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Abstract

Within biomedical data analysis, visualization
can greatly improve data understanding and
support various data mining tasks. The pa-
per presents FreeViz, a visualization technique
for analysis of class-labelled, multi-dimensional
data. FreeViz visualizations can present data on
many features in the same graph, but through
optimization procedure choose a projection that
best separates instances of different class. The
paper gives mathematical foundations of Free-
Viz, and presents its utility on various biomed-
ical data sets, including those with thousands of
features from cancer gene expression studies.

1 Introduction
Medical data analysis may largely benefit from visualiza-
tion. The right visualization may outline which factors
govern the data and uncover their interactions. In the pa-
per, we will be concerned with predictive data mining tasks,
where each data instance (case) is described with a set
of features (predictive variables) and labelled with a class
(e.g. outcome, diagnosis). Despite many visualization
techniques available, there are not too many of those that
can visualize several features in the same graph, and, for
instance, include scatterplot (two or three features, the later
if plotted in 3D), parallel coordinates and RadViz (both for
presentation of data using many features)[Keim, 2002].

When considering data sets with many features, which
are typical in the domain of biomedicine, the principal
problem to solve is which features to visualize and which
projection to use, that is, how to order the selected fea-
tures in the graph. With increasing number of features,
any manual search for good projections becomes unfeasi-
ble. In principle, we would then prefer to use some au-
tomatic search forgood projections, that would optimize
some criteria for quality of interestingness. For a single-
class (unsupervised) data, a well-known technique of pro-
jection pursuit is available for the task[Huber, 1985]. But
interestingly, for class-labelled data, suchintelligent data
analysisapproaches are at best rare, while the task is some-
how better defined: interesting visualization is the one that
well separates data instances of different class. We are
aware of two approaches in this category, McCarthyet al.’s
RadViz projections that place correlated features in RadViz

close to each other and thus try to improve on class sepa-
ration, and Lebanet al.’s Vizrank [Lebanet al., 2005] that
directly optimizes class separation and uses the heuristic
search through projection space[McCarthyet al., 2004].

In the paper, we propose an iterative algorithm that op-
timizes class separation in visualization of class-labelled
data sets. The visualization it uses is based on Rad-
Viz [Brunsdonet al., 1998], and is called FreeViz since it
relaxes the constraints of placement of feature anchors; in
RadViz, these are placed on the boundary of a circle. Free-
Viz is fast, can propose good visualizations even in the case
of highly-dimensional data sets such as those from cancer
genomics within seconds, and can be further used for fea-
ture subset selection and feature interaction discovery.

We first give the background on RadViz and its intelli-
gent visualization counterpart VizRank. We formally de-
scribe FreeViz, present a mathematical derivation of its fit-
ness (quality) function describe the corresponding imple-
mentation of the optimization algorithm. We then give sev-
eral cases that show a utility of FreeViz in biomedical data
analysis, also including examples that use large cancer gene
expression data set. We conclude with discussion and ideas
for further work.

Before we go on, notice that any modern visualization
can largely benefit from colored display. Figures in the
paper are printed in black and white, which at places sig-
nificantly decreases their clarity. The reader is invited to
visit a supplemental web page (www.ailab.si/supp/freeviz-
idamap) for better images.

2 Background
RadViz [Brunsdonet al., 1998] is a visualization that is
suitable for data described with a set of continuous features
scaled to the interval [0, 1]; discrete features can be visu-
alized through first transforming them to continuous. The
features are represented by anchors placed evenly on the
unit circle. The data instances are plotted inside the circle;
the position of each is determined by its features and the
positions of the corresponding anchors. Informally, each
anchor pulls the instance towards itself with a strength pro-
portional to the value of the corresponding feature, so the
position of an example depends upon the relative values of
features (e.g. if all features have equal values, the instance
is placed in the center).

Figure 1(a) shows a RadViz for three features (smooth-
ness, worst area, worst concavity) of the Wisconsin Di-
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(a) RadViz for smoothness, worst area, worst concavity
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(b) RadViz using all twenty features

Figure 1: Two RadViz graphs for Wisconsin Breast Cancer Data

agnostic Breast Cancer data (WDBC) from the UCI ML
repository[Blake and Merz, 1998]. The interpretation of
such a graph is rather obvious: tissues with a large “worst
area” tend to be malign and tissues with a large “worst
concavity” are benign, while the role of smoothness is not
clear. The problem arises when (or, better, because) the
data instances are described by more than a few features.
The actual WDBC data has 20 features and the correspond-
ing RadViz looks as shown in Figure 1(b); the order of fea-
tures is the same as in the data.

RadViz can be truly useful only when used with
some methods for optimizing it. The features for Fig-
ure 1(a) were chosen using the algorithm VizRank devel-
oped by[Lebanet al., 2005], which exhaustively searches
through all combinations of features within the specified
parameters (usually we set the upper number of features to
four or five) and evaluates the projection using a k nearest
neighbors classifier. A projection is good if each instance is
surrounded mostly by instances of its own class. To avoid
overfitting, cross-validation is used instead of computing
the quality of the graph directly. Since the number of com-
binations rises exponentially with the number of features,
VizRank checks the projections ordered by the quality of
the features they use, where the features are evaluated with
a common measure such as ReliefF or information gain.
Despite the huge number of combinations which can on
microarray data easily reach1020, RadViz can most often
find good projections within minutes of runtime.

By placing the anchors evenly around the circle and let-
ting each pull in its own direction, Radviz assumes that the
features are not correlated. Placing the anchors correspond-
ing to strongly correlated features closer together would be
potentially beneficial in conquering the noise and would, at
the same time, offer a cleaner and more informative visual-

ization. This idea is successfully exploited by McCarthyet
al. [2004], but where a limitation with respect to RadViz is
that visualization includes all available features.

The other limitation of RadViz is that it in principle as-
sumes that all features are equally important. Since this
is usually not the case, the quality of the projection is de-
creased since the pull of a less important feature(s) is as
strong as those of the important ones.

The visualization we propose, FreeViz, overcomes both
limitations by allowing the anchors to be placed anywhere
in the circle. The correlated features can thus be placed
together and the less important features can be put nearer
to the circle’s center to lower their impact. Even more than
with RadViz, the usefulness of FreeViz depends upon the
methods for optimizing it.

3 Formal Description and Optimization
Let Ai = [Ai

x, Ai
y] be thei-th anchor, andA be a matrix of

anchors. Each instance is described by a vector of feature
values,e = [e1, e2, . . . , en]. The position of instancee in
the circle is computed asex =

∑
i eiAi

x, ey =
∑

i eiAi
y

or, in matrix notation,e′ = eA. A thus represents a linear
transformation that projects from the original feature space
to a two-dimensional FreeViz.

Instead of using k-nearest neighbours, as VizRank does,
we will optimize the projection by minimizing its potential
energy, vaguely following the real-world physics of grav-
itational/electric fields[Halliday and Resnick, 1978]. Let
Ff→e be the force acting on instancee due to instance
f . The force will depend on the distance between the
two instances, their charges (weights of instances) and the
type of their charges (instances’ class – instances of the
same class will attract and instances of different classes



will repel each other). When a particlee is moved by
de′ the work and the change of the potential energy equals
dE = A = −Ff→ede′.

In a system of multiple particles, the force acting on a
particle equals the sum of forces exerted by all other parti-
cles,

Fe =
∑
f 6=e

Ff→e

and the change of potential energy when movinge is
dEe = Fede′. When multiple particles are moved at once
(as they will be in our case), the change of energy equals
the sum of changes,

dE = −
∑

e

Fe de′

We shall use the gradient method to optimize the system,
i.e. to minimize its potential energy by moving the anchors.
For this, we need to compute the gradient of the energy as
a function of the anchors’ position. Consider thate′ = eA
and soe′ = e dA. When anchors are moved, the change in
energy equals

dE = −
∑

e

Fe (e dA)

For moving thex-coordinate of thei-th anchor, the related
change in energy isdE =

∑
e Fe,xeidAi

x, whereFe,x is
thex-component of the forceFe, therefore

dE

dAi
x

= −
∑

e

Fe,xei

The computation of they-coordinate is analogous. The
formula is consistent with our intuition and with the na-
ture which (at least on grand scale) minimizes the potential
energy by accelerating the objects in the direction oppo-
site to the energy gradient (that is, in the direction of the
force). Instances are attracted or repelled from each other,
but since they are held in place by the anchors, the forces
between them are transmitted to the anchors. The force
acting on each particle is distributed between the anchors
proportionally with the values of corresponding features,
ei.

The formula is independent of the definition of the force.
Its sign should depend upon whether the two instances are
from the same class or not, so the force is attractive in the
former and repulsive in the latter case. If instances are
weighted, the force should rise linearly with the instance’s
weight. As for the distance, in our three dimensional space
the usual large scale forces decrease by the inverse-square
law, F ∼ 1/r2. In the two-dimensional world of Free-
Viz, the density of the field lines decreases linearly with
the distance, so the force should be proportional to1/r. On
the other hand, we can borrow the idea of Gaussian ker-
nels from the statistics and let the force be proportional to
e−r2

. After some testing we found that the inverse-square
law works best, while with linear or Gaussian kernels the
force decrease with distance seems too slow.

A more important consideration regarding the force is
whether it needs to decrease or increase with the distance.
When separating instances of different classes, we are most

Input: number of instances N
number of features A
instance projections P
a table of instances E
classes of instances C

Output: a vector of gradients G

initialize F to 0
for e := 1 to N

for f := e+1 to N
dx := P[e].x - P[f].x
dy := P[e].y - P[f].y
r := sqrt(sqr(dx) + sqr(dy))

if C(e) = C(f)
then F_ef := -rˆ2
else F_ef := 1/rˆ2

Fefx := F_ef * dx/r
F[e].x += Fefx
F[f].x -= Fefx

Fefy := F_ef * dy/r
F[e].y += Fefy
F[f].y -= Fefy

initialize G to 0
for e := 1 to N

for i := 1 to A
G[e].x += F[e].x * E[e][i]
G[e].y += F[e].y * E[e][i]

Figure 2: Computation of gradients for FreeViz optimiza-
tion

concerned with those that are close together, while we do
not need to push the groups that are already well separated
even further apart. The repulsive force must therefore fall
with the distance. On the other hand, the attractive force
would try to squeeze the well-defined groups of instances
from the same class into a point, and this unneeded effect
would rise as the instances come closer together. For a con-
trast, if an instance is far from other instances of its own
class and surrounded by instances of another, the former
will not attract it, due to a large distance, while the latter
will push it around and, in the best case, throw it out in
a random direction. The attractive force should therefore
increase with the distance.

In a sense, the repulsive forces act like the electromag-
netic or gravitational forces which decrease by the distance,
while the attractive forces resemble the strong force that
binds quarks and which increases by the distance, like a
rubber band.

In the algorithm for computation of gradients (Figure 2)
we make use of the action-reaction symmetry: the force
between each pair of instances is computed only once and
added to the sum of forces for both instances, but with dif-
ferent directions (Ff→e = −Fe→f ). The force (F ef ) is
separated into itsx andy components (Fefx andFefy )
by multiplying it by projections tox andy axis,dx/r and
dy/r, respectively.

The algorithm is rather simple and relatively fast: its
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Figure 3: FreeViz for Wisconsin Breast Cancer data

time complexity isO(N2 + NA), whereN is the number
of instances andA the number of features; the first term
comes from computation of forces between particles and
the second from the loop that distributes the forces acting
on each instance between the anchors. Although the oper-
ations performed by the algorithms are rather elementary,
the squared number of instances suggests that the algorithm
may be less useful when the number of instances is large.

The computed gradients can be used in optimization with
the ordinary gradient method; at each step, the gradient
vector is subtracted from the vector of anchors, the anchors
are centered and renormalized (the farthest anchor should
lie on the unit circle), and the projections are recomputed.
The procedure is repeated until there is no considerable de-
crease (e.g. 1 %) of the potential energy for few consecu-
tive steps.

Gradient method of optimization could be replaced with
more advanced methods, but we found it fit for our purpose:
it is fast and does not seem to stop in local minima.

Figure 3 shows a FreeViz for WDBC optimized by the
proposed algorithm. For a clearer picture, we did not plot
the features whose anchors are less than0.5r from the cen-
ter (marked with a dashed circle). The “area”, “fractal-
dimension” and “worst-area” listed in order of importance,
seem to be correlated evidences for benignity, while the
other three features speak for malignity of the tumor.

An important note about the algorithm is that it should
not be used when the number of features exceeds the num-
ber of instances. Formally, ifE is a matrix of instances
and its rank equals the number of instances, the system
EA = P can be solved for any matrix of instances’ po-
sitionsP. In other words, if we have more features than
instances, there exists a matrix of anchor positions for any
prescribed positions of instances. The described algorithm
is in this case able to overfit the data, resulting in meaning-
less projections.
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Figure 4: FreeViz for zoology database

4 Case Studies and Discussion
We start with an example on a zoology data set which
contains 101 animals described by their properties (lay
eggs, breath, have hair. . . ) and classified into seven groups
(mammals, birds, reptiles. . . ). As Figure 4 shows, the ani-
mals can be separated using the FreeViz projection and the
corresponding positions of features make sense. For in-
stance, mammals (◦) have hair, backbone, and as the most
important feature, milk. Being airborn is typical of birds
(×) and insects (÷); the former are distinguished by feath-
ers, and the latter have more legs (this feature can have
values 0, 2 and 4). Amphibians are put between fish and
reptiles.

To test the visualization on a more complex data, we
have tried FreeViz on several microarray cancer data sets.
The resulting visualizations are shown in Figure 5. The fea-
ture names are intentionally uninformative (paper focuses
on the study of class-separability, and while biomedical in-
terpretation would be useful, it is beyond the scope of our
reported study) and we have hidden them for the sake of
clarity. The legend is omitted for the same reasons. To
limit the number of features well below the number of in-
stances, we have used ReliefF[Kononenkoet al., 1997] to
select 20 most important genes for each data set (except
for Lung cancer which has somewhat larger number of in-
stances, where we have chosen a subset of 40 features).

Figure 5(a) shows the visualization of the data set that
studies the outcome for the diffuse large B-cell lymphoma
(DLBCL) [Shippet al., 2002], where the selected 20 fea-
tures are well able to separate between the two classes. In
another example, the data on four types of tumors in child-
hood (SRBCT)[Wang et al., 2003], see Figure 5(b), the
optimization yielded an even clearer separation.

The largest data set we tackled is that on a lung can-
cer [Bhattacharjeeet al., 2001] with 203 instances, 12600
genes and five classes (Figure 5(c)). The separation is gen-
erally good, except for the class∗, which is apparently too
small, so the total force that its instances exert on anchors
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(b) SRBCT: 82 instances, 20 (out of 2308) genes

........

........

........

........

........

........
........
........
........
.........
.........
.........
.........
.........
.........
.........
..........
..........

..........
...........

...........
............

............
.............

..............
................

..................
......................

...............................


.........................
....................

.................
...............

..............
.............
............
...........
...........
..........
..........
..........
..........
.........
.........
.........
.........
.........
.........
........
........
........
........
........
........
........
........
........
.....

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

��

�
��

�

�

�� �

�

�
�

� �

�
�

�

�

�

�

�

�

�
� ◦◦ ◦◦

◦
◦
◦◦◦

◦

◦ ◦◦◦
◦

◦ ◦
◦ ◦
◦ ◦
◦ ◦

◦

◦◦
◦◦◦◦
◦◦

◦

◦
◦

◦◦
◦◦

◦
◦

◦◦
◦◦
◦
◦

◦
◦

◦ ◦◦
◦◦

◦

◦◦ ◦◦ ◦◦
◦

◦◦
◦◦

◦
◦◦
◦

◦
◦◦◦
◦

◦
◦

◦
◦◦◦
◦

◦◦ ◦◦◦
◦
◦ ◦

◦
◦

◦
◦

◦
◦

◦
◦

◦

◦

◦ ◦◦◦

◦

◦
◦◦◦

◦◦ ◦

◦
◦

◦
◦

◦

◦
◦ ◦

◦

◦◦
◦◦ ◦
◦

◦

◦

◦

◦
◦
◦

◦◦
◦
◦

◦ ◦

×

×

×

×

×
××

×

×

××
×

×

×
××

×

+
+ +

++
+

+

+ +
+

+

+
+

+

+
+

+

+
++

+

?
??

?
?

?
?

? ?
? ?

?

?

?

? ? ??
?
?

∗∗ ∗

∗

∗
∗

class

◦ 0
× 1
+ 2
? 3
∗ 4

(c) Lung cancer: 203 instances, 40 (out of 12600) genes
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(d) Brain tumor: 90 instances, 20 (out of 5920) genes

Figure 5: FreeViz on cancer microarray data



is incomparable to the forces by instances of the larger
classes. In such cases, the algorithm could be augmented
by adjusting the strength of forces according to the size of
classes.

For the brain tumor data with 5920 genes and 90 in-
stances (Figure 5(d)), separation was somewhat worse.
Again, the instances belonging to the smaller classes (? and
∗) are lost between those of the large classes.

In all cases, running ReliefF took up to half a minute,
while FreeViz optimization took a few seconds on a
mediocre PC (Pentium IV, 1800 MHz).

5 Conclusion and Future Work

The paper presents a new method for intelligent visualiza-
tion of class-labelled, multi-dimensional data sets. We have
presented its utility on a number of biomedical data sets.
Results of these preliminary studies are very encouraging:
FreeViz is very fast and in all presented cases found visu-
alizations of high quality with clear class separation.

There are many ideas that we have on how FreeViz can
be exploited further. Some most important include:

• Visualization of probabilities. By computing the po-
tential fields for a grid of points in the circle, it is pos-
sible to color the inside of the circle so that the color
corresponds to the most probable class for an instance
projected to that point and the color’s saturation to the
probability. We have implemented this functionality,
but presenting it in the proceedings would require a
color print, so we show it only on supplemental web
pages (www.ailab.si/supp/freeviz-idamap).

• Classification. FreeViz visualization can be employed
in classification of new cases. The simplest method,
for instance, to produce a classifier from those pic-
tures is to project the instance which is to be classi-
fied into the FreeViz space and observe its k nearest
neighbors. Our experiments (not published here) with
this are very encouraging and show that obtained clas-
sification accuracy, AUC and Brier scores are in the
same range as those from logistic regression, naive
Bayesian classifier and SVM.

• Misclassification costs. With the current implementa-
tion of the algorithm, the strength of repulsive forces
depends upon the distance between the instances but
not on their classes. By modifying it so that differ-
ent combinations of classes would repel with different
strengths, misclassification costs could easly be incor-
porated within analysis.

FreeViz is a available as a part of RadViz visual-
ization widget in open-source data mining suite Orange
(www.ailab.si/orange,[Dem̌sar and Zupan, 2004; Zupanet
al., 2004]. As such it also offers other functionality, such as
manual placement of anchors, selection of subsets of exam-
ples and similar, which is not described in this paper. See
also supplemental web page (www.ailab.si/supp/freeviz-
idamap) for additional material and figures from the paper
in color.

References
[Bhattacharjeeet al., 2001] A. Bhattacharjee, W. G.

Richards, and J. Stauntonet al. Classification of human
lung carcinomas by mrna expression profiling reveals
distinct adenocarcinoma sub-classes.Proc. Natl. Acad.
Sci. USA, 98 (24), 2001.

[Blake and Merz, 1998] C.L. Blake and C.J. Merz. UCI
repository of machine learning databases, 1998.

[Brunsdonet al., 1998] C. Brunsdon, A. S. Fotheringham,
and M. E. Charlton. An investigation of methods for vi-
sualising highly multivariate datasets. InCase Studies of
Visualization in the Social Sciences, pages 55–80. Joint
Information Systems Committee / ESRC, 1998.

[Dem̌sar and Zupan, 2004] J. Dem̌sar and B. Zupan.Or-
ange: From Experimental Machine Learning to Interac-
tive Data Mining, A White Paper. Faculty of Computer
and Information Science, Ljubljana, Slovenia, 2004.

[Halliday and Resnick, 1978] D. Halliday and R. Resnick.
Physics. John Wiley and Sons, New York, 3rd edition,
1978.

[Huber, 1985] P. J. Huber. Projection pursuit.The Annals
of Statistics, 13(2):435–474, 1985.

[Keim, 2002] D. A. Keim. Information visualization and
visual data mining.Transactions on Visualization and
Computer Graphics, 6(1):59–78, 2002.

[Kononenkoet al., 1997] I. Kononenko, E.Šimec, and
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