
Abstract 
Microarrays have revolutionised biology, and bioin-
formatics is now a powerful tool in the hands of biolo-
gists. Gene expression analysis has attracted a large 
amount of attention over the last few years mostly in 
the form of algorithmic explorations of cluster rela-
tionships, and software that try to display the multidi-
mensionality of microarray data in biological relevant 
formats. In this paper we propose a simple yet effec-
tive approach to biochemical pathway analysis based 
on biological knowledge, to select a subset of genes 
for each pathway that fully describes the behaviour of 
the pathway at a given experimental condition in a bid 
to reduce the dimensionality of microarray data and 
make the analysis more biologically relevant.  

1 Introduction 
A new field attempting to describe biology called systems 
biology is currently emerging trying to depict biology at 
an organisation level by multidisciplinary research [Ag-
gawal et al., 2003]. Microarrays are an essential member 
of this multidisciplinary approach and a lot of interest has 
focused on gene expression analysis. Informatics and 
computer science are important members of this field with 
a heavy interest in microarray data analysis and data stor-
age, as well as in distribution and display of data in terms 
of clustering programs and large databases. Network 
modelling is also very active trying to describe biochemi-
cal pathways and biological processes in general [Huang, 
2004].  

These multidisciplinary approaches aspire to combine 
and produce practical descriptive models of biological 
systems that can be used among others to predict drug 
response and aid in cancer prevention and treatment. 

Analysis of microarray gene expression [Eisen et al., 
1998] has attracted a lot of attention over the years mostly 
the form of algorithmic explorations of cluster relation-
ships, and software that try to display the multidimension-
ality of microarray data in biological relevant formats 
[Slonim, 2002]. The multi-dimensionality of the microar-
ray experimental data has made this into a daunting task 
and there still a lot to be desired from the current work 
[Claverie, 1999]. Meanwhile, the modelling community 
has a growing interest in the complexity of biochemical 

pathways and various modelling methods exist that try to 
predict how such pathways behave [Papin et al., 2003].  

 We have taken a simple yet effective approach to 
pathway analysis using the idea of signatures for each 
pathway.  An algorithm based on hill climbing was used 
to mine for the signatures in all the 108 pathways from 
E.coli. The algorithm is effective in finding biologically 
relevant signatures and the results are promising that this 
is a valid way forward in the field.  

The background behind this study is in Section 2, giv-
ing the reasons why we used a novel interpretation of bio-
chemical pathways for our problem. Section 3 gives in-
formation about the data and their sources, and section 4 
describes the signature mining process and its algorithm. 
Section 5 deals with the biological verification of the re-
sults. Section 6 summarises the findings and proposes 
future directions of work. 
 

2 Background 
The identification and validation of drug targets depends 
critically on knowledge of the biochemical pathways in 
which potential target molecules operate within cells. For 
this reason, the study of biochemical pathways is the fo-
cus of numerous drug discovery researchers and is central 
to the strategy of many biopharmaceutical and genomic 
companies.  

There is intense research going on in systems biology, 
with scientists using different methods to solve similar 
problems [Aggawal et al., 2003].  From the biological 
point of view, most scientists use methods that offer some 
but not all of the functionality a biologist would like to 
have, often with rather complex and time consuming im-
plementations.  If pathway analysis and visualisation is 
going to be performed by biologists alone, it should be 
done in a straightforward and with few intermediate steps 
way so scientists can focus on the biological significance 
of the findings and not the programming implementation 
of the methods. So far this is not currently available in the 
research community, and the software available, both pub-
lic and commercial, do not provide all the functionality 
they should. [Goesmann et al., 2002; Toyoda et al., 2003; 
Dahlquist et al., 2002; Kolpakov et al., 1998] 
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 These constraints infiltrate the relationship biologists 
have with other sciences and computer science in particu-
lar. Ma and Zeng have shown in their paper [2003] that 
modelling biochemical pathways is not straightforward, 
and mistakes can be made if all parameters are not taken 
into account.  

Utilising biological knowledge about biochemical path-
ways and their components, this study produces a practi-
cal picture of the behaviour of the whole genome of an 
organism based on microarray data and pathway data 
from major databases like KEGG [Kanenisha and Goto, 
2000]. By collecting numerous experiments from a given 
organism, E.coli was used, for distinct environmental 
conditions and treatments and then combining it with 
well-established pathway information about genes and 
their biological contribution, we choose a sub set of genes 
from each pathway, a ‘signature’, which is used to de-
scribe the behaviour of that pathway under the given con-
dition.  

A pathway’s signature is a unique set of genes that can 
be monitored in any given microarray experiment to illus-
trate that pathway’s behaviour. The signature is the col-
lection of the ‘true’ expression indicators from the path-
way. They are the most ‘expressively active’ genes, in the 
sense that they are the more sensitive part of the pathway, 
the ones most responsive to external stimuli, i.e., the 
change in the environmental conditions affects them in 
such a way as to alter their expression in the cell.  The rest 
of the genes in that pathway are transcriptionally dormant 
in the sense that they do not respond readily to change, 
since they form the infrastructure of the pathway in the 
cell, and as building block they are not sensitive to exter-
nal stimuli as much. 

Pathway analysis methods of expression data currently 
in use, which include all the recent clustering techniques, 
require all the genes of a pathway to be taken into ac-
count, and may lead to the erroneous conclusion that the 
activity of a pathway has remain unchanged. For example, 
if more genes in a pathway are transcriptionally dormant 
than transcriptionally active, the more numerous dormant 
ones mask the true picture of a change in the activity of 
that pathway. 

By monitoring the signature of a pathway in all subse-
quent microarray experimental data we would have an 
immediate description of the behaviour of the pathway 
and subsequently of the whole organism in a global path-
way /signature network.  In essence, we aim to reduce the 
dimensionality of cDNA microarray data to provide a 
biologically relevant picture of the whole organism im-
mediately, before resorting to clustering methods.  

Our emphasis lies on using pathway knowledge to 
group all the scattered genes in a microarray dataset as 
pathways and observe the pathway’s behaviour as a 
whole, rather than genes individually.  It is a different 
concept that aims to help biologists in pathway analysis, 
by representing microarray data in a pathway-orientated 
view, with genes grouped not only by expression similar-
ity but also biologically.  

Furthermore, it offers a simplified view of these path-
ways by using a specific subset of genes to depict the be-
haviour in each experiment.  This offers new options to 
biologists who could group or ‘cluster’ the pathways ac-
cording to behaviour in an experiment thus, finding inter-
esting connections, not easily observed in gene clustering 
techniques and visualisations. 
 

3 Data  
Gene Expression Omnibus data repository at NCBI was 
the source of the microarray datasets. They come from 
E.coli and represent three different experimental condi-
tions in 51 experiments in total. We exploited the variety 
of conditions to find the most sensitive genes under these 
conditions, since the larger the number of experimental 
conditions and number of experiments, the more fine-
tuned the dataset is. There are global cDNA microarray 
experiments containing the majority of the E.coli genes.  
The experimental data, representing 51 microarray ex-
periments, were normalised to Standard Deviation of 1 
and Mean of 0 so that they can be compared together. No 
further normalisation was necessary since the data were 
already normalised to log ratios when they were released 
in GEO. 

The genes are chosen according to their variability in 
expression and have to be above a certain empirically 
defined global threshold, as used in microarray analysis to 
be considered as statistically significant. The threshold is 
empirically selected depending on the dataset used and is 
considered for each time point independently and the se-
lection process is repeated for every experiment. The 
threshold is the statistically significant fold difference 
between the two copies of the gene in the control and test 
conditions.  Its range is usually between 1 and 2 fold and 
the  researcher chooses an appropriate value depending on 
the general levels of expression of all the genes in the 
experiment. [Schena et al., 1996; Dunggan et al., 1999] 
The KEGG E.coli files were taken from the KEGG portal 
[Kanenisha and Goto, 2000]. By combing the two, a list of 
important genes was assembled and these were used as the 
base of the algorithm. 
 

4 Algorithm 
Choosing the best selection of genes in each pathway that 
represent that pathway’s behaviour is challenging because 
each gene can be a member of several pathways and we 
needed to find a way to choose genes that represent each 
pathway out of the 108 of E.coli. Basically we tried to 
find a way to move genes from one pathway to another 
based on their similarity of expression for the whole of the 
51 experiments not just one experiment. We opted for an 
algorithm with a hill climbing [Michalewicz et al., 1998] 
step described below.  

Let G be the set of n genes, G = {1,…,n}, let 
TnX ×ℜ∈ be the n by T gene expression matrix for the 

n genes where the ith row of X, xi, is the gene expression 



profile for gene i. xij is defined as the jth element of the 
vector xi.  Let the pathway list P be a list of m>0 lists 
where Gp i ⊆ is the ith element of P, where |pi| > 0.  A 
signature si of a pathway pi is defined as ii ps ⊆ where 
|si| > 0.  The list of signatures is denoted as S, where |S| = 
m. sij is defined as the jth element of the list si, such that si  
is a subset of the corresponding pi. How close two expres-
sion profiles a and b are, is given by the Euclidean Dis-
tance formally defined in formula 1. 
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The n by n symmetric matrix D contains all of the pair-

wise similarities between genes. Note that the larger d (a, 
b) is, the more dissimilar the genes a and b are. How close 
together the genes within a signature are is defined as 
follows: 
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This is the sum of all pair-wise differences between the 

elements of a signature. Equation 4 represents how well 
fitted the signatures are, and equation 5 represents how 
many genes have been allocated from each pathway. To 
‘mine’ the signatures for each pathway we need to find a 
set S where F1 is minimised and F2 is maximised: 
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The algorithm fitness F3 is represented in equation 6 
and needs to be minimised for the optimum solution, i.e. 
the smallest signature possible with the genes best de-
scribing the pathway. 

The signature mining algorithm takes as input a Euclid-
ean distance comparison matrix of all the genes from all 
the pathways, and a pathway list of lists from KEGG of 
all the pathways and their genes.  To mine the appropriate 
genes for each signature, we decided to randomly remove 
or replace a gene from a pathway and use a hill climbing 

technique to evaluate the solution.  The evaluation is 
based on a similarity and a size function, requiring mini-
misation of their fraction to progress. The algorithm is 
described below (algorithm1). 

 
 

Algorithm 1 Signature Mining: 
 

(1) INPUT:  
Euclidean Distance Matrix (D)(eq. 
2),Filtered Pathway list of lists 
(PA)(108 pathways long). 

(2) ITERATIONS 
For w=1:ITER do 

(3) RANDOM SELECTION with REMOVAL or 
REPLACEMENT 
Randomly chose a pathway and randomly 
chose a gene position from the 
pathway. 
If gene is present: 
   REMOVE 
Else 
   REPLACE gene back to position. 
End 

(4) GET EUCLIDIAN DISTANCES FROM ALL 
PATHWAYS 

    For i=1:length of PA do 
OBTAIN all unique distances 
between the pathway genes 
from D for  comparison. 

    End 
(5) GET F1 (SIMILARITY FUNCTION)(eq. 4) 

For i=1:length of PA do 
F1(i)= SUM(distances of all 
genes from P(i)) 

End 
   Store F1(i) 

(6)     GET F2 (SIZE FUNCTION)(eq. 5) 
    For i=1:length of PA do 
        F2(i)= length of P(i) 
    End 
        Store F2(i) 

(7) GET F3(EVALUATION FUNCTION)(eq. 6) 
For i=1:length of PA do 
    F3(i)=SUM(F1(i)/F2(i)) 
    F3new(w)=F3new(w)+F3(i) 
End  

(8)      EVALUATION 
     If F3new(w) < F3old  
        SET as F3old 
     Elseif F3new(w) > F3old 
           RESET to previous value 
     End 
End 

(9) OUTPUT:Signature list for all (108) 
pathways 

 
The convergence of the algorithm is shown below 

(Fig.1), the number of iterations being 20000. The con-
vergence graph shows that the algorithm performs well, 
by sharply dropping for the first 4000 iterations and then 
slowly stabilising to the minimum evaluation value possi-



ble, from the 6000 iteration onwards the slope levels up to 
almost a straight line. 
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Fig. 1. Convergence plot of the Algorithm. The y axis F3 value 
refers to the evaluation function F3 (equation 6). 

The performance of the algorithm accordingly can be 
seen from the histograms that represent the distribution of 
genes per pathway (Fig.2), both before (a) and after (b) 
the application of the algorithm. By keeping only the sig-
nature specific genes after using the algorithm, each path-
way is reduced to at least 1/3 of its previous size, making 
it more specific, allowing for easier biological interpreta-
tion of the pathway behaviour. 
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Fig. 2. The distribution of genes per pathway before (a) and after 
(b) the application of the signature algorithm, with number of 
pathways and number of genes per pathway. 

5 Application  

In order to biologically validate our method we chose a 
pathway from E.coli.  The Phenylalanine, Tyrosine and 
Tryptophan biosynthesis pathway, as defined in the 
KEGG pathway database, was chosen with focus on Tryp-
tophan. The Tryptophan production is regulated from a 
specific operon that contains five genes, B1260, B1261, 
B1262, B1263, and B1264.  

A microarray experiment of E.coli under Tryptophan 
starvation from Khodursky et al [2000] was used. They 
observed a very specific response from the Tryptophan 
operon genes.  These genes are activated in the absence of 

Tryptophan and induce its production. So by starving the 
organism in their experiments, they monitored the activa-
tion of the pathway. 
 Using the signature mining algorithm we ‘mined’ a 
signature for the specific pathway that portrays the behav-
iour of the pathway according to Khodursky et al [2000].   
The importance of the signature lays in the fact that we 
used the GEO dataset, to find the signature that describes 
the pathway in the Khodursky et al [2000] dataset.  

The Phenylalanine, Tyrosine and Tryptophan biosyn-
thesis pathway includes genes from the biosynthesis of 
these three amino acids. They are grouped together in the 
KEGG database due to the chemical similarity these 
amino acids have. 

The pathway contains 26 genes and the signature min-
ing algorithm produced a pathway signature of 6 genes. 
The 6 genes are from all the three branches of the specific 
pathway as shown in table 1. Genes B0928 and B2021 are 
present in both the phenylalanine and tyrosine processes. 

Table 1. Distribution of signature genes per branch of the 
Phenylalanine, tyrosine and tryptophan pathway. 

PHENYLALANINE TYROSINE TRYPTOPHAN 
B1713 B4054 B1260 
B0928 B0928 B1262 
B2021 B2021  
 
Khodursky et al [2000] are interested only in Trypto-

phan starvation so their dataset contains only the genes 
B1260 and B1262.  The starvation response of E.coli is to 
activate the genes that produce Tryptophan [Khodursky et 
al., 2000]. The response can be observed in Fig. 3 where 
the gene expression of the genes that constitute the trypto-
phan operon is plotted in a six part starvation time course. 
The organism is placed in an environment without trypto-
phan at the start of the experiments (see Fig.3) and gene 
expression measurements are taken at 20 minutes inter-
vals. It is obvious from the graph (Fig 3) that the genes are 
highly up-regulated moments after the starvation initia-
tion. 
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Fig. 3.  The Tryptophan operon activation from the Khodursky 
et al [2000] dataset. See text for further details. 
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Fig. 4. The Signature genes present in the dataset. The genes 
describe the activation of the operon during Tryptophan starva-
tion. 

Our signature has two out of five genes from the tryp-
tophan operon. As it can be seen from Fig. 4 they are suf-
ficient to portray the behaviour of the pathway during the 
experiments.  As mentioned above briefly, the signature 
was ‘mined’ from the GEO dataset and applied to the 
Khodursky et al dataset [2000].  

This has provided early evidence that signature mining 
can be an effective way of analysing biochemical path-
ways because once they are chosen they can be applied 
across experimental conditions and datasets with ease. 
 The biological relevance of the signature mining algo-
rithm is extensive, especially in the biochemical and 
pharmaceutical community, since it allows the biologist to 
observe the behaviour of a specific pathway in a clear and 
definitive way that does not involve genes that do not af-
fect the pathway’s regulation.  Its relevance is evident in 
drug related research. Signature mining could help by 
monitoring the effect of the drug on the whole of the or-
ganism by reducing the complexity of the pathways and 
showing a holistic view of the organism. An up or down 
regulated behaviour could be easily identified in the sig-
nature context and that pathway chosen for further inves-
tigation to find the specific genes affected.  In essence, it 
allows the researcher to have an overview of the entire 
organism processes in an simple and obvious way, easy to 
understand and use.  

6 Conclusions 

To conclude, we have shown that a specially selected sub 
group of genes from a biochemical pathway, a signature, 
is able to depict its behaviour under a given experimental 
condition.  A simple yet effective algorithm based on hill 
climbing was created to mine for the appropriate genes for 
each pathway based on the pathway’s behaviour across a 
large set of experiments of varying conditions. The algo-
rithm was able to select signatures for all 108 pathways, 
of which one was used as an example here.  
  Using biological knowledge in the design of the algo-
rithm was very important as it was the biological verifica-
tion of the results.  The preliminary results have clearly 
shown this interpretation of biochemical pathways to be 

an interesting way of describing microarray data used for 
pathway analysis.  

Future work will improve the algorithm run time and 
functionality. The algorithm needs to be more selective 
and not prone to be trapped in local optima. Ideally the 
algorithm should have picked all five genes that form the 
operon, this maybe due to the common problem of hill 
climbing algorithms of being easily trapped in local op-
tima and it is currently being addressed using a global 
search method such as simulated annealing [Kirkpatrick et 
al., 1983]. 

Additionally, the algorithm will be a part of a frame-
work for microarray datasets for full exploitation of mi-
croarray data in relation to pathway analysis and pharma-
ceutical research. Application of the algorithm will not be 
restricted only to E.coli but to other organisms with spe-
cific pharmaceutical concerns and in due course to human 
data, with a continuation of the framework steps to in-
clude gene networks and interactions with protein-protein 
networks, offering a solid solution in that area of systems 
biology. 
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