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Abstract 
The primary course of therapy for breast cancer 
patients, following surgery, depends on the 
expected prognosis together with the key clinical 
indicators.  An interface for use by clinical 
oncologists is proposed, which addresses three 
fundamental questions, namely; evidence that the 
currently used Nottingham Prognostic Index can 
be enhanced by additional clinical features, 
prognostic inference for individual patients with 
quantified confidence levels, and visualisation of 
the patient database by clinical indicator of 
adjuvant treatment. This interface is underpinned 
by detailed prognostic analysis validated through 
longitudinal cohort studies of mortality with 931 
TNM stage I/II patients recruited between 1990 
and 1993 at Christie Hospital, Wilmslow. The 
data shown in the interface are Kaplan-Meier 
curves from prognostic risk groups inferred by 
cross validation. 

 
1. Introduction 

 
The starting point for this paper is the commonly used 
clinical prognostic index for breast cancer, the 
Nottingham Prognostic Index (NPI) [1]. While widely 
applied to inform the choice of adjuvant therapy, advances 
in therapy, detection technologies and health policy, such 
as the introduction of breast cancer screening for women 
aged 50 and over in the UK, has skewed the patient 
population and has added potential prognostic indicators.  
This study proposes an interface for clinical oncologists to 
show the added value of expanding the covariate basis for 
prognostic inference. It is important to note that the basis 
of our approach is to keep NPI and expand rather than 
replace current practice. 

Furthermore, there is now an interest in 
predictive inference of prognosis for individual patients, 
witness the web-based prognostic interface 
www.Adjuvantonline.com [2].  This model is gaining 
clinical support in part because it infers the potential effect 
of different treatment choices.  It also points towards a 
visualisation format that appears to be readily accepted by 
practicing clinicians.  However, the predictions made do 
not include confidence estimates, yet are likely subject to 
substantial uncertainties for particular groups of patients, 
notably in NPI group 3, which is known to be 

heterogeneous in its composition.  Moreover, it is not 
clear that the development of this interface has followed 
the recommended staged process of the continuum of 
evidence, which is modelled on the development of 
medicinal drugs and is intended to assure the accuracy and 
generalisability of clinical inferences [3-4]. 

In addition to prognostic inference, a previous 
study of the prevalence of adjuvant treatment, typically 
hormone therapy e.g. tamoxifen, chemotherapy, or both in 
combination, showed that the different treatments are 
clustered primarily by key clinical important indicators of 
the likely response to treatment, namely oestrogen 
receptor count, lymph nodes affected and menopausal 
status [5]. The proposed interface switches between 
survival modelling and treatment allocation profiles. 

In summary, there are two aspects of novelty 
presented, firstly a methodology for an individual 
prediction of survival with confidence intervals using 
neural networks and Monte Carlo methods. Secondly, 
implementing an interface that shows the added value of a 
new prognostic model over the current clinical standard 
prognostic model supported by a personal prognosis and 
data-based rules for treatment allocation. 

The next section explains what the NPI is and 
how it was extended by modelling with additional 
covariates using Cox regression with the proportionality 
of hazards’ assumption. This leads to the derivation of a 
cross-matching framework to discriminate between the 
survival of patients in each NPI risk group.  Section 3 
summarises the derivation of prognostic models with 
confidence intervals for individual patients, using Monte 
Carlo methods.  This is followed, in section 4, by a brief 
overview of the rule extraction algorithm used to explain 
treatment allocation. Finally, the interface is described in 
its entirety. 

 
2. Extended prognostic indices of  survival 

 
Survival analysis is an important field in medical statistics 
where the proportional hazard model [6], also known as 
Cox regression, is the most widely used method.  

 
The form of the Cox regression model is: 
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where ho(t) is the baseline hazard function. ho(t)  is called 
the baseline function because when all the x variables are 
equal to zero the formula reduces to this form, hence the 
‘baseline’ of the model. ß are the coefficients of x, which 
are the explanatory variables. 

Cox regression is a semi-parametric model that 
incorporates censored data, which arises when an 
individual drops out of a study for reasons other than the 
event of interest, death due to breast cancer in this study. 
Omitting these data from a survival analysis can introduce 
significant bias to any results [7]. 

This forms the basis for a prognostic index that is 
clinically widely accepted, the Nottingham Prognostic 
Index (NPI), which uses 3 variables identified as being 
significant in the prediction of survival, namely; 
pathological size of tumour, histological grade of tumour 
and the number of axillary nodes affected and requires a 
calculation in the form of a simple equation, which for a 
clinician makes it easy to use and understand.  In the case 
of NPI: 

 
0.2*pathological size + histological grade + nodes involved    (2) 

 
From this index, using the log-rank statistic, patients are 
allocated into 4 prognostic risk groups, ranging from very 
good to poor, at cut-off points   < 2.41, < 3.41, < 5.41 and 
≥  5.41 respectively. 

A further Cox regression model using six 
variables; age, clinical stage nodes, histology, node ratio, 
pathological size and ER status has been developed from 
917 patients and validated on 931 patients from Christie 
Hospital near Manchester referred between 1983 – 89 and 
1990-93 respectively. The latter dataset, the validation 
group, showed that the NPI and the new Cox model 
separated the patient profiles into prognostic groups with 
similar mean survival but with different risk group 
allocation, where NPI could be calculated (559 patients). 

By cross-matching the two prognostic indices we 
are able to examine survival for patient groups within each 
matrix cell using Kaplan-Meier (KM) estimated survival 
curves in figure 1, in order to discover heterogeneity in 
estimated survival for any of the models prognostic 
groups. These differences in survival are an indication of 
the added value of cross-matching NPI with another 
survival model that uses additional variables and are 
providing supplementary information for prognosis. 

This same idea of cross-tabulation can be 
extended to a scatter-plot of the prognostic indices, which 
allows the patient to be identified within this framework 
figure 2 and therefore identify how borderline a patient 
may be to adjacent prognostic groups or cells. 

 
3. Individual Prognostic Predictions with 

Confidence Intervals 
 

In addition to the detailed analysis of the group in which a 
particular patient belongs, there is interest in predictive 
inference of prognosis for that individual patient. The 
website http://www.adjuvantonline.com/  presents such 

information but without confidence intervals, so the 
uncertainties inherent in the prediction cannot be assessed. 
We present a method, using hazard predictions from a 
Partial Logistic Artificial Neural Network with Automatic 
Relevance Determination (PLANN-ARD) [8] and Monte 
Carlo methods, that give prognostic predictions with 
confidence intervals for individual patients. 

The PLANN-ARD model provides a prediction 
of smooth estimates of the discrete time hazard. It is 
implemented as a direct extension of the Multi-Layer 
Perceptron (MLP) neural network applied as a discrete 
model of the hazard function. Using this MLP structure 
with time as an input we have 
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Estimating the weights requires a likelihood term for the 
status of one patient at time tk, by using an indicator label 
0 if a patient is alive at time tk and a label 1 for the event 
of interest. This generic non-linear model is called the 
Partial Likelihood Artificial Neural Network (PLANN) 
[9]. In contrast to a proportional hazards model [6], 
PLANN does not require proportionality of the hazards 
over time and predicts a smooth hazard function. 

At time ti the estimated summed weights to each 

output unit has a Gaussian distribution 2( , )i iN a σ [10]. 

The estimated hazard is calculated by the sigmoidal 
activation: 
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Once the network weights are estimated, the survivorship 
is calculated from the estimated discrete time hazard by 
multiplying the conditionals for survival over successive 
time intervals treated as independent events, this gives: 
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Estimating an individual prognosis for patient x we use 

Monte Carlo methods by taking a random sample ia~  from 
2( , )i iN a σ , calculate ( )i ih g a=% %  and finally estimate 

survival ( )kS t% . Repeat these steps n times, enough to 

build up a distribution of survival estimates, as shown in 
figure 3. The personalised prognosis is the mean survival 
of the distribution with 95% confidence intervals 
determined by omitting the upper and lower 2.5% of the 
sample estimates.  

The survival estimate can be presented as a 
simple colour coded green, amber and red bar representing 
probabilities of survival, with 95% confidence interval 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Proposed intelligent interface for survival. To the left is the patient profile containing the significant variables that affect both survival and treatment 
choice. Top Middle is the individual estimated survival bar indicating, from left to right; the proportion expected to be alive at 5 years, the degree of uncertainty
in the prediction and the proportion expected not to survive. The right and centre graphic represent Kaplan-Meier survival estimates, highlighting the patient’s 
NPI group and the sub-group within NPI from knowledge gained by cross-matching NPI with another prognostic model using additional variables, this cell also 
shows the Kaplan-Meier estimated survival curve for the time period of interest.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Proposed intelligent interface for treatment. To the left is the patient profile containing the significant variables that affect both survival and treatment 
choice. The centre graphic represents a scatterplot of the Cox and NPI scores, the patient position and cell within the cross-tabulation matrix is highlighted. To the 
right there are empirical rules describing a similar group of patients stating the proportion that received the recommended course of treatment 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

and death respectively to a particular time period of 
interest, 5 years in this study figure 1. 

 
4. Data-based Rules to Describe the Patient 

Allocations Made by the Analytical Risk 
Scores 

  
In this paper the Orthogonal Search Rule Extraction 
(OSRE) algorithm [11] is used to extract rules for the 
treatment of the 559 patients in this study. 
      The OSRE algorithm finds conjunctive rules for 
classifications of data using a Multi-layer Perceptron 
(MLP), or any other smooth response surface, that has 
been trained to accurately predict the classifications of a 
dataset. A detailed account of the algorithm and the 
mathematical framework that underpins it can be found in 
chapters 3 & 4 of [12]. 

In essence OSRE searches for changes in 
response from an MLP, starting from each data point in 
turn in the data set and systematically searching in 
orthogonal directions.  To demonstrate the algorithm we 
take a data set that has three variables and each variable 
has values ranging from 1 to 6. Figure 4 shows the data-
space and a surface boundary that separates the in and out 
of class data.  The arrows show the directions in which the 
algorithm searches for changes in the response of the 
surface. Notice that in the direction of the variable a1, 
there is no change in response from the surface.   

The consequence of there being no change in 
response of the surface for a particular variable is that the 
variable does not feature in the set of conjunctive rules for 
this surface.  Figure 5 shows the ‘hyper-box’ that the 
algorithm generates for the data-point represented in 
figure 4.  
The rule generated from the ‘hyper-box’ is  
  

(a1 ≤  6) AND (a2 ≤  4) AND (a3 ≥  3) 
 

or more simply, as a1 takes all possible values, 
 
 (a2 ≤  4) AND (a3 ≥  3). 

This process is repeated for each data-point for which the 
surface predicts it to be in-class.  A set of rules the size of 
the number of data predicted in-class is generated. The 
algorithm is enhanced with a refining method to reduce 
the number of explanatory rules conditional on 
maintaining sensitivity and specificity values above 
minimal acceptable thresholds [5]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

 
5. Integrated Intelligent Interface for Breast 

Oncology 
 

Combining all the elements described above enables us to 
present an integrated intelligent interface for clinicians. 
This is achieved with the cross-matching matrix where 
each column represents patients in prognostic risk groups 
for the current standard NPI model, the rows representing 
the risk groups for the new prognostic prediction.  This 
can inform the clinician on a patient’s survival outcome 
(figure 1) as well as giving NPI survival estimates with 
extended survival predictions for sub-groups within the 
cross-tabulation matrix. This allows the clinician to assess 
heterogeneity in survival within a prognostic risk group. 
Presenting a new model as an extension of NPI enables 
clinicians to relate to their own reasoning model, where 
the use of the current prognostic group allocation assists 
as an indicator for choice of therapy [13]. In addition the 
bar graphic above the cross-matching matrix presents the 
individual prognosis with 95% confidence intervals 

Figure 5. The OSRE algorithm generates a 
‘hyper-box’ from which conjunctive rules are 
found. 

Figure 3. Distribution from 1000 iterations of 
estimated survival for an individual patient with 
mean survival and 95% confidence intervals 
indicated in red 

Figure 4. OSRE searching for changes in 
response in orthogonal directions. 



derived by using an Artificial Neural Network with Monte 
Carlo methods as described in section 3. 

By replacing survival estimates with a scatter-
plot of prognostic scores for each prognostic model 
(figure 2), we can examine whether a particular patient is  
borderline between cells in the matrix as the cross-
tabulation matrix is placed over the cut-off points for 
prognostic group scores. In addition, a patient’s TNM 
stage (a commonly used prognostic model) is highlighted 
by colour coding the data points, this shows the wide 
scatter of the TNM stage across the map, thus providing 
another level of insight to the clinician.  

This information is also supported by empirically 
derived rules using the rule extraction method, OSRE, 
described in section 4, this informs the clinician about the 
treatment given to similar patient groups and presents the 
rules derived from the data for the treatment received by 
this group. 

With all elements combined an intelligent 
interface is presented to the clinician, by expanding NPI 
into a matrix, maintaining their current knowledge of 
survival expectation and treatment allocation for patient 
groups while showing the difference additional 
information has on sub-groups of patients survival 
prognosis. It also informs on patient cases that may be 
borderline between prognostic groups. Additionally, it 
provides an individual prognosis of survival to 5 years 
with 95% confidence intervals and presents a Boolean 
expression of group characteristics for treatment derived 
from evidence in historical data. 

 
6. Conclusion 

 
An interface for breast oncology is proposed, which shows 
the value of additional covariates in discriminating 
patients by mortality risk. The interface starts from a 
currently used clinical index, NPI, and extends this to 
include a cross-matching matrix of grouped survival 
curves and the position a patient resides within the matrix, 
complemented with individual prognostic predictions 
qualified with predicted confidence intervals, additionally 
treatment allocation is explained by data-based rules. 
These data in combination add significantly to the 
discriminatory information currently available to 
clinicians about prognostic risk and allocation of adjuvant 
treatment. 

This complex information is presented in a 
format designed to match the clinician's own reasoning.  
Further work is now required to evaluate the clinical 
acceptance of the proposed methodology. 
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