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Abstract 
This paper presents a novel approach for the 
extraction of gene regulatory networks from 
DNA microarray data. The method is applied to 
the reconstruction of a network of interactions of 
genes involved into the cell cycle of 
Saccharomyces Cerevisiae. The approach is 
characterized by the integration of data coming 
from different experiments together with the 
knowledge available on the biological process 
under analysis and on the dynamics of the 
process itself. The method is capable to 
reconstruct known relationships among genes 
and to provide meaningful biological results. 

1 Introduction 
A noteworthy research effort in Biomedical informatics 
has been recently devoted to the development of methods 
for the automated extraction of gene regulatory networks 
from DNA microarrays data. Such interest is motivated by 
the capability of DNA microarrays to describe cell 
molecular processes at the whole genome level. The 
availability of experiments in which a certain cell 
condition is followed over time gives the chance to learn 
dynamic models of gene to gene interactions. Several 
algorithms have been implemented so far: a pioneering 
work is represented by the REVEAL approach, which 
extracts networks expressing Boolean relationships 
between genes through a heuristic search strategy based 
on mutual information [Liang et al., 1998]. More recently, 
other methods have been presented to derive regulatory 
networks from microarray data, including methods based 
on differential equations [De Jong, 2002] and dynamic 
probabilistic networks [Perrin et al., 2003]. All those 
methods have pros and cons; however, given the very 
nature of the data, none of the approaches may lead to 
reveal all the biochemical pathways underlying the 
observed processes. As a matter of fact, a certain mRNA 
stream does not always correspond to the same protein, 
due to potential modifications after transcription and after 
translation; even more importantly, the dynamics of 
biochemical reactions cannot be captured by the (low) 
sampling time available in DNA microarray experiments. 
For these reasons, it is of interest to integrate data coming 

from different sources, multiple experiments and the 
available background knowledge to derive models which 
should be able to describe as close as possible regulatory 
interactions occurring between genes. In this paper we 
present a novel approach to derive a network of potential 
interactions of genes involved in the yeast cell cycle. The 
approach integrates data coming from two different 
experiments and the knowledge available on the 
biological process and on the dynamics of cell cycle. 

2 Modeling gene networks 
Following the approach proposed by Schlitt and Brazma 
[Schlitt, 2005], it is possible to model gene networks at 
different levels of detail. As a consequence, four basic 
classes of models can be distinguished: a) Parts lists, 
referring to the collection and systematization of the 
network components; b) Topology models, describing the 
interactions between the parts; c) Control logic models, 
describing the effect of regulatory signals; d) Dynamic 
models, modeling the dynamics of gene interactions.  
The so-called part list is often directly extracted from 
knowledge available in Gene Ontology (Gene OntologyTM 
Consortium, http://www.geneontology.org). Such 
information allows to select only the genes which are 
known to be involved in the process which is under study. 
However, other secondary bioinformatics databases can 
be conveniently exploited, such as the Gene database, 
maintained at NCBI (http://www.ncbi.nlm.nih.gov).  
The gene-gene interaction network topology is learned 
from data. In this case, it is crucial to assign a meaning to 
the network connections. In the literature, a first 
interpretation is that, given two genes G1 and G2 
represented in the network as nodes, G1 is directly linked 
to G2 only if G1 is a transcription factor for G2. In this 
case the link describes a physical interaction between the 
two genes. A second interpretation is that an edge 
between G1 and G2 means a generic “cause-effect” 
relationship, such that a change in the expression of G1 
causes a change in the expression of G2. In this case we 
are describing a phenomenological event, regardless of 
the physical interactions between the two genes. Rather 
interestingly, in some model organisms, such as 
Saccharomyces Cerevisiae (baker’s yeast), it is now 
possible to learn from data both kind of networks.  



An important data set on the interactions between the 
genes and their transcription factors has been collected by 
Lee et al [Lee et al 2002] in the so-called ChIP-on-chip 
experiments. Such data have been used to derive the 
topology of a network of physical interactions.  
On the other side, Hughes et al. [Hughes et al., 2000] 
performed a complex experiment to detect the effects of a 
single gene mutation. Given a DNA microarray 
experiment on a mutant, corresponding to a single 
knocked-out gene, a significant change of the expression 
level in any of the non-mutated genes with respect to the 
wild-type case is supposed to highlight a relationship with 
the knocked out gene.  
As mentioned in the introduction, a large number of 
control models have been studied in the literature, starting 
from Boolean relationships and moving towards 
probabilistic ones [Liang et al., 1998; De Jong, 2002, 
Perrin et al., 2003]. All those models can be considered 
also dynamic models, although the emphasis is not given 
to the description of the biochemical reactions, but rather 
to the phenomenological relationships between the 
problem variables, i.e. the genes. Such models are often 
derived from “dynamic data”, i.e. time series of gene 
expression profiles usually collected with experiments 
carried on in cell cultures [Spellman et al., 1998]. 
A consistent literature is also available on the quantitative 
modeling of the biochemical networks. For what concerns 
yeast, for example, several papers appeared on the cell 
cycle dynamics [Sveiczer et al., 2004]. It is important to 
notice that such models are designed for simulation 
purposes, and aim at describing at a “physical” level the 
gene product interactions. Since they must model also fast 
reactions, they are typically not identifiable from data, but 
they require knowledge on the stoichiometric coefficients 
of each single biochemical reaction. 
In our case, we are interested in providing a description of 
the interactions of the genes involved in the cell cycle of 
Saccharomyces Cerevisiae, taking into account all the 
four levels mentioned above: we will propose a network 
model based on different data sources and on the 
knowledge available in the knowledge repositories (parts 
lists), which relies on a network topology derived from 
data (topology modeling), and which models the 
dynamics of control interactions between genes (control 
logic and dynamic models). 
 

3 The proposed approach 
 
In this paper we propose a method to infer gene to gene 
interaction networks in Saccaromyces Cerevisiae cell 
cycle. The basic steps of the method are described in 
Figure 1; they can be summarized as follows: 1) learning 
of an initial network topology from mutant data; 2) 
selection of the genes involved in the cell cycle; 3) 
filtering of the selected genes on the basis of the available 
data on the cell cycle dynamics; 4) learning the final 
interaction network and a dynamic model of control with 
a genetic algorithm search. 
 

 

 
 

Figure 1. The proposed method 
 

3.1 Learning the initial network topology from mutant 
data 
This step is based on the analysis of the data made 
available by Hughes et al. [Hughes et al., 2000], already 
introduced in Section 2. They collected the data of about 
300 experiments in which a single gene has been 
knocked-out and the RNA abundance of all the other 
genes (about 6800) has been measured through c-DNA 
microarrays. The goal of this study was the detection of 
the functional modules of each mutated gene. Starting 
from the mutants experiments, it is possible to derive a 
first network of gene interactions: this network can be 
easily represented with a connection matrix D with 
elements Dij which express the relationships between gene 
i and gene j; if Dij=1 the connection is present, if Dij=0 
the connection is absent. 
After the analysis of the Huges data, we obtained a matrix 
of 6800 x 276 elements, where each column corresponds 
to an experiment with a single mutated gene, while each 
row corresponds to a certain gene. The semantic of the 
network can be augmented with the sign of the 
relationship (enhancement or inhibition).  

3.2 Gene ontology and dynamic networks filtering 
The dimension of the matrix D can be conveniently 
reduced by resorting to the knowledge available in Gene 
Ontology. In our case we selected only the genes involved 
in the cell cycle biological process, thus reducing the 
matrix D to 502 x 34.  
Since our main goal was to learn a dynamical model of 
the control of genes involved in the cell cycle, we then 
resorted to the “dynamic” data sets available in the 
literature. In the case of yeast cell cycle, the reference data 
are the ones coming from a well-known experiment from 
Spellman [Spellman et al., 1998]. In this case the mRNA 
data have been collected in 18 different time points (one 
each 7 minutes). Since the cell cycle for the yeast under 
the experimental conditions lasts 66 minutes, it is possible 
to observe almost two complete mitotic cycles.  
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The knowledge on the dynamics of the cell cycle period, 
together with the information on the sampling time, limits 
the scope of the investigation to search for relationships 
which can be reasonably detected in the available data.  
In particular, given the sampling time, we cannot detect 
signal with frequency components higher than (1/(2*7) 
min-1). For this reason, we have filtered out the gene 
profiles with energy content located in high frequencies, 
with a cut-off frequency of 0.05 (1/20) min-1. Such a 
choice is able to preserve the cell cycle frequency and its 
first harmonic component. In this way, the matrix D 
dimension has been then further reduced to 226 x 19.  
 

3.3 Learning dynamic models 
Starting from the connection matrix obtained after 
filtering, we implemented a novel algorithm to select the 
final model of the gene network interactions. Such step 
needs two ingredients: a) the choice of a dynamic 
mathematical model able to describe the available data; b) 
a strategy to search for potential relationships in the 
unexplored portion of the connection links (a matrix D’ 
226 x 207). In order to accomplish with this goal, we have 
exploited discrete time dynamic linear models and a 
Genetic Algorithm (GA) search.  
Dynamic linear models have been selected, since they are 
the simplest class of models which allows periodic or 
damped oscillation behaviors.  
The dynamics of the mRNA ratio1 (x) of the i-th gene is 
therefore described as: 

∑
≠=

+=+
jij

jijijiiii kxcakxakx
,1

)()()1(  

where the aijs are connection weights and the matrix 
C=|D D’|226x226 is the connection matrix obtained by 
concatenating the known matrix D206x19 and the unknown 
matrix D206x207 that has to be learned from the data. Given 
a certain network topology, i.e. a matrix C, we can easily 
learn the parameters aij from the available data through 
least square fitting. Different models, i.e. different C 
matrixes, can be compared, and hence selected by 
applying a model selection score. In our case we exploited 
the Akaike Information Criterion score (AIC).  
The space of  all possible models (i.e. possible 
connections) is super exponential; therefore it has been 
searched through a Genetic Algorithm strategy, with a 
fitness function given by the AIC score. In particular, the 
Genetic algorithm has been implemented by selecting 20 
“individuals” (i.e. initial samples for the matrix C) which 
have evolved for 400 generations with the following 
parameters: cross-over probability = 0.9, mutation 
probability = 0.1, and probability of selecting the i-th 
individual (i.e. a certain matrix C) which is proportional to 
the fitness. Convergence of the solution has been visually 
inspected. 

                                                 
1 The available measurements are coming from cDNA 

experiments. Therefore the problem variables are expressed as 
ratios of mRNA with respect to the basal condition (time =0) 

3 Results  
Interesting results have been obtained in all phases of 

the learning process. To evaluate such results, we 
considered 22 genes whose role in the cell cycle is well 
characterized and we investigated the capability of our 
method of reconstructing the known relationships on the 
basis of the available data. 

We first exploited the data coming from the Huges 
disruption experiment, in which only 6 of those 22 genes 
have been mutated. We thus inferred a network (shown in 
Figure 2a) in which some connections appear to be 
supported by the information available in the literature 
(e.g. some links involve a gene and its transcription 
factor). This network was extended following the strategy 
proposed in this paper: in the final graph obtained (shown 
in Figure 2b) a significant number of the inferred 
connections between the 22 cell cycle genes reflects the 
knowledge available in the literature about the gene to 
gene interactions. In particular, the network shows the 
following interesting relationships: 
a) Mcm1 interacts with Clb1: the genes that normally 
exhibit a G2-to-M-phase-specific expression pattern, such 
as Clb1, are not induced in the absence of functional 
Mcm1; moreover, it was demonstrated that Clb1 transcript 
levels are substantially reduced when functional Mcm1 is 
absent. b) the Clb5-Clb1 and Clb2-Clb1 links express 
complex (indirect) interactions between cyclins, the 
proteins which regulate the overall cell cycle (see 
http://mips.gsf.de/genre/proj/yeast/). c) Far1 is a cyclin-
dependent kinase inhibitor, and it is therefore activated by 
the cyclin levels, such as Clb1. 
 

 
 

 
Figure 2. Graph connectivity of some of the 22 well-

characterized cell cycle genes: a) initial disruption 
network, b) final network obtained exploiting background 
knowledge and dynamic data 
 
Examining the overall derived network, we observed a 
scale-free connectivity: about 170 genes out of 226 are 
linked with no more than 5 genes, while only 10 genes are 
connected with more than 40 other genes. Such latter 
genes are the hubs of the final gene interaction network. 
Some of the hubs are: Swi4, the DNA binding component 
of SBF transcription factor; the two B-type cyclins Clb1 
and Clb2, activators of Cdc28 at G2/M phase of the cell 
cycle; Cdc46, that encodes a member of the Mcm2-7 
family of proteins involved in the initiation of DNA 
replication; Cdc27, subunit of the Anaphase-Promoting 

Sic1
Mcm1

Bck2

Far1

Clb1

Clb5

Cln3

Cln2

Cln1

Cdc6 Cdc6
Sic1

Mbp1 Swi5 

Swi4

Clb2Clb6 
Cdc15 

Mad2 

Swe1 

Cln2

Cln3

Clb1

Bck2 Cln1Mbp1
Swi5

Swi4

Swe1
Clb6

Clb2

Mcm1



Complex/Cyclosome (APC/C); Orc1 which directs DNA 
replication; Bim1 which is the microtubule-binding 
protein that together with Kar9p delays the exit from 
mitosis when the spindle is oriented abnormally; Rnr1 
(Ribonucleotide-diphosphate reductase), which is 
regulated by DNA replication and DNA damage 
checkpoint pathways; Dsk2, a nuclear-enriched ubiquitin-
like polyubiquitin-binding protein, required for spindle 
pole body (SPB) duplication and for transit through the 
G2/M phase of the cell cycle; Tub2 the beta-tubulin, 
which associates with alpha-tubulin to form tubulin 
dimmer; the dimers polymerize to form microtubules, 
required for mitosis.  
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We also carried out several tests by repeatedly running the 
Genetic Algorithm for 400 evolutionary steps with 
different initializations. We compared the final and initial 
generations observing that: 1) in the final population some 
of the hubs are unchanged (Bim1, Clb2, Dsk2, Rnr1 and 
Swi4), while some are added. 2) The number of 
connections varies approximately from 1100 to 1300. This 
means that the majority of the links comes from the 
experimental data of Hughes and that the method used 
adds approximately the 19% of the initial connections. 3) 
The improvement of the fitness of the best model with 
respect to the initial conditions ranges between 3% (worst 
case) to the 4.5% (best case). We are now performing 
other tests with different fitness functions, such as AIC or 
BIC, to evaluate the robustness of the results herein 
described.  

Time [Minutes] 

For what concerns the analysis of the best model obtained, 
we evaluated also the variability of the network topology 
across the members of the final population. Again, some 
of the hubs are unchanged (Bim1, Clb2, Dsk2, Rnr1 and 
Swi4), while there is one gene which is suggested to be a 
Hub in 15 over 20 members of the population (Tub2), and 
a set of other genes has variable frequency (Cdc46, Ctf18, 
Scm4, Sth1 and Taf6). 
The goodness of fit of the learned model is satisfactory, 
with an overall RMSE of 0.047. An example of the one 
step ahead prediction for one of the analyzed genes is 
shown in Figure 3. 

4 Conclusions  
 
The approach described in this paper is an example of 
how different knowledge and data sources can be 
conveniently integrated in gene network learning. The 
method was able to reconstruct known relationships 
among genes and to provide meaningful biological results. 
It seems therefore suitable of further investigations and 
refinements. In particular, we plan to include in the 
strategy also data available from protein-protein 
interactions. 
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Figure 3. Raw data and one step ahead prediction for gene 
Cln3. 
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