which concern themselves with the
alternative ICD code. ICD is a more complex code than
ICPC and is more suited for specialized usage in hospitals.
[March et al., 2004] describes the use of Bayesian learning
to achieve automated ICD coding of discharge diagnoses.
[Franz et al., 2000] compares coding methods with and
without the use of an underlying lexicon and concludes that
lexicon-based methods perform no better than lexicon-free
methods, unless one adds conceptual knowledge. [Larkey
and Croft, 1996] found that using a combination of dif-
ferent classifiers yielded improved automatic assignment
of ICD codes. There is a practical purpose to automated
ICD coding: ICD is a more complex code than ICPC and
accordingly manual ICD encoding takes up a lot of time.
There have also been other approaches towards automated
coding of clinical text. [Hersh et al., 1998] attempted to
predict trauma registry procedure codes from emergency
room dictations. [Aronow et al., 1995] classified encounter
notes in order to find acute exacerbations of asthma and
radiology reports for certain findings, this through the use
of Bayesian inference networks and the ID3 decision tree
algorithm. Document classification and IR has been ap-
plied in other medical domains as well, such as clustering
of medical paper abstracts [Makagonov et al., 2004].

Examples of automated ICPC coding are less common.
[Letrilliart et al., 2000] describes a string matching system
that assigns ICPC codes from free-text sentences contain-
ing hospital referral reasons, based on a manually created
look-up table. We have not found examples of similar at-
tempts at automated ICPC classification in the literature.

As for classification techniques, this study uses support
vector machines (SVM). SVMs have proved useful and
have shown good general performance for text classifi-
cation tasks [Joachims, 1998] when compared with other
methods. Our goal for this study is not to compare clas-
sification methods; this will be explored further in future
work.

3 Methods and Data
We have collected a dataset from a medium-sized gen-
eral practice office in Norway. The data consists of en-
counter notes for a total of 10,859 patients in the period
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Table 3: Number of ICPC codes per encounter.

Number of ICPC codes Number of encounters

1 235,860
2 44,651
3 6,037
≥4 1,320

from 1992 to 2004. All in all, there are 482,902 unique
encounters. The Norwegian Health Personnel Act [Health
Personell Act, 2001] requires that caregivers provide “rele-
vant and necessary information about the patient and about
the health care” in the patient record. In practice, this man-
ifests itself as a combination of structured and unstructured
information about the encounter. Information such as per-
sonal details about the patient, prescriptions, laboratory re-
sults, medical certificates and diagnosis codes is typically
available in structured format, while encounter notes, re-
ferrals and discharge notes are in the form of unstructured
free-text. For the purposes of this paper, we have only con-
sidered the encounter notes and the accompanying ICPC-2
diagnosis code.

A known source of noise is that a minority of the notes
are likely to be written in Danish or nynorsk (literally “New
Norwegian”) rather than standard Norwegian (bokmål).
There are also more than 20 different authors, so there may
be differences in documentational style as well. Interns
fresh out of medical school may for example be inclined
to document more thoroughly than an experienced physi-
cian.

The dataset has been automatically anonymized using a
custom-built anonymization tool [Tveit et al., 2004]. Each
word or token is controlled against a database of words
that are known to be insensitive and a set of rules that deal
with alphanumeric patterns such as medication doses, date
ranges, and laboratory test values. Sensitive tokens are re-
placed with a general identifier or an identifier that shows
the type of token that was replaced.

Each encounter will typically consist of a written note
of highly variable length and zero or more accompanying
ICPC codes. 287,868 of the available encounters have one
or more ICPC codes (Table 3).

There are some notable differences in terms of code use
between hospital and primary care settings. [Larkey and
Croft, 1996] describes a test set of discharge summaries
with a mean of 4.43 ICD-9 codes per document, while
[Nilsson et al., 2003] notes that a set of Swedish general
practice patient records has a mean of 1.1 ICD-10 codes
per record. While there may be regional and cultural differ-
ences with respect to coding practice, the latter corresponds
with our findings of 1.2 ICPC-2 codes per note (Table 3).

Since we concern ourselves with the relation between the
encounter note and the ICPC code, we discard all encoun-
ters with more than one code in order to avoid ambiguity in
the training data. Of the 235,860 encounters that are left,
175,167 have an accompanying encounter note.

The use of ICPC codes as classification bins for en-
counter notes is essentially a multi-class classification
problem. Since there are 726 distinct ICPC codes it be-

Table 4: Average note length and class frequencies.

Avg. St. Class
Chapter words dev. Samples freq.

N (Neurological) 40 33.2 5,637 3.2 %
D (Digestive) 39 30.0 11,386 6.5 %
Z (Social) 36 35.1 570 0.3 %
X (Female genital) 36 27.1 6,244 3.5 %
P (Psychological) 32 35.6 9,939 5.6 %
A (General) 32 28.9 12,052 6.8 %
Y (Male genital) 31 24.9 1,993 1.1 %
F (Eye) 31 23.5 4,998 2.8 %
L (Musculoskeletal) 29 26.8 36,493 20.8 %
R (Respiratory) 28 21.8 22,846 13.0 %
K (Circulatory) 27 25.6 21,089 12.0 %
H (Ear) 27 21.3 5,526 3.1 %
W (Pregnancy) 26 24.5 5,614 3.2 %
U (Urological) 26 25.2 4,502 2.5 %
T (Endocrine) 26 22.4 5,498 3.1 %
S (Skin) 26 20.3 18,432 10.5 %
B (Blood) 22 23.3 2,348 1.3 %

comes practical to reduce the class dimensionality. We
choose to group codes according to their chapter value,
so that we are left with the 17 single-letter body codes as
classes.

When grouping encounter notes by their ICPC chapter
value we note that there is a varying degree of verbosity.
The use of sparse encounter notes is often common in pri-
mary care, for instance when renewing recurring prescrip-
tions. To determine average note verbosity for each ICPC
chapter, all relevant encounter notes are tokenized. Af-
ter removing stop words, whitespace and other noisy ele-
ments, the average length and standard deviation is calcu-
lated as shown in Table 4. The table also shows that the
class frequency distribution is highly skewed, with the top
three classes (L, R and K) covering 45.8 % of the selected
encounter notes.

We note that Larkey’s discharge summaries [Larkey and
Croft, 1996] has a mean length of 633 words, which is more
than an order of magnitude higher than for the notes in our
dataset. Notwithstanding cultural and institutional differ-
ences, this highlights how hospital discharge summaries
usually provide a more self-contained description of the pa-
tient. In the Norwegian health care system the patient will
typically use just one primary care physician who acts as a
gatekeeper for admittance to specialized hospital care. This
implies that the primary care physician is highly involved
in most phases of a patient’s contact with health services.
The effect of this persistent doctor-patient relationship on
primary care documentation is that the information found
in a single encounter note will often just add to information
found in previous encounter notes, thereby offering just a
small glimpse of the complete situation.

Since many classification techniques, including support
vector machines, are restricted to dealing with binary clas-
sification tasks, we have to reduce our multi-class clas-
sification task into a set of binary tasks. For each pair
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Table 5: L versus D classifier, 20 most relevant features.

Original n-gram Appr. Eng. translation Comment

ve kne left knee Abbr
bevegelighet movability
celeston celeston
hø kne right knee Abbr
kne knee
ankel ankle
kneet the knee
fot foot
skulder shoulder
hø skulder right shoulder Abbr
kiropraktor chiropractor
hofte hip
lat lateral(?) Abbr
nakke neck
ryggsmerter backache
traume trauma
stiv stiff
lår thigh
falt fell
hevelse swelling

of classes (i, j) : i, j ∈ {A,B, . . . , Z} where i, j =
1 . . . c, j 6= i we create a two-class classifier < i, j >. If
c is the number of classes, we end up with c(c− 1) binary
classifiers, or 17 × 16 = 272 in this case. This technique
is known as double round robin classification [Fürnkranz,
2002]. The classifier < i, j > will then solely consist of
training examples from encounter notes with ICPC chapter
codes i and j. To determine the final predicted class of any
given note we feed it through each classifier and record the
result. The class that receives the highest number of pre-
dictions is chosen to be the most likely one. In case of ties
we choose the class with the highest number of occurrences
in the training set, or, as a last resort, pick one at random.
To build and run the classifiers we used the SVM-Light2
toolkit with the default parameter settings.

We use word and phrase frequencies as the base compo-
nent when constructing feature vectors for the classifiers.
If we were to rely on single words alone we would lose
some contextual information [Hersh et al., 1998], so fre-
quency counts are performed on all unigrams, bigrams and
trigrams in the encounter note, excluding stop words. The
occurrence of an n-gram is recorded as a true value in the
feature vector. While n-grams may be a simplistic way of
representing context, it still allows us to catch phrases and
turns of words that may have discerning qualities.

As is common with word-based feature vectors, it is use-
ful to apply some dimension-reducing technique to limit
the size of the vector. The challenge lies in pruning those
features that are the most inconsequential to the classifier’s
predictive qualities. For this experiment we adapt a tech-
nique described in [Kruger et al., 2000]. For each classifier
the frequency of all unigrams, bigrams and trigrams occur-
ring in all training notes for both classes are counted. If

2http://svmlight.joachims.org/

Table 6: Classification results.

Training examples Test examples Correct Accuracy

320 320 116 36.3 %
3,145 3,145 1,458 46.4 %

36,846 10,000 5,162 51.6 %
173,167 2,000 994 49.7 %

an n-gram occurs in more than 7.5 % of either the true or
the false class notes it is tagged as a likely candidate for
inclusion. All candidates are then ranked according to their
true class frequency to false class frequency ratio. Finally
the top 100 candidates are chosen as the most relevant fea-
tures.

Four different experiments were run, using train-
ing/test ratios of 320/320, 3,145/3,145, 36,846/10,000 and
173,167/2,000. The class frequency distribution for each
training and test data set was kept approximately consis-
tent with the overall dataset frequency distribution.

4 Results
Table 6 shows the prediction accuracy for all four experi-
ments, while Table 7 shows the results for the experiment
with 36,846 training cases. As a comparison, guessing for
the most frequent chapter code (L) all the time will yield an
accuracy of 19.9 %.

5 Discussion and Future Work
Increasing the amount of training data will to a certain
extent improve the classifier. Our best results were with
36,846 training examples, which yielded an accuracy of
51.6 %. For this classifier we note that the accuracy is
highly variable for the individual chapters; from no cor-
rect predictions at all (B, U, Y and Z) to 91.2 % in the
best case (L). The most notable feature is how the L (mus-
culoskeletal) class appears to soak up the majority of the
misclassified cases. The L class is the largest group in the
training set, indicating that a certain bias towards this class
should be expected but not dramatically so. When attempt-
ing to perform the same classification task without the L
cases the S group became the major misclassification bin,
but in a less prominent fashion; the overall accuracy rate
rose to 57.5 %.

A possible explanation is that the notes with L-chaptered
ICPC codes deal with a broader range of bodily experi-
ences; that is, they tend to cover more ground than the more
specialised chapters. Table 5 shows the 20 most relevant
features for one of the L-classifiers. We notice that the fea-
tures associated with the L class describe several different
parts of the body (knee, ankle, foot, shoulder, hip, thigh,
neck) and different kinds of pain experiences (swelling,
trauma, backache). If some of these features are typical
for other diagnosis types as well it would seem natural that
the L class absorbs encounter notes that do not have unam-
biguous, unique features.

Moreover, the L-related features may be terms that are
typically used to describe the patient’s subjective experi-
ences. [Nilsson et al., 2003] notes that the subjective and
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Table 7: Results of training with 36,846 notes and testing with 10,000.

Correct Predicted ICPC chapter
ICPC Percent

chapter A B D F H K L N P R S T U W X Y Z Sum correct

A 52 0 9 0 0 125 273 1 20 118 57 0 0 11 8 0 0 674 7.7 %
B 1 0 4 0 0 9 73 0 3 6 5 0 0 34 0 0 0 135 0.0 %
D 7 0 247 0 0 32 256 1 15 33 31 0 0 4 5 0 0 631 39.1 %
F 1 0 1 50 0 11 127 1 5 9 61 0 0 0 0 0 0 266 18.7 %
H 1 0 0 0 22 13 141 3 1 57 32 0 0 1 0 0 0 271 8.1 %
K 5 0 6 0 0 924 243 3 8 14 28 0 0 1 2 0 0 1,234 74.8 %
L 3 0 4 0 0 58 1,821 2 21 35 52 0 0 0 0 0 0 1,996 91.2 %
N 4 0 2 0 0 72 189 25 8 14 21 0 0 0 4 0 0 339 7.3 %
P 3 0 2 0 0 29 325 2 143 9 5 0 0 0 1 0 0 519 27.5 %
R 8 0 4 0 0 30 291 0 16 849 28 0 0 0 0 0 0 1,226 69.2 %
S 6 0 5 0 0 20 346 0 4 22 648 0 0 1 4 0 0 1,056 61.3 %
T 3 0 1 1 0 70 133 1 24 1 7 5 0 7 3 0 0 256 1.9 %
U 3 0 5 0 0 17 221 0 5 23 15 0 0 1 7 0 0 297 0.0 %
W 2 0 3 0 0 53 224 0 7 7 13 0 0 184 27 0 0 520 35.3 %
X 3 0 9 0 0 28 152 0 10 11 16 0 0 19 192 0 0 440 43.6 %
Y 2 0 2 0 0 6 80 0 1 4 10 0 0 0 1 0 0 106 0.0 %
Z 0 0 1 0 0 0 28 0 5 0 0 0 0 0 0 0 0 34 0.0 %

objective descriptions makes up the bulk of the encounter
note. Again, when unable to find features that are charac-
teristic for the other classes, the more general, subjective
features will make the classifier default to L. This might
indicate that the diagnosis code does in fact add extra in-
formation; in many cases the encounter note alone will not
be sufficient to give a complete picture of the encounter.
This also corresponds with Nilsson’s findings, where the
assessment (or diagnosis) part of the encounter note was
shown to be relatively small in comparison with the other
parts.

There are several other possible approaches to approv-
ing the predictive quality of the classifier. We made no
attempts to normalize the vocabulary in the training data.
Techniques such as stemming or mapping terms to a com-
mon controlled vocabulary would reduce the number of rel-
evant features. This would also involve dealing with com-
mon misspellings [Hersh et al., 1997] and dialect terms,
both of which are quite common in our dataset. [Wilcox
and Hripcsak, 2003] notes that the use of expert knowledge
can provide a significant boost to medical text report clas-
sifiers.

We made no efforts to control the amount of noise in
the classifiers or to screen the notes in the test data set.
Very short notes and notes with non-standard language use
were not discarded. In the case of short notes, the diagno-
sis code will nonetheless be the main information carrier
for the consultation. Also, we did not consider the num-
ber and distribution of different writers on our dataset. As
have been noted, there might be differences in documen-
tational style; training and testing on notes written by the
same physician could have been attempted for the sake of
comparison.

The a priori anonymization could also influence the re-
sults. Since the anonymization tool only allows known
non-sensitive words, it is likely that special and unusual
words are lost. Such words may have a higher predic-

tive effect than more common words. Comparing the clas-
sifier on a non-anonymized dataset could possibly indi-
cate how much of destructive effect that is incurred due to
anonymization.

The choice of ICPC chapter codes as class indicators
is not necessarily a natural choice. Alternatives include
grouping according to ICPC component codes or, as a nat-
ural follow-up, attempting to classify into the full ICPC
codeset of 726 different codes. One could also consider
classifying into several classes rather than discarding notes
with more than one ICPC code as in this experiment.

The use of round-robin all-vs-all classification can be
argued; a simpler one-vs-all scheme might work just as
well [Rifkin and Klautau, 2004] with the added bonus of
being less computationally expensive. Moreover, we made
no attempts to evaluate different feature selection mecha-
nisms and classification methods; this is scheduled for fu-
ture work.

Finally, we must bear in mind that the results are from
single test runs rather than using e.g. cross-validation tech-
niques.

In general, our naive, largely domain-ignorant approach
granted results that are interesting enough to legitimate fur-
ther work in this area. Given the findings it would be worth
investigating if the use of accompanying information from
the EPR, such as lab results and prescriptions, can help im-
prove classification quality. Another possible approach is
to view the encounter note in its longitudinal context by
also considering notes from previous (and following) en-
counters related to the same episode of care.
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Abstract

We present our work in progress on a system for
visualizing and querying collections of patient
histories. The main features of the system are: 1)
Compact LifeLines-like visualization of histories
as explorable and configurable time lines above
a common time axis, with any query hits outlined,
and 2) Operations for search, selection, sorting
and alignment of the histories based on temporal
queries.

1 Introduction
The ability to query and visually explore collections of pa-
tient histories is potentially useful in several types of tasks:
When faced with a difficult clinical decision, one could
search for similar fragments from other histories in the
database and explore them to learn from what happened in
other cases. In quality assurance of a clinical practice, one
could search for deviations from guidelines and explore the
result to see if the deviations were justified. In preparing re-
search on clinical processes, one could search for relevant
history fragments and explore them to improve one’s un-
derstanding of the subject matter and get ideas for research
hypotheses and analysis methods.

The well-known LifeLines system [Plaisant et al., 1998]
provides a time line visualization of the elements of a his-
tory. Event charts [Lee et al., 2000] provide a static vi-
sualization of a collection of histories as a set of stacked
and possibly aligned lines above a common time axis, with
events represented by glyphs on the lines. The visualiza-
tion part of our approach can be seen as an attempt to com-
bine the information rich, interactive LifeLines visualiza-
tion with the event charts’ ability to visualize many histo-
ries. Related to the query part of our system, the literature
describes a query system based on the event calculus that
allows users to query collections of series of measurements
for patterns of temporal abstractions [Combi and Chittaro,
1999]. Our query language is mainly intended for search-
ing for patterns in the categorical event and interval data
of the patient record, and it consequently contains a differ-
ent set of constructs. We also have a different approach to
result visualization.

∗Contact email: edsberg@idi.ntnu.no

2 The visualization and query system
Our data model contains point events for contacts, diag-
noses and lab results, and interval events for prescriptions.
(Our data source unfortunately often requires some guess-
work in determining end points of prescriptions.) Figure
1 shows and explains the main view of our system, leav-
ing the query language and query-based operations for the
rest of this section. Applying a query to a history results in
a set of matches, where a match is defined by its starting
and ending points in time. The query language consists of
primitive constructs matching data elements in themselves
and composite constructs specifying temporal constraints
on their sub-queries. Recursively, a query may match:

• a point event, such as a diagnosis, lab test or prescrip-
tion, or

• an interval of medication with a specified drug type,
or the beginning or end of such an interval, or

• a sequence of the matches of two sub-queries, with
possible constraints on the time that can pass between
them, or

• the parallel or alternative occurrences of the matches
of two sub-queries, or

• a window of a specified length, within which a sub-
query does, or does not, match, or

• a sub-query’s first match in the entire history.

Here is an informal description of an example query: Find
all history fragments where the patient first has a one-year
time window without at least three positive blood pres-
sure measurements, and then is prescribed blood pressure-
related medication for the first time in the history. (We omit
the syntax, since it is currently under revision.)

The prototype provides the following query-based op-
erations: With the search operation, the user submits a
query, and red boxes are drawn around the matches of the
query. The user can cycle through the matches. With the
select operation, the user submits a query, and a new
tab is opened, containing a visualization of only those his-
tories that contained a match of the query. With the align
operation, the user submits a query, and the histories are
synchronized so that the start points of the matches line up
vertically. The time axis changes to shows the number of
time units relative to the alignment point. With the sort
operation, the user submits a query with a sequence as the
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Figure 1: Screenshot of the main view in the prototype. Each of the horizontal bands corresponds to a history. The lower
left panel contains a legend of the information types selected to be displayed, in this case specialized for hypertension.
In the bands, tall, narrow rectangles indicate diagnoses, coloured subdivision of the background medication, and arrows
blood pressure measurements, with colour showing value category and orientation showing trend. The bottom panel
shows the journal note and the upper left panel shows details about the events at the current position of the cursor. The
search operation has been used to mark the hits of the query informally described as Find all history fragments where
the patient get his first hypertension diagnosis and then, sometime later, gets his first diagnosis for a hypertension-related
complication. The select operation has been used to extract the 359 histories containing a hit of this query. Then, the
align operation has been used to synchronize the histories on the first part of the query. Finally, the sort operation
has been used to sort the histories according to the distance between first and second part of the query. Menus not shown
provide other possibilities, such as zooming, jumping to a journal-like view or changing the information types shown.

top-level construct, and the histories are sorted according
to the distance between the matches of the sub-queries. By
using these four operations, the visualization can be incre-
mentally narrowed down and adapted to suit the problem at
hand. Figure 1 shows a screen shot from our application of
the prototype to a data set of about 10000 patient records,
in collaboration with a general practitioner wanting to in-
vestigate the treatment of hypertension at his health centre.

3 Current work
We are currently working on 1) refining the query language
according to our improved understanding of the users’
needs, 2) grounding its semantics in the event calculus, and
3) creating a query editor that allows users to design queries
in a flowchart-like visual language.
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Abstract
There is a variety of criticisms of medical data min-
ing which has led, in some cases, to the technology
being overlooked as a tool. This paper presents a
discussion of six of the strongest arguments against
the application of data mining to the complex field
of human medicine. The aim of the paper is to
raise the predominant issues and suggest solutions
whilst also opening the issues for further consider-
ation by both medical and information technology
communities.

The Arguments
1. Data mining outcomes are seen as generalisations and
not verified for medical validity or accuracy. [Elwood and
Burton, 2004; Milloy, 1995]

Medicine is a highly complex domain for which data min-
ing processes were not designed. In many cases they orig-
inated in response to changes in commerce or management
practices and there was no real need to substantiate results
on the basis of protocols or domain knowledge. Medicine
has requirements which are outside of the original scope of
the technology, and to be applicable to a science which is
concerned with critical decision making there is a need to
modify the technology to reflect this different environment.
Whilst this first argument is a serious issue, it is often borne
from misrepresentation of the results of data mining rather
than from the process itself. There is a heightened need for
careful consideration of the language used when reporting re-
sults [Raju, 2003; Maindonald, 1998]. It is possible for the
results to be specific but for the language of reporting to gen-
eralise the message. For example, the MJA described a case
where a mining outcome showed that smoking does not have
a direct link with skin cancer [Elwood and Burton, 2004],
however the resulting media story reported that smoking is
not linked with cancer generally. While a scientific data min-
ing process was applied the language of information presen-
tation was misleading and the resultant reporting was inaccu-
rate and medically invalid. Medicine is especially sensitive
to this form of information distortion and the consequences
have the potential to be life threatening, politically sensitive,
costly and persistent which is rarely the case in other do-
mains.

There is little to sustain this argument in light of recent
work in the field. By the application of suitable statistical
methods, evaluation of all results and applying industry ac-
cepted standards there is no reason to believe that data mining
cannot provide effective validation and accuracy checking
processes [Shillabeer and Roddick, 2006; Gebski and Keech,

2003]. Three steps have been suggested to safeguard against
this particular criticism [Smith and Ebrahim, 2002].

1. Results should not be published on the basis of correla-
tion alone.

2. An explanation should be provided with the results to
provide clarification e.g. A definition of the unique
quality of the allergen that triggers the alleged immune
response.

3. Results should be replicated, confirmed and docu-
mented prior to publication.

These steps are not part of standard data mining method-
ologies but are required to be undertaken if the mining of
medical data is to overcome criticism, be viewed as ‘good
science’ and gain trust in the medical community.

2. Associations are not representative of other similar at-
tributes and do not consider other potential contributors.
[Milloy, 1995; Raju, 2003; Smith and Ebrahim, 2002]

In a medical context, relationships found between one
allergen and symptoms must be substantiated through
analysis of similar allergens or the same allergen in
other temporal, spacial or demographic instances. If
this cannot be shown it suggests that there is not a
conclusive argument for cause and effect or that some
other catalyst or cause has been missed [Raju, 2003;
Smith and Ebrahim, 2002]. Again, data mining was not
designed to do this however this should not be a preventive.
Methods are available to achieve this where it is important to
determine the semantic closeness of results [Shillabeer and
Roddick, 2006]. Criticism often focuses on data dredgers
who promote results as facts rather than being indicative
of a possible scenario requiring further investigation [Raju,
2003]. Where an association is found it is important to
compare this with other associations or to apply a clustering
algorithm to group semantically and determine where there
is similarity or otherwise to other attributes or rules.

3. P-values are set arbitrarily and therefore the results
cannot be trusted. [Milloy, 1995; Smith and Ebrahim, 2002]

The P-value is applied to the statistical testing of a null
hypothesis to gauge the probability of the result happening
by chance in a total population. Data mining provides a
similar function through the use of support and confidence
values although these apply only to the data set being mined,
where support is the percentage of the data transactions
under analysis that hold true for the association, and con-
fidence (a.k.a. conditional probability) is the percentage of
data transactions containing a specific attribute value that
also contain another specific attribute value. Support and
confidence values are thresholds set for reporting purposes
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and are not p-values, although they are liable to attract the
same criticism. P-values, support and confidence may be
applied in two ways: to evaluate and discriminate the accept-
ability of data analysis results for follow-up research and,
as a guideline or tool for reducing the number of irrelevant
outcomes. Data mining can also be applied in divergent
modes; to show what the common patterns in data are, or to
show where common patterns are refuted in the data. It is
important to always set heuristic thresholds in context of the
specific analysis being done and in fact a calculation applied
should not be used alone [Shillabeer and Roddick, 2006;
Gebski and Keech, 2003]. In the medical domain attribute
value relationships which occur frequently, and hence have
high support and confidence, as well as a low p-value, are
likely to be known already and would generally be of little if
any interest. This is a major difference between traditional
data mining applications, where generally the events which
occur most frequently are of the greatest interest and
hence have a similar support threshold, and applications in
the medical domain where frequency is not a conclusive
determinant in defining the usefulness, validity or applicabil-
ity of results and hence may require varying threshold values.

4. Associations between attributes are dependent upon
the data set being analysed and are not representative.
[Raju, 2003; Smith and Ebrahim, 2002]

There is often a poor approach to the collection and de-
scription of data sources and samples which is not consistent
with the process of data mining or other scientific method-
ologies [Milloy, 1995; Maindonald, 1998]. For results to be
accepted the data source should be from an identifiable popu-
lation with defined characteristics e.g. location, demograph-
ics, and proportions [Smith and Ebrahim, 2002]. In a clinical
research setting this is overcome by the use of protocols and
guidelines to ensure that results are representative and able to
be replicated. One such protocol is CONSORT which is used
globally by medical researchers and is endorsed by a number
of prominent journals.

Data mining provides validation through the application
of tools such as artificial intelligence and neural nets to the
knowledge mining step to sample the data, provide outcomes
then automatically test them on the whole data source to
show that the outcome holds true for all available data not
just one small subset [Smith and Ebrahim, 2002]. Data
mining is a highly intensive machine process which utilises
huge processing power, memory and time. Data sampling is
often used as an initial step to reduce these constraints but
correct utilisation may help to overcome this criticism also.

5. Data mining is simply a desperate search for some-
thing interesting without knowing what to look for. [Mil-
loy, 1995; Smith and Ebrahim, 2002]

Exploratory mining, which is not constrained by user ex-
pectations, can uncover unexpected or unknown knowledge
with wide reaching benefit and can be utilised to review and
extend current medical knowledge. With the wealth of data
being produced daily in the medical field the argument that it
should not be used in an exploratory fashion to at least note
important changes in data patterns demonstrates a misun-
derstanding of the potential value held therein. It is argued
by some [Maindonald, 1998; Smith and Ebrahim, 2002;
Shillabeer and Roddick, 2006] that it can be beneficial to
look simply for something interesting rather than make an
assumption about what is present in the data as if we only
ever look for what is known we will potentially never find
anything new and progress cannot be made. Provided this is
a result of a scientific process then further mining or clinical

trials can be undertaken for evidence to substantiate the
initial findings. This criticism is only valid where the search
is for anything interesting even if only minimally and where
there is little or no validation.

6. Data mining displaces research and testing and
presents results as facts requiring no further justification.
[Milloy, 1995]

Contrary to the criticism, data mining in medicine is gen-
erally viewed as an efficient tool for enhancing the work done
in the field rather than as a replacement for it [Maindonald,
1998]. Its value is seen as a process of automated serendip-
ity that stimulates and supports testing rather than replaces it.
When considering the use of mining outcomes there are two
questions often asked; is this result representative of what
has been recorded over time?, and can the analysis outcome
be verified through real world application? [Raju, 2003;
Smith and Ebrahim, 2002]. Whilst the first can be answered
with some conviction by data mining the second requires
clinical input and hence the process of providing trusted
knowledge from data requires a collaborative effort by auto-
mated and clinical processes. When we consider that time
from hypothesis to application of new knowledge is often
measured in decades we should feel compelled to find new
knowledge as quickly as possible and data mining offers the
ideal tool for this.

Conclusion
This paper has presented six common criticisms of medical
data mining in an effort to demonstrate that as technologists
we need to be aware of the social environment in which we
work and to give a suggestion of the importance of continu-
ing to work on making the technology applicable to this com-
plex domain. We should not be disheartened by the criticism
which surrounds the field in which we work but should take
the criticisms on board, work with them and provide an out-
come which is beyond reasonable reproach.
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Abstract
In this work we present preliminary results ob-
tained using a commercial software to analyze
infrared spectra and infrared spectral images
collected on lymph node tissues by using either a
single detector or a multielement Focal Plane Ar-
ray detector (FPA). Our results indicate that
Cluster Analysis and Principal Component
Analysis can allow to distinguish different com-
partments in the sample, as well as to classify
tumoral and non tumoral samples. The need to
treat huge amounts of spectral data, especially
when the FPA is used for data acquisistion,
would require to improve the software perform-
ance.

1 Introduction
Non-Hodgkin lymphomas constitute about 4% of all hu-
man malignancies. Morphological analysis coupled to
immunohistochemistry is the most widely used approach
for their classification, but these analyses are somehow
prone to subjective interpretation. An automated tech-
nique such as Fourier Transform Infrared (FTIR) micros-
copy could bring the benefits of objective tissue evalua-
tion, together with the possibility of using this technique
as a first-line screening methodology to distinguish nor-
mal versus neoplastic samples  [Conti et al., 2003].
As it is known, position and intensity of infrared absorp-
tion bands, particularly in the midle infrared region (i.e. in
the wavenumber range from 4000 to 400 cm-1), carry in-
formation on the biochemical status of organic samples,
since they are related to the presence and amount of spe-
cific molecular groups and to their chemical environment
[Gunzler-Gremlich, 2002]. The use of the interferometric
technique (FTIR) allows to acquire in a reasonable time
(say from a few minutes to half an hour) well resolved
spectra with high signal to noise ratio from sample areas
as small as about 10x10 µm2 . If the interferometer is cou-
pled to a visible/IR microscope it is possible to obtain a
spectral map by scanning a selected sample region. Re-
cently, spectral images data can be obtained more rapidly
using a multielement detector (Focal Plane Array, FPA)
[Jackson et al., 2002], which allow to acquire simultane-
ously up to 4096 spectra from a 180x180 µm2 sample area

(down to 3x3 µm2 spatial resolution). In this case, a huge
amount of spectral data has to be analysed: for each point,
the instrument acquires  an interferogram (thousands to
more than one hundred thousand data points, depending
on the desired spectral resolution) which has to be Fourier
Transformed to obtain the absorption spectrum (hundreds
to thousands of data points, depending on the resolution
and on the extension of the spectral region of interest).
File dimensions go from hundreds of  Kb for a single
point spectrum  up to  tenths of  Mb for a FPA acquisition.

2 Experimental and data analysis
This preliminary study included six samples from six dif-
ferent patients: three neoplastic samples of follicular ly m-
phoma, as classified by morphology and immunoisto-
chemistry [Jaffe et al., 2001], and three non-neoplastic
samples of reactive lymph nodes. For each sample, our
attention was focussed on three tissue compartments: in-
trafollicular zone, mantle and interfollicular zone. About 7
µm thick sections were measured in transmission mode on
BaF2 supports in the 4000-700 cm-1 spectral region with 4
cm-1 resolution using a Bruker Vertex-70 spectrometer
coupled to a Hyperion 3000 microscope and equipped
with a single element HgCdTe detector and with a
HgCdTe FPA multidetector of 4096 elements. The Bruker
5.5. OPUS software  was utilized for data analysis.

2.1 Point by point spectra
For each compartment of each one of the six samples, ten
to twenty point by point absorption spectra (typically from
a sample area of 50 x 50 µm2 or  25x 25  µm2) were ac-
quired with the single element detector, as the ratio of the
transmitted to the incident photon intensity vs wavelength.
Cluster Analysis (using Euclidian distance to calculate
spectral distances and the Ward’s algorithm to determine
the degree of heterogeneity)  and Principal Component
Analysis (PCA) applied on the spectra, by selecting vari-
ous spectral regions and choosing different preprocessing
methods (such as straight line subtraction, vector normali-
zation, first or second derivative), allowed to:
- identify homogeneous groups of spectra (Figure 1) and
exclude outliers before making an average  to obtain a
representative spectrum of each compartment of a sample.
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The spectra representative of various sample regions can
be further analysed for a more detailed interpretation of
the behaviour of the bands.
-  identify wider classes of spectra from different samples,
such as “tumoral” and “non tumoral” (Figure. 2). In par-
ticular, our data indicate that non tumoral samples show a
higher biological variability, as it is expected from pathol-
ogy studies.

Figure 1: Spectra from mantle and intra-follicular zone of a
sample are well distinguished by Cluster Analysis through 1st
derivative and vector normalization in the range 1800-900 cm-1.

Figure 2: Two classes can be identified by PCA on intra-
follicular spectra after straight line subtraction in the range 980-
1350 cm-1: in this score diagram blue, grey and red refer to point
spectra from three different tumoral samples; magenta, cyan and
orange to three different non tumoral samples.

2.2 Hyperspectral images

Figure 3: Map of intrafollicular zone and mantle (6x7 grid of  20
µm2 points): in this example integration was performed at the
1080 cm-1 band. A typical spectrum is also shown in the center.

Hyperspectral images can be acquired either by mapping a
limited selected region using the single detector or by
mapping a wider region using the FPA multidetector.
It is then  possible to draw a map of  the peak height or of
the intensity, after integration, of a single band (Figure 3
and Figure 4). As it can be seen, different compartments
of the same sample can be clearly distinguished by FTIR.

Figure 4: Map of a whole follicle from an area of about 550x550
µm2 obtained with a 3x3 FPA grid, at 12x12 µm2 spatial reso-
lution. In this example integration was performed at the 1240
cm-1 band.

3 Conclusions
Present results are very promising as regards the use of
FTIR microscopy for objective tissue evaluation and first-
line screening to distinguish non-neoplastic versus neo-
plastic tissues. To this aim,  an improved performance of
the software would also be very useful: for example, to
perform clustering directly on the acquired hyperspectral
image of the same sample, in order to draw a color map of
the clusters; and to run PCA analysis directly on the hy-
perspectral data from different samples to characterize
tumoral and non tumoral classes.
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