
Abstract
Several  systems have  been  designed  to  reason
about  longitudinal  patient  data  in  terms of  ab-
stract,  clinically  meaningful  concepts  derived
from  raw  time-stamped  clinical  data.  All  ap-
proaches had to some degree severe limitations in
their treatment of incompleteness and uncertainty
that typically underlie the raw data, on which the
temporal reasoning is performed, and have gener-
ally narrowed their  interest  to  a  single subject.
We  have  designed  a  new  probability-oriented
methodology to overcome these conceptual and
computational  limitations.  The  new method  in-
cludes  also  a  practical  parallel  computational
model that is geared specifically for implement-
ing our probabilistic approach in the case of ab-
straction of a large number of electronic medical
records.

1 Introduction
The commonly occurring task  of  Temporal  Abstraction
(TA) was originally defined as the problem of converting
a series of time-oriented raw data (e.g., a time-stamped se-
ries  of  chemotherapy-administration  events  and  various
hematological laboratory tests) into interval-based higher-
level  concepts  (e.g.,  a  pattern  of  bone-marrow toxicity
grades specific to a particular chemotherapy-related con-
text)  [Shahar,  1997].  Several  of the main objectives in-
volved in solving this task include the need for a formal
representation  that  facilitates  acquisition,  maintenance,
sharing,  and  reuse  of  the  required  temporal  abstraction
knowledge. Most of these aspects were catered for by the
Knowledge-Based Temporal Abstraction (KBTA) method
[Shahar, 1997] and its extensions [O'Connor et al., 2001;
Spokoiny and Shahar 2001; Balaban et al., 2004]. Never-
theless, these solutions, although being evaluated as fruit-
ful, maintained several unsolved subproblems. These sub-
problems seem common to some of other methods sug-
gested for solving the TA task as well as closely related
systems applied in the clinical domain [De Zegher-Geets,
1987; Kohane, 1987; Russ, 1989; Kahn, 1991; Haimowitz
and  Kohane,  1993;  Miksch  et  al.,  1997;  Salatian  and
Hunter, 1999].  Thus, Considering these challenging sub-
problems suggests an additional method.

At least three subproblems in the former methods can
be  pointed  out,  which we propose to  solve through the
method discussed in this paper. First, raw clinical data, to
which  the  temporal  reasoning  is  being  applied,  are  as-
sumed as certain – that is, typically no mechanism is sug-
gested for handling the inherent impreciseness of the labo-
ratory tests taken to obtain the clinical data. Second, cur-
rent mechanisms used for completing missing data in an
electronic medical record are typically not sound and are
incomplete.  For  example,  in  the  case  of  the  KBTA
method,  a  knowledge-based  interpolation  mechanism is
used [Shahar, 1999]. However, completion of missing val-
ues is supported only for bridging gaps between two inter-
vals, in which the proposition (e.g., anemia level) had the
same value (e.g., moderate anemia). Furthermore, the val-
ue concluded by inference is too crisp, and a threshold is
used for computing it with absolute certainty, eliminating
uncertainty  and  leading  to  potentially  unsound  conclu-
sions. Third, no special mechanism has been devised for
multiple patient abstraction. That is, so far temporal ab-
straction was performed on a single patient only.

The proposed method, Probabilistic Temporal Abstrac-
tion (PTA), decomposes the temporal abstraction task into
four subtasks, that solve the case of a single patient, and
two more subtasks that solve the case of multiple patients.
In addition to overcoming the above mentioned subprob-
lems, we also propose a design for a parallel computation-
al model that implements the method.

Fig. 1. A typical instance of using the PTA method: the value
(vertical axis) distribution of a certain medical concept appears
for different (in this case consecutive) periods along the time ax-
is. The medical concept, which can be either raw or abstract, and
the specification of the set of periods (including the time granu-
larity) are determined by the application using the PTA method.
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2 The Subtasks of the PTA Method
Several basic notions in probability theory relate to time,
and are important when considering a probabilistic tempo-
ral  model,  task  or  mechanism.  A  stochastic  process
{X t : t∈T } is  a  set  of  random variables,  and  may

represent a clinical observation, a medical intervention, or
an interpretation context of some clinical protocol. The in-
dex is often interpreted as time, and thus Xt is referred as
the state of the process at time t. The set T is called the in-
dex set of the process. The clinical subtasks specified be-
low are defined in terms of these notions.

2.1 Single-Patient Subtasks 
Temporal abstraction for a single patient requires one ba-
sic  subtask,  interpolation,  and three interpolation-depen-
dent  subtasks  –  coarsening,  transformation  and  pattern
matching.

Temporal Interpolation. Estimating the distribution of a
stochastic process state, given the distributions of some of
its other states (Fig. 2). For example, estimating the distri-
bution  of  raw  hematological  data  or  derived  concepts
(such as bone-marrow toxicity grades) during a week in
which raw data were not measured, using the distribution
of values before and after that week. Applying the interpo-
lation subtask does not increase the abstraction level of the
underlying stochastic process, but rather serves the role of
a core operation that enables the application of actual tem-
poral abstraction.

Temporal  Coarsening. Applying an aggregation func-
tion to a  stochastic subprocess (Fig.  3).  The coarsening
subtask abstracts over the time axis and is aimed at  the
calculation of a stochastic process at a coarser time granu-
larity.

Fig.  2. An illustration  of the interpolation  subtask.  Given the
value distribution at several time points, there is a need to calcu-
late an unobserved value distribution. The solution suggested by
the PTA considers all value distributions.

Fig. 3. An illustration of the temporal coarsening subtask. Given
the value distribution at several time points, there is a need to
calculate an aggregated distribution.

  Temporal Transformation. Generating a stochastic pro-
cess, given stochastic processes of a lower abstraction lev-
el. For example, deriving bone-marrow toxicity grade dis-
tribution, given the distributions of the raw white blood
cell  and platelet  counts.  The transformation subtask ab-
stracts along the (clinical concept) abstraction-level axis.
  Temporal  Pattern  Matching. Locating occurrences  of
specific  values  in  certain  time  constraints  of  high-level
predefined temporal variables. As opposed to the temporal
transformation subtask, that maps all given data to a high-
er-level temporal concepts, this subtask is aimed at finding
those data sets which complies with the given pattern.

2.2 Multiple-Patient Subtasks
Applying the TA task to multiple patients requires extra
subtasks,  such  as  the  ones  explicated  below.  However,
these subtasks fit  also sophisticated needs of abstraction
for a single patient.

Temporal  Aggregation. Generating  an  aggregation  of
stochastic  processes.  The  Aggregation  subtask  abstracts
along the patient axis. This subtask is aimed at the appli-
cation of aggregation functions, such as minimum, maxi-
mum, average, etc. on stochastic processes.

Temporal  Correlation. Calculating the correlation be-
tween two stochastic  processes.  The  correlation  subtask
compares  two temporal  abstractions.  This  subtask is  in-
tended  to  mainly compare  two  patient  populations,  but
should work the same when comparing different time peri-
ods of the same patient.

3 The PTA Property
The central property of the PTA method is based on the
notion of temporal field, as defined below. Following this
definition, the property states, that each unobserved state
of some stochastic process is a linear combination of the
temporal fields of the observed states of the process. Thus,
the  unobserved  distribution  of  bone-marrow  toxicity
grades is a linear combination of all of the observed distri-
butions, before and after it. A proper basis that will fit the
requirements of the PTA property could be found in the
following two known definitions.

Let {wij}1≤i≤m ,1≤ j≤n and {i}1≤i≤m be  con-
stants. The random variables Xi are said to have multivari-
ate normal distribution, if:

A  stochastic  process {X i : i≥0} is  called  Gaussian
process if each state  Xi of the process has a multivariate
normal distribution.

Uncertain  Observations. Observed  states  of  stochastic
processes are distributed as a function of the clinical test
taken and the clinical data itself. Typically, where states of
stochastic processes have a normal distribution, the mean
(expectation)  of  the state  is  the  value sampled,  and the
variance is determined by the reliability or the precision of
the test taken.

X i=∑
j

wij⋅Z ji , Z j~Normal 0,1



Temporal Fields. Calculating a dependent variable given
the independent variables as they appear in a multivariate
distribution may imply a temporal persistence of the inde-
pendent variables. However, allowing the observed states
to induce a field1 over its temporal environment could ex-
press temporal knowledge about the stochastic process in
question, such as a periodic behavior or change of the ob-
served states. Thus, for each stochastic process, a temporal
field is induced by a time index, which formally means a
function that maps time points to states of the stochastic
process, as follows:

For example, suppose a stochastic process with a peri-
odic behavior and cycle length c. The temporal field of an
observed state of such stochastic process could be as fol-
lows:

Temporal Weighting. A specific choice for the selection
of the weights of the independent variables can be sug-
gested. These weights should express the notion that the
closer-in-time the observed state is – the more relevant it
is. That is, the absolute time difference between a depen-
dent state and its observed state should be inversely pro-
portional to the weight of the latter when estimating the
former. Therefore, there is a need to choose a monotonic
decreasing function of absolute time differences between a
dependent  state  and  its  inducing  observed  states.  The
weighting function is of the following form:

A natural choice for the monotonic decreasing weight-
ing function would be a normal density, where its variance
(σ2) determines the temporal tolerance of observed states
of the stochastic process. Thus, w may hold:

Prior Knowledge. Each stochastic  process  may have  a
prior knowledge of its  typical state.  Prior distribution is
expressed by giving it the –∞ time index for the temporal
field inducer argument, as well as the temporal field argu-
ment.

4 Mechanisms of the PTA Method 
The main computational  concept  in  our  methodology is
the PTA chain. A PTA chain is  defined as the application
of any subset  of the following composition of  subtasks,
while preserving the relative order among them:

Temporal Interpolation. The subtask of interpolation is
solved by the application of the PTA property. Given the
temporal  weighting function of  a  stochastic  process,  its
values need to be normalized to ensure they sum to unity.

1In the sense of an electromagnetic field.

The subset of sampled states which participate in the cal-
culation process of each unobserved state determines the
precision of its distribution, and could be determined giv-
en the temporal weighting function. If we interpolate in ti
and have all of the points that are known ts sampled, then:

For each temporal gap between sampled data, the pro-
cedure  Interpolate generally computes the value distribu-
tion of missing states starting at one extreme point (an ob-
served state) until either reaching the prior value distribu-
tion (and then doing the same in the other direction) or the
other extreme. This leaves out states in which prior value
distribution is expected, in order to reduce costs in time
and space. For the case in which updates to the underlying
clinical data occur, we consider a hierarchical system of
states, where each unobserved state has a set of observed
parent states, as depicted by Pearl [1987]. In case the sam-
ple is updated, propagating the new piece of evidence we
are viewing as the perturbation that propagated through a
Bayesian network via message-passing between neighbor-
ing processors.

The knowledge required for the application of the inter-
polation subtask includes for each type of PTA chain the
definitions of temporal fields (the default is set to persis-
tence of the inducer state), temporal weighting (the default
is set to normal density function with mean 0), prior distri-
bution of a typical state (no default is set), and a function
that maps each pair of clinical test taken and datum (sam-
pled value) to the distribution of the field inducing state
(default sets sampled value to the state's mean).

Temporal  Coarsening. The  procedure  Coarsen trans-
forms a given PTA chain to one with a coarser time granu-
larity. The value of such application to a subchain in the
requested time-granularity length is a stochastic state, ac-
cording to the following formula:

Temporal Transformation. The procedure Transform re-
turns the application of the given transformation function
to the given PTA chains according to the following formu-
la:

If g has the following form, then |g| is called a rate trans-
formation, and sgn(g) (positive, negative or zero) is called
a gradient transformation:

For example, in the case of a contemporaneous transfor-
mation of several arguments (e.g., height and weight) into
a  higher-level  abstraction  (e.g.,  body-mass  index),  the
time-series of the arguments are the same as the of the ab-
straction. However,  a  context  of a Bone-Marrow Trans-
plantation (BMT) is defined as the application of the fol-

fieldX t :T ℝ , X t :ℝ
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lowing transformation function to the Boolean day-granu-
larity stochastic process that represents a BMT:

Temporal Pattern Matching. The procedure  Match re-
turns the probability of the occurrence of the given tempo-
ral pattern in each subinterval of the given time interval.
The temporal patterns are represented by regular expres-
sions, where the concatenation operator stands for tempo-
ral succession, Kleene-closure stands for a temporally un-
bounded repetition and the alphabet g is the discrete
finite vector space spanned over the sample or transforma-
tion spaces of random variables composing the temporal
pattern, and g is the respective time granularity. That is, a
letter ∈g is  a  vector,  which its  i-th coordinate is
some possible discrete value of the i-th variable compos-
ing the pattern. For example, a pattern of platelet half-life
is composed of bone-marrow transplantation (first coordi-
nate) and platelet state (second coordinate), using  to
represent all value possibilities, and an hour-granularity:

The probabilistic nature of the underlying data requires
the temporal matching mechanism to compute the condi-
tional probability of the occurrence of each letter given the
occurrence of the subpattern preceding it. In order to iden-
tify the data used for the probability computation of the
preceding subpattern, one needs to find the time-series of
the  transformation  arguments  of  each  coordinate  in  the
preceding letters. This is accomplished by the definition
and application of functions of the following form:

Given these functions,  the interpolation mechanism is
used only for the resulting time intervals as well as given
the already computed subpattern-match  probability.  The
probability the occurrence of some pattern in a given time
interval is thus the joint probability of its letters, i.e., the
multiplication of their conditional probabilities. Comput-
ing the value distribution of some letter coordinate given
its conditional distribution (when matching a new interval,
that is not conditioned with the time-points given in the
former interval matched) is done by removing the weight-
ed temporal fields from the (interpolated) conditional dis-
tribution. The matching process continues until the proba-
bility for the occurrence of some letter's coordinate equals
or lesser than its prior probability, or until the pattern was
fully matched.

Temporal Aggregation. Applied to stochastic processes
of the same sample space and independent patients, result-
ing in a new stochastic process. This measure is computed
as a new PTA chain, where each of its state is the applica-
tion of some aggregative function (minimum, maximum,
average, etc.) to the corresponding states of the given PTA
chains. Suppose agg is some aggregation function and ti is
some time-point, then:

Temporal  Correlation. Applied to  stochastic  processes
of different sample spaces, independent patients or same,
resulting in a series of correlation factors. This measure is
computed as a time series of correlations between corre-
sponding states of the given PTA chains:

An example for a single patient would be the contempora-
neous correlations between height and weight or correla-
tion of height during different periods for the same person.

6 The Parallel Computational Model
The computational model used to compute a PTA chain is 
goal-driven, bottom-up and knowledge-based (the pattern
matching mechanism is top-down, however, as explicated
above). The main algorithm is thus required to compute
the result of a PTA chain (the goal), given the transforma-
tion and interpolation functions (the temporal knowledge)
as well as the access to the clinical data, beginning at the
raw (lowest abstraction level) clinical data. The computa-
tional  model  is  parallelized  in three  orthogonal  aspects:
(1) Time, during the calculation of the PTA chains’ states;
(2) Transformation, during the calculation of the transfor-
mation arguments; and (3) Patient, during the calculation
of the PTA chains for multiple patients.

The Main  Algorithm. A parallel  algorithm is  typically
presented in terms of a theoretical model for parallel com-
puting:  the  Parallel  Random-Access  Machine (PRAM)
[Brent, 1974]. In its basic architecture, the PRAM model
includes  p serial processors that have a shared memory.
We  shall  assume the  PRAM  supports  concurrent-read,
i.e., multiple processors can read from the same location
of shared memory at the same time.

The following procedure computes the PTA chain for
the given patient, goal and index set. First, it retrieves the
goal's transformation function. In case it does not exist,  it
retrieves  the  raw clinical  data,  interpolates  the  missing
clinical data, and may change in parallel the time granular-
ity. If the transformation function was found, its arguments
are retrieved, and the transformation is applied in parallel.

Complexity of the Computation.  The results of asymp-
totic run-time analysis for parallel combinatorial circuits
(Brent's  theorem) [Brent,  1974]  can  be  applied  to  such
analysis of the overall algorithm. The description of the
different PTA mechanisms suggests parallelizing the inter-
polation subtask and the temporal coarsening subtask on
the time axis, and the transformation subtask on its argu-
ments axis. Multiple-patients subtasks are parallelized on
the time axis as well as on the patient axis. Let args be the
the maximal number of arguments in all transformation,
let ΔT be the temporal length of the requested PTA chain,
let  p be  the number  of  processors,  and  let  level be  the
number of transformations applied until the requested goal
is reached, then the corresponding PTA chain are created
in:

g BMT t =BMT t−3∨∨BMT t90

agg t i
X 1 , ,X n=agg X 1t i

, , X nt i


hY t =〈T 1 , ,T n〉

X t i
,Y t j

=
Cov X t i

,Y t j


Var X t i
⋅Var Y t j



〈true ,〉〈 , high〉
〈 , high〉∪〈 , normal 〉∗〈 , low 〉



7 Implementation
The PTA architecture is in the process of fully being im-
plemented  using  the  C++  programming  language,  the
Standard Template Library (STL),  and the MPICH2 im-
plementation of the Message-Passing Interface (MPI)2, an
international  parallel  programming standard.  The  imple-
mentation  is  thus  object-oriented  and  platform-indepen-
dent. The implementation is in the process of fully inte-
grated  into the IDAN system  [Boaz  and Shahar,  2005],
which satisfies the need to access medical knowledge and
clinical data sources. 

8 Discussion
In this paper, we proposed a probabilistic method to solve
the task of abstraction of longitudinal clinical records, and
described a scalable [Hwang and Xu, 1998] parallel com-
putational model that implements it. The new method has
removed several limitations of former methods. First,  the
use of PTA chains enables the expression of uncertainty in
the  underlying  clinical  data.  Second,  two  mechanisms
were  developed  for  temporal  abstraction  of  the  clinical
data of multiple patients. Third, the interpolation mecha-
nism was shown to be sound and complete. However, the
previous model's assumptions were replaced with those of
the other's: observed clinical data are assumed to be inde-
pendently distributed. This assumption could be easily re-
moved, provided the extra medical knowledge of condi-
tional distribution functions for the underlying stochastic
processes available.

When dealing with probability of events that occur over
time, it is not unusual to assume the Markovian property.
This property states that the conditional distribution of any
future state, given the present state and all past states, de-
pends only on the present state and is independent of the
past.  Our probabilistic temporal  model, however, cannot
assume this known property for a couple of reasons. First,
the property does not hold for temporal chains, in which
past states help in forecasting future states. Second, the as-
sumption that is actually needed is one that would explicit-
ly state the influence of future states on  interpreting past
states, and in particular on interpolating the present state,
given past and future states.

Finally, there are two more points that are worth men-
tioning, while comparing the proposed method to the mod-
el used to solve the temporal abstraction task, as part of
the KBTA method. First, as it was specified in section 4,
the interpolation in the PTA model  is  performed at  the
lowest abstraction level only, as opposed to being repeat-
edly performed  at  every abstraction level  in  the  former
method.  Second, the temporal patterns can be acquired in
any temporal  representation language, such as CAPSUL
[Chakravarty and Shahar, 2001] or TAR [Balaban et al.,
2004], assuming it is reducible to  regular expressions in
the temporal semantics attributed above. The expressions
of the source language are then compiled to the formal

2http://www.mpi-forum.org/

regular  expressions beforehand,  thus gaining modularity
as well as run-time computational speedup.

We are in the process of fully implementing the new ar-
chitecture and evaluating it on a large longitudinal clinical
database. 
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