
IDAMAP 2005 
Intelligent Data Analysis in Medicine and 

Pharmacology

John H. Holmes and Niels Peek (Program Chairs) 

A one-day workshop during the 10th European Conference on Artificial 
Intelligence in Medicine 2005 (AIME 05) in Aberdeen, Scotland, UK 

Sunday, July 24, 2005  

Co-Sponsored by 

American Medical Informatics Association
Knowledge Discovery and Data Mining 

Working Group 

International Medical Informatics Association 
Intelligent Data Analysis and Data Mining 

Workgroup (WG 03) 



IDAMAP 2005 
Intelligent Data Analysis in Medicine and Pharmacology 

John H. Holmes and Niels Peek (chairs) 
 

A one-day workshop during the 10th European Conference on Artificial 
Intelligence in Medicine 2005 (AIME 05) in Aberdeen, Scotland, UK 

Sunday, July 24, 2005  
 

1. Introduction 
Welcome to IDAMAP 2005!  This is the tenth anniversary of 
IDAMAP, and as such is a special occasion for us.  This year, 
IDAMAP is organized in collaboration with and sponsored by 
the Intelligent Data Analysis and Data Mining Workgroup of 
the International Medical Informatics Association, and the 
Knowledge Discovery & Data Mining Working Group of the 
American Medical Informatics Association.   
 
The IDAMAP workshop series is devoted to computational 
methods for data analysis in medicine, biology and 
pharmacology that present results of analysis in a form 
communicable to domain experts and exploit expert 
knowledge of the problem domain. Methods include data 
mining, temporal abstraction, machine learning, and data 
visualization. We gather today in an informal setting, with 
ample opportunity to meet one another and discuss selected 
technical topics in an atmosphere which fosters the active 
exchange of ideas among researchers and practitioners. The 
workshop is intended to be a genuinely interactive event and 
not a mini-conference.  Please take advantage of this unique 
workshop: ask questions, participate in discussions, introduce 
yourself to new colleagues, and enjoy the day! 
 
2. Program 
Today’s program is quite full, including 13 long and four short 
papers, covering a wide spectrum of topics including 
Microarray analysis, Temporal reasoning, Prognosis, 
Subgroup mining, Case-based reasoning, and Visualization 
methods.  In addition, we are most fortunate to have two 
exciting guest speakers.  Arno Siebes from the University of 
Utrecht will speak on “Understanding Classifiers on Discrete 
Data,” and  Lucila Ohno-Machado from Harvard University 
will present “Reverse the Curse (of Dimensionality).”   The 
full program schedule appears on the next page of the 
proceedings. 
 
2. Program Committee 
As program committee co-chairs, we are very grateful for the 
assistance of the members of the program committee.  These 
individuals took time from their busy schedules to review a 
large number of submissions and assist with the final paper 
selection process.  We thank them all for their hard work: 
- Ameen Abu-Hanna, Academic Medical Center, 
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- Lars Asker, Stockholm University, Sweden 

- Riccardo Belazzi, University of Pavia, Italy 
- Carlo Combi, University of Verona, Italy 
- Janez Demsar, University of Ljubljana, Slovenia 
- Michel Dojat, Universite Joseph Fourier, Grenoble, France 
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- Nicolette de Keizer, Academic Medical Center, 

Amsterdam, The Netherlands 
- Elpida Keravnou-Papaeliou, University of Cyprus, Cyprus 
- Matjaz Kukar, University of Ljubljana, Slovenia 
- Pedro Larranaga, University of the Basque Country, San 

Sebastian, Spain 
- Nada Lavrac, J. Stefan Institute, Slovenia 
- Xiaohui Liu, Brunel University, UK 
- Peter Lucas, Radboud University Nijmegen, The 

Netherlands 
- Silvia Miksch, Vienna University of Technology, Austria 
- Lucila Ohno-Machado, Harvard Medical School and 
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- Marco Ramoni, Harvard Medical School, Boston, USA 
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Health 
- Yuval Shahar, Ben-Gurion University of the Negev, Israel 
- Stephen Swift, Brunel University, UK 
- Allan Tucker, Brunel University, UK 
- Frans Voorbraak Academic Medical Center, Amsterdam, 

The Netherlands 
- Adam B Wilcox, University of Utah, USA 
- Blaz Zupan, University of Ljubljana, Slovenia 
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Abstract 
Microarrays have revolutionised biology, and bioin-
formatics is now a powerful tool in the hands of biolo-
gists. Gene expression analysis has attracted a large 
amount of attention over the last few years mostly in 
the form of algorithmic explorations of cluster rela-
tionships, and software that try to display the multidi-
mensionality of microarray data in biological relevant 
formats. In this paper we propose a simple yet effec-
tive approach to biochemical pathway analysis based 
on biological knowledge, to select a subset of genes 
for each pathway that fully describes the behaviour of 
the pathway at a given experimental condition in a bid 
to reduce the dimensionality of microarray data and 
make the analysis more biologically relevant.  

1 Introduction 
A new field attempting to describe biology called systems 
biology is currently emerging trying to depict biology at 
an organisation level by multidisciplinary research [Ag-
gawal et al., 2003]. Microarrays are an essential member 
of this multidisciplinary approach and a lot of interest has 
focused on gene expression analysis. Informatics and 
computer science are important members of this field with 
a heavy interest in microarray data analysis and data stor-
age, as well as in distribution and display of data in terms 
of clustering programs and large databases. Network 
modelling is also very active trying to describe biochemi-
cal pathways and biological processes in general [Huang, 
2004].  

These multidisciplinary approaches aspire to combine 
and produce practical descriptive models of biological 
systems that can be used among others to predict drug 
response and aid in cancer prevention and treatment. 

Analysis of microarray gene expression [Eisen et al.,
1998] has attracted a lot of attention over the years mostly 
the form of algorithmic explorations of cluster relation-
ships, and software that try to display the multidimension-
ality of microarray data in biological relevant formats 
[Slonim, 2002]. The multi-dimensionality of the microar-
ray experimental data has made this into a daunting task 
and there still a lot to be desired from the current work 
[Claverie, 1999]. Meanwhile, the modelling community 
has a growing interest in the complexity of biochemical 

pathways and various modelling methods exist that try to 
predict how such pathways behave [Papin et al., 2003].  

 We have taken a simple yet effective approach to 
pathway analysis using the idea of signatures for each 
pathway.  An algorithm based on hill climbing was used 
to mine for the signatures in all the 108 pathways from 
E.coli. The algorithm is effective in finding biologically 
relevant signatures and the results are promising that this 
is a valid way forward in the field.  

The background behind this study is in Section 2, giv-
ing the reasons why we used a novel interpretation of bio-
chemical pathways for our problem. Section 3 gives in-
formation about the data and their sources, and section 4 
describes the signature mining process and its algorithm. 
Section 5 deals with the biological verification of the re-
sults. Section 6 summarises the findings and proposes 
future directions of work.

2 Background 
The identification and validation of drug targets depends 
critically on knowledge of the biochemical pathways in 
which potential target molecules operate within cells. For 
this reason, the study of biochemical pathways is the fo-
cus of numerous drug discovery researchers and is central 
to the strategy of many biopharmaceutical and genomic 
companies.  

There is intense research going on in systems biology, 
with scientists using different methods to solve similar 
problems [Aggawal et al., 2003].  From the biological 
point of view, most scientists use methods that offer some 
but not all of the functionality a biologist would like to 
have, often with rather complex and time consuming im-
plementations.  If pathway analysis and visualisation is 
going to be performed by biologists alone, it should be 
done in a straightforward and with few intermediate steps 
way so scientists can focus on the biological significance 
of the findings and not the programming implementation 
of the methods. So far this is not currently available in the 
research community, and the software available, both pub-
lic and commercial, do not provide all the functionality 
they should. [Goesmann et al., 2002; Toyoda et al., 2003; 
Dahlquist et al., 2002; Kolpakov et al., 1998] 

Signature Mining: a Heuristic Approach to Biochemical Pathway Analysis 

Eleftherios Panteris*, Stephen Swift, Annette Payne, Xiaohui Liu 

School of Information Systems, Computing and Mathematics, Brunel University, Uxbridge, Middlesex UB 8 3PH, UK 
*Contact e-mail Eleftherios.Panteris@brunel.ac.uk 

http://www.ida-research.net
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 These constraints infiltrate the relationship biologists 
have with other sciences and computer science in particu-
lar. Ma and Zeng have shown in their paper [2003] that 
modelling biochemical pathways is not straightforward, 
and mistakes can be made if all parameters are not taken 
into account.  

Utilising biological knowledge about biochemical path-
ways and their components, this study produces a practi-
cal picture of the behaviour of the whole genome of an 
organism based on microarray data and pathway data 
from major databases like KEGG [Kanenisha and Goto, 
2000]. By collecting numerous experiments from a given 
organism, E.coli was used, for distinct environmental 
conditions and treatments and then combining it with 
well-established pathway information about genes and 
their biological contribution, we choose a sub set of genes 
from each pathway, a ‘signature’, which is used to de-
scribe the behaviour of that pathway under the given con-
dition.  

A pathway’s signature is a unique set of genes that can 
be monitored in any given microarray experiment to illus-
trate that pathway’s behaviour. The signature is the col-
lection of the ‘true’ expression indicators from the path-
way. They are the most ‘expressively active’ genes, in the 
sense that they are the more sensitive part of the pathway, 
the ones most responsive to external stimuli, i.e., the 
change in the environmental conditions affects them in 
such a way as to alter their expression in the cell.  The rest 
of the genes in that pathway are transcriptionally dormant 
in the sense that they do not respond readily to change, 
since they form the infrastructure of the pathway in the 
cell, and as building block they are not sensitive to exter-
nal stimuli as much. 

Pathway analysis methods of expression data currently 
in use, which include all the recent clustering techniques, 
require all the genes of a pathway to be taken into ac-
count, and may lead to the erroneous conclusion that the 
activity of a pathway has remain unchanged. For example,
if more genes in a pathway are transcriptionally dormant 
than transcriptionally active, the more numerous dormant 
ones mask the true picture of a change in the activity of 
that pathway. 

By monitoring the signature of a pathway in all subse-
quent microarray experimental data we would have an 
immediate description of the behaviour of the pathway 
and subsequently of the whole organism in a global path-
way /signature network.  In essence, we aim to reduce the 
dimensionality of cDNA microarray data to provide a 
biologically relevant picture of the whole organism im-
mediately, before resorting to clustering methods.  

Our emphasis lies on using pathway knowledge to 
group all the scattered genes in a microarray dataset as 
pathways and observe the pathway’s behaviour as a 
whole, rather than genes individually.  It is a different 
concept that aims to help biologists in pathway analysis, 
by representing microarray data in a pathway-orientated 
view, with genes grouped not only by expression similar-
ity but also biologically.  

Furthermore, it offers a simplified view of these path-
ways by using a specific subset of genes to depict the be-
haviour in each experiment.  This offers new options to 
biologists who could group or ‘cluster’ the pathways ac-
cording to behaviour in an experiment thus, finding inter-
esting connections, not easily observed in gene clustering 
techniques and visualisations.

3 Data
Gene Expression Omnibus data repository at NCBI was 
the source of the microarray datasets. They come from 
E.coli and represent three different experimental condi-
tions in 51 experiments in total. We exploited the variety 
of conditions to find the most sensitive genes under these 
conditions, since the larger the number of experimental 
conditions and number of experiments, the more fine-
tuned the dataset is. There are global cDNA microarray 
experiments containing the majority of the E.coli genes.  
The experimental data, representing 51 microarray ex-
periments, were normalised to Standard Deviation of 1 
and Mean of 0 so that they can be compared together. No 
further normalisation was necessary since the data were 
already normalised to log ratios when they were released 
in GEO.

The genes are chosen according to their variability in 
expression and have to be above a certain empirically 
defined global threshold, as used in microarray analysis to 
be considered as statistically significant. The threshold is 
empirically selected depending on the dataset used and is 
considered for each time point independently and the se-
lection process is repeated for every experiment. The 
threshold is the statistically significant fold difference 
between the two copies of the gene in the control and test 
conditions.  Its range is usually between 1 and 2 fold and 
the  researcher chooses an appropriate value depending on 
the general levels of expression of all the genes in the 
experiment. [Schena et al., 1996; Dunggan et al., 1999] 
The KEGG E.coli files were taken from the KEGG portal 
[Kanenisha and Goto, 2000]. By combing the two, a list of 
important genes was assembled and these were used as the 
base of the algorithm. 

4 Algorithm 
Choosing the best selection of genes in each pathway that 
represent that pathway’s behaviour is challenging because 
each gene can be a member of several pathways and we 
needed to find a way to choose genes that represent each 
pathway out of the 108 of E.coli. Basically we tried to 
find a way to move genes from one pathway to another 
based on their similarity of expression for the whole of the 
51 experiments not just one experiment. We opted for an 
algorithm with a hill climbing [Michalewicz et al., 1998] 
step described below.  

Let G be the set of n genes, G = {1,…,n}, let 
TnX ×ℜ∈ be the n by T gene expression matrix for the 

n genes where the ith row of X, xi, is the gene expression 
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profile for gene i. xij is defined as the jth element of the 
vector xi.  Let the pathway list P be a list of m>0 lists 
where Gp i ⊆ is the ith element of P, where |pi| > 0.  A 
signature si of a pathway pi is defined as ii ps ⊆ where 
|si| > 0.  The list of signatures is denoted as S, where |S| = 
m. sij is defined as the jth element of the list si, such that si
is a subset of the corresponding pi. How close two expres-
sion profiles a and b are, is given by the Euclidean Dis-
tance formally defined in formula 1. 

( )ä
=

−=
T

i
biai xxbad

1

2),(
(1)

),(where, jidDD ij
nn =ℜ∈ ×

(2)

The n by n symmetric matrix D contains all of the pair-
wise similarities between genes. Note that the larger d (a,
b) is, the more dissimilar the genes a and b are. How close 
together the genes within a signature are is defined as 
follows: 

ä ä
−

= +=

=
1||

1

||

1

),()(
i is

a

s

ab
ibiai ssdsFS

(3)

This is the sum of all pair-wise differences between the 
elements of a signature. Equation 4 represents how well 
fitted the signatures are, and equation 5 represents how 
many genes have been allocated from each pathway. To 
‘mine’ the signatures for each pathway we need to find a 
set S where F1 is minimised and F2 is maximised: 
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The algorithm fitness F3 is represented in equation 6 
and needs to be minimised for the optimum solution, i.e. 
the smallest signature possible with the genes best de-
scribing the pathway. 

The signature mining algorithm takes as input a Euclid-
ean distance comparison matrix of all the genes from all 
the pathways, and a pathway list of lists from KEGG of 
all the pathways and their genes.  To mine the appropriate 
genes for each signature, we decided to randomly remove 
or replace a gene from a pathway and use a hill climbing 

technique to evaluate the solution.  The evaluation is 
based on a similarity and a size function, requiring mini-
misation of their fraction to progress. The algorithm is 
described below (algorithm1). 

Algorithm 1 Signature Mining: 

(1) INPUT:  
Euclidean Distance Matrix (D)(eq. 
2),Filtered Pathway list of lists 
(PA)(108 pathways long). 

(2) ITERATIONS 
For w=1:ITER do 

(3) RANDOM SELECTION with REMOVAL or 
REPLACEMENT
Randomly chose a pathway and randomly 
chose a gene position from the 
pathway.
If gene is present: 
   REMOVE 
Else
   REPLACE gene back to position. 
End

(4) GET EUCLIDIAN DISTANCES FROM ALL 
PATHWAYS

    For i=1:length of PA do 
OBTAIN all unique distances 
between the pathway genes 
from D for  comparison. 

    End 
(5) GET F1 (SIMILARITY FUNCTION)(eq. 4) 

For i=1:length of PA do 
F1(i)= SUM(distances of all 
genes from P(i)) 

End
   Store F1(i) 

(6)     GET F2 (SIZE FUNCTION)(eq. 5) 
    For i=1:length of PA do 
        F2(i)= length of P(i) 
    End 
        Store F2(i) 

(7) GET F3(EVALUATION FUNCTION)(eq. 6) 
For i=1:length of PA do 
    F3(i)=SUM(F1(i)/F2(i)) 
    F3new(w)=F3new(w)+F3(i) 
End

(8)      EVALUATION 
   If F3new(w) < F3old

        SET as F3old 
Elseif F3new(w) > F3old 

           RESET to previous value 
End

End
(9) OUTPUT:Signature list for all (108) 

pathways

The convergence of the algorithm is shown below 
(Fig.1), the number of iterations being 20000. The con-
vergence graph shows that the algorithm performs well, 
by sharply dropping for the first 4000 iterations and then 
slowly stabilising to the minimum evaluation value possi-
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ble, from the 6000 iteration onwards the slope levels up to 
almost a straight line. 
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Fig. 1. Convergence plot of the Algorithm. The y axis F3 value 
refers to the evaluation function F3 (equation 6). 

The performance of the algorithm accordingly can be 
seen from the histograms that represent the distribution of 
genes per pathway (Fig.2), both before (a) and after (b) 
the application of the algorithm. By keeping only the sig-
nature specific genes after using the algorithm, each path-
way is reduced to at least 1/3 of its previous size, making 
it more specific, allowing for easier biological interpreta-
tion of the pathway behaviour. 
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Fig. 2. The distribution of genes per pathway before (a) and after 
(b) the application of the signature algorithm, with number of 
pathways and number of genes per pathway. 

5 Application  

In order to biologically validate our method we chose a 
pathway from E.coli.  The Phenylalanine, Tyrosine and 
Tryptophan biosynthesis pathway, as defined in the 
KEGG pathway database, was chosen with focus on Tryp-
tophan. The Tryptophan production is regulated from a 
specific operon that contains five genes, B1260, B1261, 
B1262, B1263, and B1264.  

A microarray experiment of E.coli under Tryptophan 
starvation from Khodursky et al [2000] was used. They 
observed a very specific response from the Tryptophan 
operon genes.  These genes are activated in the absence of 

Tryptophan and induce its production. So by starving the 
organism in their experiments, they monitored the activa-
tion of the pathway. 
 Using the signature mining algorithm we ‘mined’ a 
signature for the specific pathway that portrays the behav-
iour of the pathway according to Khodursky et al [2000].   
The importance of the signature lays in the fact that we 
used the GEO dataset, to find the signature that describes 
the pathway in the Khodursky et al [2000] dataset.  

The Phenylalanine, Tyrosine and Tryptophan biosyn-
thesis pathway includes genes from the biosynthesis of 
these three amino acids. They are grouped together in the 
KEGG database due to the chemical similarity these 
amino acids have. 

The pathway contains 26 genes and the signature min-
ing algorithm produced a pathway signature of 6 genes. 
The 6 genes are from all the three branches of the specific 
pathway as shown in table 1. Genes B0928 and B2021 are 
present in both the phenylalanine and tyrosine processes. 

Table 1. Distribution of signature genes per branch of the 
Phenylalanine, tyrosine and tryptophan pathway. 

PHENYLALANINE TYROSINE TRYPTOPHAN 
B1713 B4054 B1260 
B0928 B0928 B1262 
B2021 B2021 

Khodursky et al [2000] are interested only in Trypto-
phan starvation so their dataset contains only the genes 
B1260 and B1262.  The starvation response of E.coli is to 
activate the genes that produce Tryptophan [Khodursky et 
al., 2000]. The response can be observed in Fig. 3 where 
the gene expression of the genes that constitute the trypto-
phan operon is plotted in a six part starvation time course. 
The organism is placed in an environment without trypto-
phan at the start of the experiments (see Fig.3) and gene 
expression measurements are taken at 20 minutes inter-
vals. It is obvious from the graph (Fig 3) that the genes are 
highly up-regulated moments after the starvation initia-
tion. 
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Fig. 3.  The Tryptophan operon activation from the Khodursky 
et al [2000] dataset. See text for further details.
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Fig. 4. The Signature genes present in the dataset. The genes 
describe the activation of the operon during Tryptophan starva-
tion. 

Our signature has two out of five genes from the tryp-
tophan operon. As it can be seen from Fig. 4 they are suf-
ficient to portray the behaviour of the pathway during the 
experiments.  As mentioned above briefly, the signature 
was ‘mined’ from the GEO dataset and applied to the 
Khodursky et al dataset [2000].  

This has provided early evidence that signature mining 
can be an effective way of analysing biochemical path-
ways because once they are chosen they can be applied 
across experimental conditions and datasets with ease. 
 The biological relevance of the signature mining algo-
rithm is extensive, especially in the biochemical and 
pharmaceutical community, since it allows the biologist to 
observe the behaviour of a specific pathway in a clear and 
definitive way that does not involve genes that do not af-
fect the pathway’s regulation.  Its relevance is evident in 
drug related research. Signature mining could help by 
monitoring the effect of the drug on the whole of the or-
ganism by reducing the complexity of the pathways and 
showing a holistic view of the organism. An up or down 
regulated behaviour could be easily identified in the sig-
nature context and that pathway chosen for further inves-
tigation to find the specific genes affected.  In essence, it 
allows the researcher to have an overview of the entire 
organism processes in an simple and obvious way, easy to 
understand and use.  

6 Conclusions 

To conclude, we have shown that a specially selected sub 
group of genes from a biochemical pathway, a signature,
is able to depict its behaviour under a given experimental 
condition.  A simple yet effective algorithm based on hill 
climbing was created to mine for the appropriate genes for 
each pathway based on the pathway’s behaviour across a 
large set of experiments of varying conditions. The algo-
rithm was able to select signatures for all 108 pathways, 
of which one was used as an example here.  
  Using biological knowledge in the design of the algo-
rithm was very important as it was the biological verifica-
tion of the results.  The preliminary results have clearly 
shown this interpretation of biochemical pathways to be 

an interesting way of describing microarray data used for 
pathway analysis.  

Future work will improve the algorithm run time and 
functionality. The algorithm needs to be more selective 
and not prone to be trapped in local optima. Ideally the 
algorithm should have picked all five genes that form the 
operon, this maybe due to the common problem of hill 
climbing algorithms of being easily trapped in local op-
tima and it is currently being addressed using a global 
search method such as simulated annealing [Kirkpatrick et 
al., 1983]. 

Additionally, the algorithm will be a part of a frame-
work for microarray datasets for full exploitation of mi-
croarray data in relation to pathway analysis and pharma-
ceutical research. Application of the algorithm will not be 
restricted only to E.coli but to other organisms with spe-
cific pharmaceutical concerns and in due course to human 
data, with a continuation of the framework steps to in-
clude gene networks and interactions with protein-protein 
networks, offering a solid solution in that area of systems 
biology. 
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Abstract
This paper presents a novel approach for the
extraction of gene regulatory networks from
DNA microarray data. The method is applied to
the reconstruction of a network of interactions of 
genes involved into the cell cycle of
Saccharomyces Cerevisiae. The approach is 
characterized by the integration of data coming
from different experiments together with the
knowledge available on the biological process
under analysis and on the dynamics of the
process itself. The method is capable to
reconstruct known relationships among genes 
and to provide meaningful biological results.

1 Introduction 
A noteworthy research effort in Biomedical informatics
has been recently devoted to the development of methods
for the automated extraction of gene regulatory networks
from DNA microarrays data. Such interest is motivated by
the capability of DNA microarrays to describe cell 
molecular processes at the whole genome level. The
availability of experiments in which a certain cell
condition is followed over time gives the chance to learn
dynamic models of gene to gene interactions. Several
algorithms have been implemented so far: a pioneering
work is represented by the REVEAL approach, which
extracts networks expressing Boolean relationships
between genes through a heuristic search strategy based
on mutual information [Liang et al., 1998]. More recently, 
other methods have been presented to derive regulatory
networks from microarray data, including methods based
on differential equations [De Jong, 2002] and dynamic
probabilistic networks [Perrin et al., 2003]. All those
methods have pros and cons; however, given the very
nature of the data, none of the approaches may lead to
reveal all the biochemical pathways underlying the
observed processes. As a matter of fact, a certain mRNA
stream does not always correspond to the same protein,
due to potential modifications after transcription and after
translation; even more importantly, the dynamics of
biochemical reactions cannot be captured by the (low)
sampling time available in DNA microarray experiments.
For these reasons, it is of interest to integrate data coming

from different sources, multiple experiments and the
available background knowledge to derive models which
should be able to describe as close as possible regulatory
interactions occurring between genes. In this paper we
present a novel approach to derive a network of potential
interactions of genes involved in the yeast cell cycle. The
approach integrates data coming from two different
experiments and the knowledge available on the
biological process and on the dynamics of cell cycle.

2 Modeling gene networks
Following the approach proposed by Schlitt and Brazma
[Schlitt, 2005], it is possible to model gene networks at
different levels of detail. As a consequence, four basic
classes of models can be distinguished: a) Parts lists,
referring to the collection and systematization of the
network components; b) Topology models, describing the
interactions between the parts; c) Control logic models,
describing the effect of regulatory signals; d) Dynamic
models, modeling the dynamics of gene interactions.
The so-called part list is often directly extracted from
knowledge available in Gene Ontology (Gene OntologyTM

Consortium, http://www.geneontology.org). Such 
information allows to select only the genes which are
known to be involved in the process which is under study.
However, other secondary bioinformatics databases can 
be conveniently exploited, such as the Gene database,
maintained at NCBI (http://www.ncbi.nlm.nih.gov).
The gene-gene interaction network topology is learned
from data. In this case, it is crucial to assign a meaning to
the network connections. In the literature, a first 
interpretation is that, given two genes G1 and G2 
represented in the network as nodes, G1 is directly linked
to G2 only if G1 is a transcription factor for G2. In this
case the link describes a physical interaction between the
two genes. A second interpretation is that an edge
between G1 and G2 means a generic “cause-effect” 
relationship, such that a change in the expression of G1
causes a change in the expression of G2. In this case we 
are describing a phenomenological event, regardless of 
the physical interactions between the two genes. Rather
interestingly, in some model organisms, such as 
Saccharomyces Cerevisiae (baker’s yeast), it is now 
possible to learn from data both kind of networks.
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An important data set on the interactions between the
genes and their transcription factors has been collected by 
Lee et al [Lee et al 2002] in the so-called ChIP-on-chip
experiments. Such data have been used to derive the
topology of a network of physical interactions.
On the other side, Hughes et al. [Hughes et al., 2000]
performed a complex experiment to detect the effects of a 
single gene mutation. Given a DNA microarray
experiment on a mutant, corresponding to a single
knocked-out gene, a significant change of the expression
level in any of the non-mutated genes with respect to the
wild-type case is supposed to highlight a relationship with
the knocked out gene.
As mentioned in the introduction, a large number of 
control models have been studied in the literature, starting
from Boolean relationships and moving towards
probabilistic ones [Liang et al., 1998; De Jong, 2002, 
Perrin et al., 2003]. All those models can be considered
also dynamic models, although the emphasis is not given
to the description of the biochemical reactions, but rather
to the phenomenological relationships between the
problem variables, i.e. the genes. Such models are often
derived from “dynamic data”, i.e. time series of gene 
expression profiles usually collected with experiments
carried on in cell cultures [Spellman et al., 1998].
A consistent literature is also available on the quantitative
modeling of the biochemical networks. For what concerns 
yeast, for example, several papers appeared on the cell 
cycle dynamics [Sveiczer et al., 2004]. It is important to
notice that such models are designed for simulation
purposes, and aim at describing at a “physical” level the
gene product interactions. Since they must model also fast
reactions, they are typically not identifiable from data, but
they require knowledge on the stoichiometric coefficients
of each single biochemical reaction. 
In our case, we are interested in providing a description of 
the interactions of the genes involved in the cell cycle of 
Saccharomyces Cerevisiae, taking into account all the
four levels mentioned above: we will propose a network
model based on different data sources and on the
knowledge available in the knowledge repositories (parts
lists), which relies on a network topology derived from
data (topology modeling), and which models the
dynamics of control interactions between genes (control
logic and dynamic models).

3 The proposed approach 

In this paper we propose a method to infer gene to gene 
interaction networks in Saccaromyces Cerevisiae cell
cycle. The basic steps of the method are described in
Figure 1; they can be summarized as follows: 1) learning 
of an initial network topology from mutant data; 2) 
selection of the genes involved in the cell cycle; 3)
filtering of the selected genes on the basis of the available
data on the cell cycle dynamics; 4) learning the final
interaction network and a dynamic model of control with
a genetic algorithm search. 

Figure 1. The proposed method

3.1 Learning the initial network topology from mutant 
data
This step is based on the analysis of the data made
available by Hughes et al. [Hughes et al., 2000], already
introduced in Section 2. They collected the data of about
300 experiments in which a single gene has been 
knocked-out and the RNA abundance of all the other
genes (about 6800) has been measured through c-DNA 
microarrays. The goal of this study was the detection of 
the functional modules of each mutated gene. Starting 
from the mutants experiments, it is possible to derive a
first network of gene interactions: this network can be 
easily represented with a connection matrix D with
elements Dij which express the relationships between gene
i and gene j; if Dij=1 the connection is present, if Dij=0
the connection is absent.
After the analysis of the Huges data, we obtained a matrix
of 6800 x 276 elements, where each column corresponds 
to an experiment with a single mutated gene, while each 
row corresponds to a certain gene. The semantic of the
network can be augmented with the sign of the
relationship (enhancement or inhibition).

3.2 Gene ontology and dynamic networks filtering
The dimension of the matrix D can be conveniently
reduced by resorting to the knowledge available in Gene 
Ontology. In our case we selected only the genes involved
in the cell cycle biological process, thus reducing the
matrix D to 502 x 34.
Since our main goal was to learn a dynamical model of 
the control of genes involved in the cell cycle, we then
resorted to the “dynamic” data sets available in the
literature. In the case of yeast cell cycle, the reference data
are the ones coming from a well-known experiment from
Spellman [Spellman et al., 1998]. In this case the mRNA
data have been collected in 18 different time points (one 
each 7 minutes). Since the cell cycle for the yeast under
the experimental conditions lasts 66 minutes, it is possible
to observe almost two complete mitotic cycles.
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The knowledge on the dynamics of the cell cycle period,
together with the information on the sampling time, limits
the scope of the investigation to search for relationships
which can be reasonably detected in the available data.
In particular, given the sampling time, we cannot detect
signal with frequency components higher than (1/(2*7)
min-1). For this reason, we have filtered out the gene
profiles with energy content located in high frequencies,
with a cut-off frequency of 0.05 (1/20) min-1. Such a 
choice is able to preserve the cell cycle frequency and its
first harmonic component. In this way, the matrix D 
dimension has been then further reduced to 226 x 19.

3.3 Learning dynamic models 
Starting from the connection matrix obtained after
filtering, we implemented a novel algorithm to select the
final model of the gene network interactions. Such step
needs two ingredients: a) the choice of a dynamic
mathematical model able to describe the available data; b)
a strategy to search for potential relationships in the
unexplored portion of the connection links (a matrix D’ 
226 x 207). In order to accomplish with this goal, we have 
exploited discrete time dynamic linear models and a 
Genetic Algorithm (GA) search.
Dynamic linear models have been selected, since they are 
the simplest class of models which allows periodic or
damped oscillation behaviors.
The dynamics of the mRNA ratio1 (x) of the i-th gene is
therefore described as:

ä̧
=

+=+
jij

jijijiiii kxcakxakx
,1

)()()1(

where the aijs are connection weights and the matrix
C=|D D’|226x226 is the connection matrix obtained by
concatenating the known matrix D206x19 and the unknown 
matrix D206x207 that has to be learned from the data. Given
a certain network topology, i.e. a matrix C, we can easily
learn the parameters aij from the available data through
least square fitting. Different models, i.e. different C 
matrixes, can be compared, and hence selected by
applying a model selection score. In our case we exploited
the Akaike Information Criterion score (AIC).
The space of  all possible models (i.e. possible 
connections) is super exponential; therefore it has been
searched through a Genetic Algorithm strategy, with a 
fitness function given by the AIC score. In particular, the
Genetic algorithm has been implemented by selecting 20
“individuals” (i.e. initial samples for the matrix C) which
have evolved for 400 generations with the following
parameters: cross-over probability = 0.9, mutation
probability = 0.1, and probability of selecting the i-th
individual (i.e. a certain matrix C) which is proportional to
the fitness. Convergence of the solution has been visually
inspected.

1 The available measurements are coming from cDNA 
experiments. Therefore the problem variables are expressed as
ratios of mRNA with respect to the basal condition (time =0) 

3 Results 
Interesting results have been obtained in all phases of 

the learning process. To evaluate such results, we
considered 22 genes whose role in the cell cycle is well
characterized and we investigated the capability of our
method of reconstructing the known relationships on the
basis of the available data.

We first exploited the data coming from the Huges 
disruption experiment, in which only 6 of those 22 genes 
have been mutated. We thus inferred a network (shown in
Figure 2a) in which some connections appear to be
supported by the information available in the literature 
(e.g. some links involve a gene and its transcription
factor). This network was extended following the strategy
proposed in this paper: in the final graph obtained (shown 
in Figure 2b) a significant number of the inferred
connections between the 22 cell cycle genes reflects the
knowledge available in the literature about the gene to 
gene interactions. In particular, the network shows the
following interesting relationships:
a) Mcm1 interacts with Clb1: the genes that normally
exhibit a G2-to-M-phase-specific expression pattern, such
as Clb1, are not induced in the absence of functional
Mcm1; moreover, it was demonstrated that Clb1 transcript
levels are substantially reduced when functional Mcm1 is 
absent. b) the Clb5-Clb1 and Clb2-Clb1 links express 
complex (indirect) interactions between cyclins, the
proteins which regulate the overall cell cycle (see 
http://mips.gsf.de/genre/proj/yeast/). c) Far1 is a cyclin-
dependent kinase inhibitor, and it is therefore activated by
the cyclin levels, such as Clb1.

Figure 2. Graph connectivity of some of the 22 well-
characterized cell cycle genes: a) initial disruption
network, b) final network obtained exploiting background
knowledge and dynamic data

Examining the overall derived network, we observed a 
scale-free connectivity: about 170 genes out of 226 are 
linked with no more than 5 genes, while only 10 genes are
connected with more than 40 other genes. Such latter
genes are the hubs of the final gene interaction network.
Some of the hubs are: Swi4, the DNA binding component
of SBF transcription factor; the two B-type cyclins Clb1
and Clb2, activators of Cdc28 at G2/M phase of the cell
cycle; Cdc46, that encodes a member of the Mcm2-7
family of proteins involved in the initiation of DNA 
replication; Cdc27, subunit of the Anaphase-Promoting
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Complex/Cyclosome (APC/C); Orc1 which directs DNA 
replication; Bim1 which is the microtubule-binding
protein that together with Kar9p delays the exit from
mitosis when the spindle is oriented abnormally; Rnr1
(Ribonucleotide-diphosphate reductase), which is
regulated by DNA replication and DNA damage
checkpoint pathways; Dsk2, a nuclear-enriched ubiquitin-
like polyubiquitin-binding protein, required for spindle
pole body (SPB) duplication and for transit through the
G2/M phase of the cell cycle; Tub2 the beta-tubulin,
which associates with alpha-tubulin to form tubulin
dimmer; the dimers polymerize to form microtubules,
required for mitosis.

Model
Data

Ex
pr

es
si

on

We also carried out several tests by repeatedly running the
Genetic Algorithm for 400 evolutionary steps with
different initializations. We compared the final and initial
generations observing that: 1) in the final population some
of the hubs are unchanged (Bim1, Clb2, Dsk2, Rnr1 and
Swi4), while some are added. 2) The number of 
connections varies approximately from 1100 to 1300. This
means that the majority of the links comes from the
experimental data of Hughes and that the method used 
adds approximately the 19% of the initial connections. 3) 
The improvement of the fitness of the best model with
respect to the initial conditions ranges between 3% (worst 
case) to the 4.5% (best case). We are now performing
other tests with different fitness functions, such as AIC or 
BIC, to evaluate the robustness of the results herein
described.

Time [Minutes]

For what concerns the analysis of the best model obtained,
we evaluated also the variability of the network topology 
across the members of the final population. Again, some
of the hubs are unchanged (Bim1, Clb2, Dsk2, Rnr1 and
Swi4), while there is one gene which is suggested to be a 
Hub in 15 over 20 members of the population (Tub2), and 
a set of other genes has variable frequency (Cdc46, Ctf18,
Scm4, Sth1 and Taf6).
The goodness of fit of the learned model is satisfactory,
with an overall RMSE of 0.047. An example of the one
step ahead prediction for one of the analyzed genes is
shown in Figure 3. 

4 Conclusions 

The approach described in this paper is an example of
how different knowledge and data sources can be
conveniently integrated in gene network learning. The
method was able to reconstruct known relationships
among genes and to provide meaningful biological results.
It seems therefore suitable of further investigations and
refinements. In particular, we plan to include in the
strategy also data available from protein-protein
interactions.
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Abstract
A popular utility of microarray data is to make 
inference on gene function based on similarity of 
its expression to expressions of other, function-
ally already annotated genes. This approach may 
use available collections of gene expression 
measurements that study organisms under differ-
ent conditions. An alternative way, enabled by 
recent advances in biotechnology, is to associate 
gene function to a phenotype of its corresponding 
mutant defined by expressions of all other, not 
mutated genes. In the paper, we use a technique 
called gene-coexpression networks to compare 
the two approaches, and apply it to data on bud-
ding yeast S. cerevisiae. In terms of gene func-
tion prediction and contrary to our expectations, 
we found that mutant phenotypes are on the 
overall not more informative than gene expres-
sion profiles, and we provide biological explana-
tion why some gene functions can be better pre-
dicted using one type of data and not the other. 

1 Introduction 
The development of DNA microarrays allows whole-
genome expression profiling, measuring the expression of 
each of the genes in a single assay. Changes in gene ex-
pression are often related to specific cellular needs and 
most expression profiling studies try to identify genes that 
respond to specific conditions or treatments. Recently the 
idea that expression of all genes could be used as an indi-
cation of cellular state has received great attention 
[Alizadeh et al., 2000; Bittner et al., 2000; Hughes et al.,
2000]. Whole-genome expression profiles of mutants thus 
hold great promise for rapid genome function analysis. It 
is plausible that the mutant expression profile could serve 
as a universal phenotype [Hughes et al., 2000; Hughes, 
2005; Van Driessche et al., 2005] and as such is believed 
to be very informative for assigning gene function. 

Instead of associating gene function to its expression 
pattern under different conditions, we can consider the 
entire microarray profile of a strain that is mutated in one 
gene as an indicator of that gene's function. This method 
has been demonstrated successfully in yeast [Hughes et 
al., 2000] and in cancer cell characterization [Alizadeh et 
al., 2000; Bittner et al., 2000]. The reason to use this al-

ternative also follows the finding that gene expression and 
gene function show very little correlation on a global scale 
(less than 10% of the cases) [Winzeler et al., 1999]. When 
reasoning on gene function classical genetics has much 
depended on observational mutant phenotypes (e.g. “mu-
tant grows”, “does not grow”, “sporelates”, etc.), leading 
us to believe that their modern transcriptional variants will 
provide a robust funding for function prediction. 

The study reported here was inspired by investigation 
of Stuart et al., who showed that, in contrary to above, 
predicting gene function using evolutionary conservation 
in the wild is more sensitive than scoring the phenotype 
resulting from strong loss-of-function mutants in the labo-
ratory [Stuart et al., 2003]. They base their work on the 
assumption that genes commonly found in diverse organ-
isms and with by-organism correlated expression patterns 
under a large number of diverse conditions imply func-
tional relation. In order to distinguish accidentally co-
regulated genes from those that are physiologically impor-
tant they observe the evolutionary conservation between 
multiple species (yeast, worm, fly and human). They be-
lieve that evolutionary conservation is a powerful criterion 
to identify genes that are functionally important from a set 
of co-regulated genes and that co-regulation of a pair of 
genes over large evolutionary distances implies that the 
co-regulation confers a selective advantage, most likely 
because the genes are functionally related [Stuart et al.,
2003]. Using the method of gene-coexpression networks 
they were able to identify several examples of evolution-
ary conserved functional groups with high gene coexpres-
sion. Importantly, they also show that predictive accuracy 
is much poorer when using only the data on a single-
organism. 

In this paper we compare the level of information in 
mutant expression data with the information in gene ex-
pression data. Similarly to Stuart et al. we base our work 
on the assumption that similar expression profiles imply 
similar function and use the method of gene-coexpression 
networks to make the comparison.  

The method of gene-coexpression networks requires a 
measure of distance in gene expression. The most com-
mon way, the one also used in [Stuart et al., 2003], to 
measure distance (or similarity) in gene expression be-
tween pairs of genes is to compare their expression pro-
files, where expression of a gene is measured under dif-
ferent experimental conditions. We will call this type of 
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data gene profile. As an alternative, we measure distance 
between genes using transcriptional profiles of mutant 
strains. For a mutated, usually deleted gene, expression of 
all genes in mutant’s genome is measured. When compar-
ing two genes, we compare transcriptional profiles of the 
respective two mutant strains. We will call this type of 
data mutant profile. In both cases and like in the study by 
[Stuart et al., 2003], we use Pearson correlation as a dis-
tance function.  

2 Data and methods 
In this section we describe the microarray gene expression 
data sets and gene functional annotations used. We also 
describe the method of so called gene-coexpression net-
works that we applied to measure the ability to predict 
function from gene coexpression. 

2.1 Gene expression and functional annotation 
We have used two data sets of microarray gene expression 
measurements. For gene profiles we used data from a 
study of cell-cycle in S. cerevisiae where whole-genome 
expression under 73 conditions was measured by 
[Spellman et al., 1998]. For mutant profiles the data was 
obtained from a compendium of whole-genome expres-
sion measurements of 300 diverse mutants and chemical 
treatments in S. cerevisiae as performed by [Hughes et al.,
2000]. 
 To test the results of our predictions we have used ex-
isting functional annotations on 76 GO slim terms, which 
is a collection of high level Gene Ontology (GO) terms 
[Ashburner et al., 2000] that best represent the major bio-
logical processes, functions, and cellular components that 
are found in S. cerevisiae (data available at 
http://www.yeastgenome.org). We also used KEGG anno-
tation [Ogata et al., 1999] for four functional classes de-
scribed and used in [Stuart et al., 2003]: Cell cycle, Pro-
teasome, Oxidative phosphorylation and Ribosome. 

2.2 Gene-coexpression networks  
The method presented in [Stuart et al., 2003] measures the 
correlation between gene coexpression and function. The 
method, called gene-coexpression networks, requires a 
measure of gene coexpression (or distance in gene expres-
sion) in order to build a network of coexpressed genes. In 

their paper, Stuart et al. used gene expression measured 
under different conditions. We have applied the same 
method to relate genes based on their mutant-based tran-
scriptional phenotypes. 

A gene-coexpression network is a graph where nodes 
represent genes. Edges in this network connect two nodes 
if coexpression of their corresponding genes is higher than 
an arbitrary threshold. By varying this threshold we can 
generate different networks: from relatively unconnected 
networks, where only the most coexpressed genes are 
linked, to highly connected networks with edges relating 
also genes with low correlation. Each time we can meas-
ure the connectivity properties of genes from a selected 
functional class. One such measure of connectedness is 
coverage: the percentage of class genes that are connected 
to at least one gene from same class. The other is accu-
racy: the number of edges connecting genes from same 
class divided by the number of all edges coming from 
class genes (see Figure 1 for example). 

Gene-coexpression networks can be seen as a method 
to cluster genes. At the same time, by varying the thresh-
old, they also give a general overview of the relation be-
tween function and gene coexpression. In their study, 
[Stuart et al., 2003] verified the significance of the inter-
actions in such networks by means of a variety of statisti-
cal and permutation tests. They compared the number of 
interactions (links) in random networks with real net-
works, the influence of selection of microarray experi-
ments on the ability to identify interactions, and the influ-
ence of noise in microarray data on the constructed net-
works. They found the method to be robust and appropri-
ate for the task. For details see [Stuart et al., 2003]. 
Among other things, they showed that genes from some 
functional classes were highly inter-connected in the co-
expression network, indicating a correlation between 
function and coexpression.  

2.3 Performance of gene-coexpression networks 
We can plot coverage and accuracy values of gene-
coexpression networks obtained at different thresholds of 
gene coexpression for a selected functional class of genes 
(see Figure 2a). At high thresholds the class coverage is 
close to zero, because the networks include only a few 
edges. If genes from the same functional class are highly 
connected (and at the same time disconnected from genes 

G1

G5

G2

G3

G4 G7

G6

gene in observed class

Legend:

gene not in observed class

Figure 1. Gene-coexpression network for seven genes (G1-G7). We connect those pairs of genes that are correlated more than an 
arbitrarily selected threshold (some genes might not be connected, gene G6 in this example). There are five genes annotated to the
observed class (nodes G1, G2, G5, G6 and G7), but only two of them are connected to each other (G1 and G2). The class coverage of
this network is then: 2/5=0.4. To calculate accuracy we need to count edges. There is only one edge connecting two genes in ob-
served class (edge G1-G2). There are four edges coming from class genes (edges G1-G2, G2-G4, G5-G4, G7-G4). The accuracy of
this network is then 1/4=0.25. 
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in different functional class), we obtain high accuracy. 
Relaxing the threshold, coverage monotonically increases 
at increasing risk for lower accuracy (accuracy may in-
crease, however, but would on average decrease mono-
tonically; see mutant curve in Figure 2a). The closer is the 
curve to point (1, 1) – the highest coverage and the high-
est accuracy – the better. By calculating the area under 
the curve (AUC), we can summarize the two measures 
into a single performance value that describes the level of 
correlation between gene function and coexpression. 

2.4 Quantitative comparison of gene function 
prediction from gene and mutant profiles 

The “gene profile” curve in Figure 2a was obtained using 
coexpression of gene profiles from Spellman gene profile 
data. If we now derive coexpression of Hughes’ mutant 
profiles and use it to build gene-coexpression networks, 
we can plot both curves and compare their AUCs for an 
observed functional class. Example in Figure 2a indicates 
that mutant profile might be more indicative for gene 
function “C: endoplasmic reticulum” because it has a 
higher AUC. 

By observing performance plots of different functional 
classes we can count the number of times a profile type 
“wins,” i.e. is more indicative to predicted class. Figure 2b 
is a summary of comparisons for all classes considered in 
this study. Each point represents a functional class, its X 
and Y coordinates are the AUCs of gene-coexpression 
networks obtained using gene and mutant profiles respec-
tively. Points below the diagonal are functional classes 
that can be better predicted using gene profiles (AUC us-
ing gene profiles is higher than AUC using mutant pro-
files), whereas those above the diagonal are cases where 

mutant profiles are more indicative. By observing the 
number of points on each side of the diagonal, we can 
then easily see which profile type is generally more in-
formative. 

3 Results and Discussion  
We measured the performance of gene-coexpression net-
works built from gene and mutant profiles for 80 func-
tional classes. Results for selected functional classes are 
summarized in Table 3, where we give the difference in 
AUCs obtained using the two types of profiles. In Table 3 
we subtracted the AUC obtained using gene profile from 
the AUC obtained using mutant profiles. A positive dif-
ference indicates that mutant profile is more informative, 
a negative difference that gene profile is more informa-
tive.  

Looking at results in Table 3 and Figure 2b we find a 
slight indication that gene profiles might be more infor-
mative than mutant profiles. We base this on higher AUCs 
values for gene profiles (compare values in top and bot-
tom rows in Table 3) and the prevailing number of times 
that gene profile wins in Figure 2b. 

Analysis of functional classes, for which either gene 
expression profiles or mutant profiles are more informa-
tive than the other, resulted in a list of classes (Table 3) 
that are in accordance with current understanding of regu-
lation of cellular functions in yeast. There are some func-
tional classes of yeast genes that are transcriptionally 
regulated and thus have relatively uniform expression 
profiles. This is however not a general phenomenon and 
other functional classes include genes coding for proteins 
whose activities are not regulated on the level of transcrip-
tion. For some of those genes, e.g. for those coding for 

Figure 2. a) Comparison of the two performance curves of gene-coexpression networks built for class “C: endoplasmic reticulum” 
(C indicates that the term is from “cellular component" aspect of GO). There are 19 genes in the class (number indicated in paren-
theses). Solid line curve shows the performance of gene-coexpression network built using gene profiles (with AUC = 0.288), and
dash-dot line curve the performance when using mutant profiles (with AUC = 0.355). A simple comparison of the two values tells us
that mutant profiles are more correlated than gene profiles for the selected functional class. b) Graph showing AUCs obtained using 
gene profiles (X axis) and mutant profiles (Y axis) for ~80 functional classes. Each point represents a functional class. Its X coordi-
nate is AUC of performance curve obtained using gene profiles, Y coordinate is AUC of performance curve obtained using mutant 
profiles. Encircled, at coordinates (0.288, 0.355), is class from example in Figure 2a. Gene profile wins 37 times, mutant profile 
wins 24 times. There are 18 ties – cases when both AUCs are equal. 

a b
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regulatory proteins that affect transcription of other genes, 
it is the coexpression of their target genes that can be used 
for functional classification, and these classes were pri-
marily identified through mutant profiles in our study. 
Functional classes for which gene expression profiles are 
more informative than mutant profiles included genes 
involved in cell cycle-related processes and functions 
(classes “Cell cycle”, “DNA metabolism”) and genes for 
ribosomal proteins (classes “Protein biosynthesis”, “Struc-
tural molecule”). These classes of genes have been previ-
ously shown as prime examples of agreement between 
function similarity and gene coexpression in several stud-
ies [DeRisi et al., 1997; Spellman et al., 1998]. Also clas-
sified as functional classes of genes for which gene coex-
pression correlates with functional similarity were genes 
involved in metabolism and transport, i.e. genes coding 
for enzymes and transporters, and genes involved in re-
sponse to stress, in agreement with previous findings 
[Causton et al., 2001; Gasch et al., 2002].  

On the other hand, in the group of genes for which gene 
coexpression is less informative than mutant profiles, 
based on previous knowledge about regulation of cellular 
functions in yeast we expected functional classes includ-
ing regulatory genes. Their expression levels do not 
change significantly in response to perturbations, but 
rather they affect gene expression of their target genes. In 
agreement with our expectations, the list was composed of 
functional classes such as “Protein kinase activity”, “Pro-
tein binding activity”, “Transcription” and “Transcription 
regulator activity”, “Protein modification”, “Signal trans-
ducer” and “Enzyme regulator activity”, that all consist of 
genes coding for regulatory proteins. Unexpectedly, how-
ever, there were three additional functional classes in this 
group that do not contain significant amount of genes 
known to have regulatory functions. These classes are 
“Lipid metabolism”, “Cytoskeleton organization and bio-
genesis” and “Cell wall organization and biogenesis.” 
Intriguingly, genes belonging to these classes could have 
roles in cellular physiology that are, from a global per-
spective, more important in regulatory activities than in 
their direct metabolic and structural functions. 

3.1 Additional experimental studies  
Since some of GO annotations are inferred from expres-
sion data (in particular, this includes all annotations with 
GO annotation evidence codes IEP and RCA), this could 
be the reason for higher performance of gene-
coexpression networks in general. We therefore removed 
IEP and RCA annotations (~5% of all annotation for 
yeast), and thus removed about 120 genes with no annota-
tion left. After this procedure the results changed only 
slightly (see Table 4), and gene profiles still appear to be 
more informative (compare the two graphs in first row in 
Table 4). 

We then performed two more tests to see how the re-
sults change if we use other gene and mutant profile data 
(graphs in second and third row in Table 4). First, we tried 
to use a different set of gene profiles (second row in Table 
4), and used gene profiles from the same data set as used 
for mutant profiling (from Hughes dataset). In this case 
gene profiles consisted of measurements from approx. 270 

conditions (each mutant can be seen as a condition). The 
mutant profile data remained the same as in our first test 
(expression of 6316 genes in mutant’s genome). In this 
test, mutant profiles are slightly more informative than 
their gene expression profiles alternative, but the later are 
still winning on the overall (see second row in Table 4 and 
compare it to first row). 

In our last test we observed if there is any difference if 
we look at mutant data in two different ways: as a mutant 
profile or as a gene profile. To do so, we used only the 
expression of 270 mutated genes to build mutant profiles. 
In this case mutant profiles become more informative (see 
third row in Table 4 and compare it to first and second 
row). 

mutant - gene 
profile per-
formance AUC 

Functional annotation 

-0.1147 P: DNA metabolism 
-0.1110 P: protein biosynthesis 
-0.0880 Ribo 
-0.0600 P: cell cycle 
-0.0564 F: structural molecule activity 
-0.0528 F: transporter activity 
-0.0390 F: transferase activity 
-0.0219 F: oxidoreductase activity 
-0.0194 P: transport 
-0.0191 F: hydrolase activity 

… … 
0.0109 F: signal transducer activity 
0.0229 P: protein modification 
0.0230 F: transcription regulator activity 
0.0293 P: cell wall organization and biogenesis 
0.0313 P: transcription 

0.0437 P: cytoskeleton organization and bio-
genesis

0.0498 P: lipid metabolism 
0.0657 F: protein binding 
0.0662 F: protein kinase activity 
0.0681 Oxid 

Table 3. Difference in gene-coexpression network per-
formance when using mutant and gene profiles. Only top 
ten classes for each profile type are listed. Functional 
classes that can be better predicted using gene profiles are 
listed on the top, while those better predicted using mutant 
profiles are shown on the bottom of the list. Prefix “P” in-
dicates the “biological process” aspect, “F” the “molecular 
function” aspect of GO. Classes Ribo and Oxid are taken 
from Stuart et al.

4 Conclusion  
Overall, we found no clear difference between the infor-
mation coming from gene and mutant profile data. On the 
contrary from what was our expectation (and perhaps an 
unstated belief of the community), there is a slight indica-
tion that gene profiles (i.e. observing gene expression un-
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der different conditions) might, on the overall, be more 
correlated to gene function than mutant profiles (i.e. ob-
serving expression of mutants in same condition). But, 
when studying a particular function, there may be a clear 
difference between the two approaches that can be ex-
plained with existing biological knowledge. This is a clear 
indication that both sources of experimental data may be 
used in order to successfully predict gene function. We 
are currently investigating ways to automatically learn 
how to combine both profile types for better function pre-
diction. 

The principal novelty of reported work is in direct com-
parison of the utility of gene expression profiles and tran-
scriptional phenotypes of mutants for gene function pre-
diction. The two data sources were first studied together 
and qualitatively compared in [Hughes et al., 2000], while 
other references on utility of mutant-based transcriptional 
phenotyping are at best rare. Gene expression networks 
and accuracy-coverage graphs, together with utility of 
function annotation data bases, allowed us to compare two 
sources quantitatively and to draw conclusions related to 
particular functional groups. 
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  Annotation 

All annotation from GO slims All annotation except IEP and RCA evidence codes 
(inferred from expression) 

Gene profile:
expression in 73 condi-
tions (Spellman data) 

Mutant profile:
expression of all 6316 
genes in mutant 
(Hughes data) 

Gene profile:
expression in 272 mu-
tants (taken as condi-
tions, Hughes data) 

Mutant profile:
expression of all 6316 
genes in mutant 
(Hughes data) 

Pr
of

ile
s

Gene profile:
expression in 272 mu-
tants (as conditions, 
Hughes data) 

Mutant profile:
expression of only 270 
mutated genes in mu-
tant (Hughes data) 

Table 4. Comparison of performance of gene-coexpression networks built using different sources of gene and mutant profile data, for 
two types of annotation. Graphs in first column show the gene vs. mutant profile AUCs comparison when using all annotation; second 
column, after annotation with IEP and RCA evidence codes was removed. 
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Abstract

This paper explores the use of instance-based
reasoning (IBR) to estimate the probability of
hospital death in patients admitted to the In-
tensive Care Unit (ICU). The predictions are
based on severity-of-illness scores that indicate
the state of the patient. We have implemented an
instance-based reasoning algorithm as an alterna-
tive to logistic regression (LR) models to predict
hospital mortality. The performance was mea-
sured and prospectively validated. Results show
that instance-based reasoning is competitive to
logistic regression.

1 Introduction
Clinical scoring systems are tools for assessing the states
of patients and quantifying the severity of their condition
[Wyatt, 1990]. They are used in many medical disciplines,
including cardiology, oncology, and critical care, and can
be used for a variety of clinical and management tasks such
as comparative audit among practitioners, measuring the
effects of treatment, and risk assessment and prognosis. In
this paper, we focus on the application of scoring systems
in prognosis with binary outcome variables.

In most scoring systems, patient-specific data is used to
arrive at an integer value that represents the severity of a
patient’s illness. Because points are assigned to deviations
from normal values, low values (close to zero) generally
represent mild conditions, whereas higher values are asso-
ciated with more serious conditions. When clinical scores
are used in prognosis, a model has to be developed that con-
verts these scores into patient-specific predictions. With a
binary outcome variable, the model needs to convert scores
into either predicted outcome classes or into probabilities.
The predominant methodology for doing this is logistic
regression (LR) analysis [Hosmer and Lemeshow, 2000],
where the score is used as a linear covariate.

Although LR analysis has proven to be a powerful mod-
eling methodology in the biomedical field, it is based on
assumptions that are questionable for most clinical scor-
ing systems. In particular, logistic regression assumes that
there exists a fixed (usually linear) relationship between

∗Corresponding author. E-mail: l.m.peelen@amc.uva.nl

score and log odds of the outcome probability over the en-
tire score range. In practice, however, most scoring sys-
tems were not designed to have this property, and the rela-
tionship between score and (log odds of the) outcome may
vary over the score range, and may be highly nonlinear.

In this paper, we study the use of instance-based reason-
ing (IBR) as an alternative for LR analysis in scoring-based
prognosis. IBR is a nonparametric prediction method that
is based on the assumption that the prognosis of a new pa-
tient resembles those of past patients with similar charac-
teristics. The IBR method employed is the weighted k-NN
regression algorithm with an adaptive neighborhood size.
The main advantage of instance-based reasoning is that it
makes few assumptions regarding the relationship between
predictors and outcome. Furthermore, being a ‘lazy’ learn-
ing method, it is less sensitive to population drift than eager
(model-based) learning methods such as LR. The main dis-
advantage is that it requires relatively large datasets (com-
pared to parametric methods), and does not work well in
high-dimensional domains. Finally, when it is used to esti-
mate probabilities, as in our application, these may be bi-
ased (structurally too high or too low), a phenomenon that
does not occur in model-based methods.

The method was applied to data from two popular scor-
ing systems for intensive care patients, the APACHE II
[Knaus et al., 1985] and SAPS II [Le Gall et al., 1993]
scores. The resulting mortality estimators were validated
and compared with LR models internally (with cross-
validation on the training dataset) and externally (on a
prospectively collected dataset).

The paper is organized as follows. Section 2 reviews the
two scoring systems that were employed; Section 3 pro-
vides details on the datasets, IBR prediction method, and
validation procedure. Section 4 describes the results from
our study and Section 5 finishes the paper with a discussion
and conclusions.

2 APACHE II and SAPS II scoring systems
Various scoring systems have been developed for the field
of intensive care medicine [Gunning and Rowan, 1999].
In this study, we have used the Acute Physiological And
Chronic Health Evaluation (APACHE) II [Knaus et al.,
1985] and the Simplified Acute Physiology Score (SAPS)
II [Le Gall et al., 1993] scores. Both scores are assessed
during the first 24h of a patient’s ICU stay, and can be con-
verted into an estimated probability of death by means of
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an associated LR model. The APACHE II score has a min-
imum of 0 and a maximum of 71 points; it summarizes
mainly physiological information, and the associated LR
model employs information on the patient’s diagnosis at
admission (54 categories) and type of admission (6 cate-
gories) besides the score. The SAPS II score ranges from 0
to 163 points; it summarizes physiological, diagnostic, and
admission-type information; the associated LR model only
employs the score itself.

An important difference between the APACHE II and
SAPS II scoring systems is that the former is based on
knowledge from practitioners, whereas the latter is based
on data analysis. The APACHE II scoring system was de-
signed during a consensus meeting with experienced in-
tensive care clinicians; the associated prognostic model is
based on LR analysis of a multicenter dataset of ICU ad-
missions. The SAPS II scoring system, in contrast, was
obtained by scaling the coefficients that were derived by
multiple LR analysis on a large multicenter dataset.

Both scoring systems consider patients who have un-
dergone cardiac surgery as special cases. These patients
usually stay for observation at the ICU and leave for fur-
ther recovery at the nursing ward once their condition is
stable. We can compute scores for these patients, but
the associated probability estimates from the LR mod-
els are believed to be unreliable [Knaus et al., 1985;
Le Gall et al., 1993].

3 Data and methods
3.1 Data
The Dutch National Intensive Care Evaluation (NICE) reg-
ister [NICE, 2005] provided two datasets containing infor-
mation on ICU admissions. The first dataset describes 1559
ICU admissions from 7 Dutch hospitals between January
2003 and August 2003 and was used as a training set. In
this dataset the hospital mortality is 14.8%.

During our study a second dataset was provided con-
sisting of 1868 ICU admissions from August 2003 to June
2004. It was used to validate the IBR estimators that were
developed on the first set. The hospital mortality in this
dataset is 16.3%. The difference in mortality between the
two datasets is not significant (χ2 = 1.38; p = 0.24).
Both sets contain all variables required to compute the
APACHE II and SAPS II scores, the scores themselves,
and the associated probabilities of death estimated by the
APACHE II and SAPS II LR models.

Using these data in total eight IBR estimators were devel-
oped using different (combinations of) predictive features.
Two univariate IBR estimators were developed, one for the
APACHE II score, and one for SAPS II score. Because
the APACHE II score does not include information on the
patient’s diagnosis and type of ICU admission, also three
multivariate estimators were developed for the APACHE II
score in combination with diagnosis category, admission
type, and both. Finally, a multivariate IBR estimator was
developed on the basis of the two scores together.

As discussed in Section 2, predictions from the
APACHE II and SAPS II LR models are believed to be
unreliable for cardiac surgery patients and therefore should

not be used. In the IBR estimators described above we have
neglected this exclusion criterion and make predictions for
all ICU patients in the same manner. Therefore we refer to
these IBR estimators as single method estimators.

To take the exclusion criterion for cardiac surgery ICU
admissions into account, we developed two more estima-
tors, called the dual method estimators. Here we use the
clinical scores (APACHE II and SAPS II respectively) to
arrive at predictions for the patients who did not undergo
cardiac surgery, and four alternative features for patients
who arrive at the ICU after cardiac surgery. The four alter-
native features are minimum temperature, minimum sys-
tolic blood pressure, minimum bicarbonate, and maximum
creatinine (all during the first 24h of ICU stay); they have
been shown to be important predictors of mortality in car-
diac surgery patients [Verduijn, 2002].

All IBR estimators were constructed with an extension
of the weighted k-NN regression algorithm.

3.2 Prediction method
In weighted k-NN regression, predictions are obtained by
computing a weighted average of the outcomes of the k
training instances that are most similar to query instance
xq . In the case of a binary outcome Y , we have

p̂(Y = 1|xq) =
∑k

i=1 Kλ(xq,x[i]) · y[i]∑k
i=1 Kλ(xq,x[i])

, (1)

where x[1], . . . ,x[k] are the k training instances most simi-
lar to xq, and Kλ(xq,x[j]) is the weight assigned to train-
ing instance x[j]. This is called the Nadaraya-Watson
kernel-weighted average [Hastie et al., 2001, Ch. 6]. In our
application, p̂(Y = 1|xq) is the patient’s estimated prob-
ability of hospital death, given the feature-value vector xq

(e.g. APACHE II score and diagnosis category).
Three important choices have to be made when weighted

k-NN regression is applied: 1. How do we find similar
training instances (choice of distance metric)?, 2. How
are distances transformed into weights (kernel function)?,
and 3. How many neighbors are used to make predictions
(neighborhood size)? Each of these questions is addressed
below.

Distance metric In the univariate IBR estimators we
have used the score difference to quantify the distance be-
tween instances. In the multivariate estimators, local dis-
tance metrics were constructed for each of the predictive
features. For non-numeric features (diagnosis category and
ICU admission type), these local metrics were defined by
distance matrices based on the hierarchical relations be-
tween feature values; we refer to [Tan, 2005] for details. In
the prediction phase, local distances were normalized and
then combined using the Manhattan metric (i.e. taking the
unweighted sum of all normalized local distances).

Kernel function The kernel is a function that assigns a
nonzero weight to all instances within the neighborhood of
k nearest training instances, and zero weight to all other
instances. We have used two kernel functions in our ex-
periments, the uniform kernel and the Epanechnikov kernel
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[Silverman, 1986]. The uniform kernel assigns unit weight
to all k nearest neighbors, thus treating them as equally
important. The Epanechnikov kernel, in contrast, is a non-
linear function that approaches 1 at small distances to the
query instance, and 0 at the boundaries of the neighbor-
hood:

Kλ(xq,x[i]) =
{

3
4 (1 − t2) if |t| ≤ 1,
0, otherwise, (2)

where t = d(xq,x[i])/d(xq,x[k]) is the normalized dis-
tance between neighbor x[i] and the query instance xq .

Neighborhood size Most algorithms for k-NN classifi-
cation and regression (e.g. those implemented in WEKA
[Witten and Frank, 2001]) choose a fixed number of neigh-
bors to make all predictions. However, usually the values of
predictive features are not uniformly distributed over their
theoretical range. As a result the width of the neighbor-
hood that is necessary to obtain the k nearest neighbors
varies with the sparsity of the data in the neighborhood
of the query instance. However, when the neighbors are
weighed according to their distance to the query instance,
a single close neighbor yields the same amount of weight
as multiple distant neighbors together. A better option is
therefore to let the neighborhood width depend on the total
weight of the neighbors rather than the number of neigh-
bors [Hastie et al., 2001]. This implies that the neighbor-
hood width varies with the position of the query instance in
the instance space and is locally adapted to the sparsity of
the data.

In our application, a target total weight (ttw) of the
instances in the neighborhood was established during the
learning phase. The value of ttw is constant over the fea-
ture space, but needs to be optimized for the predictive
feature(s) and the type of kernel function that are used to
predict mortality. To find the optimal value for ttw, the
following method was employed. For each IBR estimator,
both kernel types and ttw values of 5, 10, 20, 50, 100,
200 and 500 were employed in a jackknife cross-validation
procedure. In each run of the procedure, the estimator’s
accuracy was determined. Based on the results, the kernel
type and ttw value were chosen.

Within this procedure, predictive accuracy was measured
by the R2 statistic [Ash and Shwartz, 1999]:

R2 = 1 −
∑N

i=1(p̂(Y = 1 | xi) − yi)2∑N
i=1(ȳ − yi)2

, (3)

where N is the size of the training dataset and ȳ =
1
N

∑N
i=1 yi is the mean outcome value. The R2 statistic

is inversely proportional to the mean squared error and the
Brier score.

Figure 1 shows an example for the APACHE II score.
The best performance is obtained with the Epanechnikov
kernel and ttw values of 50 and 100. Because larger
ttw values correspond to simpler models, we choose the
Epanechnikov kernel with a ttw value of 100.

This procedure of selecting the optimal settings has been
applied for all IBR estimators.

target total weight
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Figure 1: R2 performance statistic for the APACHE II IBR
estimator, plotted against the ttw, for both kernel types.

3.3 Validation
The IBR estimators were internally and prospectively vali-
dated. In the internal validation the performance of the es-
timator was measured by jackknife cross-validation on the
training data. The estimator was also validated on prospec-
tively collected data, using the second data set provided by
the NICE register. Three different procedures were used in
this prospective validation.

The first prospective validation procedure, the settings
validation, aims to check whether the settings for ker-
nel type and target total weight that were optimized on
the training data, yield comparable performance on the
prospective test dataset. To this end, we only use these
settings, but not the training data for prediction; instead
jackknife cross-validation is applied on the test set. Be-
cause the test set is larger than the training set, we expect
the measured performance to be equally good or better if
the chosen settings are valid.

The second prospective validation procedure is called the
plain prospective validation. This procedure aims to in-
vestigate how well the algorithm generalizes to prospective
data. To this end, predictions are made for all instances
in the test set, while the training set serves as the instance
base. We use the settings for kernel type and ttw value
that were found on the training set.

One interesting property of IBR is the fact that it is a
lazy learning method: generalization over examples in the
instance base takes place no sooner than at the time of mak-
ing predictions. The third prospective validation procedure,
called incremental prospective validation, takes advantage
of this property by incrementally adding instances from
the test set and using them for future predictions. To this
end, records in the test set were ordered by ICU admission
date, and evaluated in that order. When evaluating a given
record with admission date d, the instance base consists of
all records from both the training set and test set with dis-
charge date prior to d. For the first record from the test
set this procedure yields the same prediction as in the sec-
ond validation procedure. But for later records, the num-
ber of possibly similar instances is much larger, and there-
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Estimator method Predictive feature(s) Kernel type ttw Relative bias AUC ± S.D.

Single APACHE II Epan 100 -3.85 0.792 ± 0.033
Single SAPS II Unif 50 -1.65 0.860 ± 0.030
Single APACHE II, SAPS II Epan 20 4.50 0.854 ± 0.031
Single APACHE II, admission type Epan 20 0.04 0.828 ± 0.029
Single APACHE II, diagnosis category Unif 20 -4.22 0.831 ± 0.029
Single APACHE II, adm. type, diag. category Unif 20 -6.70 0.818 ± 0.029
Dual APACHE II or alternative features Epan 100 -11.90 0.818 ± 0.033
Dual SAPS II or alternative features Epan 50 -1.07 0.854 ± 0.030

LR model APACHE II - - - 0.796 ± 0.033
LR model SAPS II - - - 0.867 ± 0.027

Table 1: Results from the internal validation (jackknife cross-validation on the training set, 1559 ICU admissions). The
predictive bias, averaged over all cases, is expressed as a percentage of the hospital mortality (14.8%). The alternative
features for the dual method estimator are minimum temperature, minimum systolic blood pressure, minimum bicarbonate,
and maximum creatinine values during the first 24h of ICU stay.

fore the predictions may be more accurate. Furthermore, in
this way the prediction method accommodates to changes
in the population characteristics (drift), a phenomenon that
frequently occurs in medical applications.

In each validation procedure we computed the area un-
der the ROC curve (AUC) for all IBR estimators. The AUC
quantifies a estimator’s ability to discriminate between pa-
tients who survive and those who die. An AUC value of
0.5 indicates that the estimator does not predict better than
chance, while an AUC value of 1 indicates perfect discrim-
ination. For the APACHE II and SAPS II scoring systems
an AUC of > 0.80 is considered to be good.

4 Results
4.1 Internal validation
Table 1 shows the results from the internal validation.
When regarding the AUCs, we see that the SAPS II IBR es-
timator is superior to the APACHE II IBR estimator (0.860
vs. 0.792). The LR model of SAPS II is better than that
of APACHE II (0.867 vs. 0.796), and the SAPS II IBR
estimator. The multivariate IBR estimator that uses both
scores yields a slightly worse performance than SAPS II
alone (0.860 vs 0.854) but these differences have not been
tested for significance.

The APACHE II LR model employs information on
the patient’s diagnosis and type of admission besides the
score, so employing this information with the IBR estima-
tor should lead to better results as well. This is done by
combining the APACHE II score and the admission type
and/or diagnosis category in the IBR estimator. We see in
Table 1 that adding either APACHE II admission type or
diagnosis category leads to a increase in performance com-
pared to that of the APACHE II alone in the IBR estimator.
The performance is slightly worse when both the admission
type and diagnosis category are used.

Since predictions for cardiac surgery patients by the
APACHE II and SAPS II LR models are believed to be un-
reliable, the predictions by the single method IBR estima-
tor may be unreliable as well. The dual method estimator
attempts to improve performance by using alternative fea-
tures for these patients. The desired effect is however only

obtained for the APACHE II score and not for SAPS.

Table 1 also shows that the uniform kernel and Epanech-
nikov kernel were almost equally often selected by the op-
timization algorithm. So, the uniform kernel (i.e., equal
weight for all instances in the neighborhood) may perform
equally well or better than the Epanechnikov kernel in prac-
tical circumstances, even though the Epanechnikov kernel
appears to be superior from a theoretical point of view.

Interestingly, the optimization algorithm has chosen ttw
values (i.e., effective neighborhood sizes) that are relatively
large compared to the values that are usually reported in the
literature (less than 20 neighbors is common). Presumably,
the explanation is that in our application, the neighboring
outcomes are used to estimate the probability of death in-
stead of the dominant class, and therefore a larger neigh-
borhood size is required. Note that lower ttw values are
selected for the multivariate estimators, due to sparsity in
the multidimensional feature space of these estimators.

Because k-NN regression does not optimize a global
likelihood formula, its predictions may show structural de-
viations from the observed outcome; we refer to this phe-
nomenon as predictive bias. In Table 1 we have listed the
predictive bias of each of the estimators, expressed as a
percentage of the observed outcome. The APACHE II IBR
estimator (first row), for instance, predicts a total of 221.1
deaths, whereas 230 out of 1559 patients actually died; the
estimator thus underestimates mortality with 3.85%. The
dual method estimator for APACHE II (seventh row) has a
serious negative bias of -11.9% (202.6 deaths predicted).

Figure 2 shows smoothing plots of observed versus pre-
dicted probabilities for the APACHE II and SAPS II IBR
estimators. The plots illustrate well the superior fit of the
SAPS II estimator to the data: its plot is far more smooth
and extends further into the upper region of the probabil-
ity interval. The APACHE II plot, in contrast, is rather
bumpy and the estimator appears to perform very poorly
for patients with a high score. So, the APACHE II score
appears to contain ‘errors’ that are difficult to repair, even
for a highly adaptive method such as k-NN regression.
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Figure 2: Observed vs. predicted probabilities in the APACHE II (a) and SAPS II (b) IBR estimators. The observed
probabilities (on the y-axis) are obtained by loess smoothing on the observed outcome values (0 and 1), and are surrounded
by 95% confidence intervals.

4.2 Prospective validation
Table 2 shows the results of all prospective validations. For
each prospective validation, the mean predictive bias and
AUC are displayed.

In the settings validation, the IBR estimators are applied
to new data with the kernel type and target total weight
settings that were optimized on the training set. For all
estimators, the performance is equally good or better on
the test set (explained by the fact that this set is somewhat
larger than the training set). We conclude that the settings
that optimized on the training set generalize well to new
data.

Also in the plain prospective validation, where instances
from the training set are used to make predictions on the
test set, the performance is similar to the internal perfor-
mance on the training set. So, we can use the IBR esti-
mators to make predictions for future, unseen cases. The
predictive bias, however, increases.

In the incremental prospective validation, the perfor-
mance of estimators based on the APACHE II score further
increases. Apparently, these estimators take advantage of
the increasing size of the instance base. This does not hold
for the estimators based on SAPS II. Furthermore, the pre-
dictive bias now reduces. An explanation for the latter fact
is that the feature space becomes more densely populated
since instances are added. A denser population means that
the neighborhood does not have to expand as much as with
a sparse population. This is especially advantageous near
the boundaries, where the predictive bias is usually larger.

5 Discussion and conclusion
We have used IBR to predict hospital mortality for patients
admitted to the ICU. Comparing our study to other applica-
tions of IBR in medicine, we note that in most studies IBR
is used for classification (e.g. [Schmidt and Gierl, 2005;
Lopez and Plaza, 1997]) and only sparsely for prediction.
Anand et al. [Anand et al., 2001] use k-NN in a hybrid sys-
tem to predict time to survival in cancer patients, Gottrup

et al. [Gottrup et al., 2005] predict infarcted regions of the
brain after cerebral stroke, based on MRI scans. Often IBR
is used as part of a larger system, e.g. as in [Montani et al.,
2000].

From our experiments we conclude that IBR can be used
to make reliable prognoses from clinical scores, and is
competitive to LR in this task. For the APACHE II score,
IBR prediction even outperforms the LR model. The ap-
plied method has been shown to generalize well to future
patients, especially when new patients are added to the in-
stance base to compensate for drift in the population char-
acteristics.

When comparing the performance of the APACHE II
and SAPS II scores in the IBR algorithm, we see that the
SAPS II score performs better than the APACHE II score.
The SAPS II scoring system was developed by scaling the
coefficients that were obtained with multiple LR analysis.
In contrast, the APACHE II scoring system is based on ex-
pert knowledge and the associated prognostic model was
obtained from a LR analysis. This may be the reason that
the IBR estimator does not perform better than the SAPS II
LR model. These different approaches (expert knowledge
vs. multiple LR analysis) to the development of a scoring
system appears to be an important factor in the performance
of IBR compared to a LR model. We think that this differ-
ence may also be apparent in other medical domains.

In the multivariate IBR estimators, we have used the
Manhattan distance metric. Euclidean distance or other
more sophisticated metrics may lead to better results. Sim-
ilarly, it may be beneficial to weigh the predictive features,
instead of treating them as equally important. However,
Kohavi et al. [Kohavi et al., 1997] found that weighing
features rapidly leads to overfitting. Furthermore, we note
that these adjustments only affect the multivariate estima-
tors, whereas very good results were obtained already with
our univariate estimators.

In the multivariate experiments, the combination of
APACHE II and SAPS II scores performed worse than the
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Feature(s) Settings validation Plain prospective validation Incr. prospective validation
Bias AUC ± S.D. Bias AUC ± S.D. Bias AUC ± S.D.

APACHE II -3.83 0.821 ± 0.026 -11.22 0.784 ± 0.029 -4.37 0.809 ± 0.027
SAPS II -0.73 0.865 ± 0.024 -2.23 0.867 ± 0.024 0.26 0.867 ± 0.024
APACHE II, SAPS II -3.30 0.869 ± 0.022 -3.02 0.861 ± 0.025 0.83 0.863 ± 0.024
APACHE II, admission type -2.81 0.843 ± 0.024 -8.57 0.832 ± 0.025 -4.74 0.839 ± 0.024
APACHE II, diagnosis category -3.01 0.840 ± 0.023 -7.60 0.829 ± 0.025 -4.88 0.835 ± 0.024
APACHE II, adm. type, diag. category -13.78 0.826 ± 0.024 -7.88 0.828 ± 0.024 -5.64 0.831 ± 0.024
Dual method APACHE II -12.12 0.818 ± 0.024 -16.95 0.812 ± 0.027 -11.82 0.834 ± 0.025
Dual method SAPS II -1.52 0.863 ± 0.024 -1.15 0.870 ± 0.024 1.68 0.872 ± 0.023
APACHE II LR model - - - 0.804 ± 0.027 - 0.804 ± 0.027
SAPS II LR model - - - 0.877 ± 0.022 - 0.877 ± 0.022

Table 2: Results from the prospective validations (1868 ICU admissions). The hospital mortality in this dataset is 16.3% .

SAPS II score alone. A possible explanation is found in
the fact that the distance metric regards these two scores
on two independent axes, perpendicular to each other. This
is not correct, because both scores indicate the severity of
illness; they are collinear. In future experiments, we have
planned to use local regression models [Cleveland, 1979],
which is expected to adjust for this phenomenon.
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Abstract
Prediction of patient mortality plays a central role in 
quality of care assessment programs in the Intensive 
Care (IC). Existing prognostic models for mortality 
prediction, such as SAPS, are logistic regression 
models based on medical scores calculated from data 
obtained only during the first 24 hours of patient 
admission. They, hence, do not use temporal 
information collected during the IC stay. In this paper 
we investigate the added value of the daily sequential 
organ failure (SOFA) score on predicting mortality 
after the first, second, and third days after admission. 
In particular, we first use data-mining techniques to 
discover frequent patterns in the sequence of SOFA 
scores. Then, we assess their added value in mortality 
prediction by considering them as potential 
covariates in a logistic regression model that includes 
the SAPS score. We demonstrate that this method 
results in better models and validate this result on a 
new test set. 

1. Introduction 
Prognosis, or the prediction of medical outcomes, plays an 
important role in Medicine [Abu-Hanna and Lucas, 2001]. In 
the Intensive Care, hospital mortality is predicted and 
compared to the actual mortality in order to assess the quality 
of care of an IC unit. Hospital mortality comprises deaths in 
the hospital during or after the stay in IC unit (ICU). Current 
IC prognostic models, such as the SAPS-II [Gall et al., 1993] 
are logistic regression models that use a relatively small 
number of severity-of-illness scores as their covariates. These 
scores are based on data collected during the first 24h after 
admission. They take positive integer values where higher 
values indicate more severe conditions of the patient. 
Recently, modern ICUs started collecting a daily score called 
the SOFA (Sequential Organ Failure) score [Vincent and 
Ferreira, 2000], which ranges from 0 to 24. The SOFA score 
quantifies the degree of derangement and failures of organ 
systems for each patient. The SOFA score was hence not 
developed specifically for its utility to help predict mortality 
but it is believed that its temporal information can contribute 
to this purpose. 

In this paper we describe and evaluate a method for including 
patterns from SOFA sequences for developing prognostic 
models for the prediction of hospital mortality. More 

specifically, we construct three models that predict mortality 
after one, two, and three days after ICU admission. In general, 
there are two main approaches for the utilization of temporal 
data. In the first approach the temporal data is reduced by 
means of summary statistics such as the maximum value in a 
sequence. In the second approach, which we shall adopt here, 
the temporal relationship between values is preserved. We will 
represent temporal information by patterns of frequently 
occurring consecutive qualitative values. These patterns will 
be represented as binary covariates in the logistic regression 
models. In order to assess the added value of these patterns to 
existing models, we use the SAPS-II score as a permanent 
covariate. In our model-building strategy, covariates 
representing the patterns are added only if they show 
improvements of statistical significance. We then validate 
these models on a new test set. 

The following section will include a brief description of the 
data used. Section 3 will describe the methods, their 
applicability and the results. Discussion and conclusions are 
presented in Section 4. 

2. Data 
Data was provided by the ICU of the OLVG teaching hospital 
in Amsterdam and contains information about all 5160 IC 
patients from July 1998 until December 2004. The data set 
contains static and temporal information. The static 
information includes more than 100 attributes for each patient 
including demographics, like age and sex; reason for 
admission to the ICU, like surgery; and physiology, like body 
temperature and heart rate. Severity of illness scores, most 
notably the SAPS-II score, are also part of the static data. All 
static data are collected in the first 24h after admission. The 
temporal data contains SOFA scores, ranging from 0 to 24, 
collected on daily basis for each patient. Hence, each patient 
has a temporal sequence of SOFA scores computed for each 
day of stay of the patient in the ICU. For example the 
sequence 14 - 12 - 8 describes the SOFA scores of a patient 
that stayed 3 days and is recovering. For patients that were 
readmitted in the ICU, e.g. because of complications, only the 
last readmission was included due to its relevancy to hospital 
mortality, which is the outcome one wants to predict. This has 
resulted in a total of 4771 patients. 
Because our dataset is relatively large we randomly divided 
the data set into a training set (3181 patients) for model 
development and a test set (1590 patients) for model 
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validation. Some main characteristics of the patients in the 
data sets are shown in Table 1. 

 Data set  Training set Test set 
No. of patients 4771 3181 1590 
#Males / #Females  1.90 1.86 1.97 
Age mean ± SD 64.4 ± 14.41 64.7 ± 14.21 63.7 ± 14.79 
Age median 67 68 66 
SAPS mean ± SD 34.2 ± 15.6 34 ± 15.3 34.4 ± 16.3 
Hosp. mortality % 10.7 10.3 11.6 
Length of stay median 0.92 0.92 0.92 
Length of stay mean 2.11 2.13 2.08 
Table 1. Descriptive statistics for the whole data, training and 
test sets. 

3. Methods and results 

3.1. Data preprocessing 
We categorize the SOFA score, which ranges form 0 to 24, 
into manageable more intuitive qualitative categories.  We 
derive these categories automatically, from the training set, by 
seeking the cut-off points that minimize the entropy of 
mortality. This is achieved by fitting a binary classification 
tree for predicting mortality using the maximum SOFA values 
for each patient during their length of stay in ICU. The tree is 
pruned according to minimizing the 10-fold cross-validation 
error. We obtained 2 cutoff points corresponding to three 
SOFA categories: L (Low) for SOFA Ò 10, M (Medium) with          
11 Ò SOFA Ò 13 and H (High) for SOFA Ó 14. The SOFA 
scores are now recoded, in the training as well as the test set, 
according to these categories. A SOFA score sequence of     
14 - 12 – 8 will be now recorded qualitatively as H-M-L.

3.2. Frequent episodes 
A sequential episode [Mannila et al., 1997], is a form of a 
temporal pattern that specifies a set of events that occurs in a 
particular order in a pre-set time window. The sequential 
episode A-B matches the sequences A-B and A-C-D-B. An 
event in our case is either L, M, or H. Analysis of non-
consecutive sequential episodes has been described in [Toma 
et al., 2005]. In this paper we only consider episodes in which 
the events are also consecutive, so in the example above the 
sequence A-C-D-B would not match the episode A-B. An 
Apriori-like [Agrawal and Srikant, 1994] efficient algorithm 
for discovery of sequential episodes is described in [Mannila 
et al., 1997]. We adapted and implemented this algorithm in 
Java. The restriction to consecutive events in the sequence is 
implemented in practice by constraining the window size. Our 
main adaptation to the algorithm in [Mannila et al., 1997] is 
related to the way the support of episodes is calculated. In the 
ICU, patients have markedly different lengths of stay 
(regardless of their vital status at discharge), and hence, 
different lengths of qualitative SOFA sequences (hereafter 
SOFA sequences). If we calculate support of an episode based 
on its occurrence in the whole patient population, then the 
longer episodes will have much less support because the 
longer sequences are much less frequent. Because we want to 
make predictions for three different cohorts -for those that 
stayed for at least 1, 2 and 3 days- we must adjust the support 

based on the respective cohort. For example, when calculating 
the support for an episode of length 3 we should seek support 
within sequences of at least length 3. In other words, only 
patients that stayed for at least 3 days are eligible to be 
counted in the denominator of the support. This allows longer 
sequences to emerge in the set of frequent episodes without 
being negatively biased by the existence of shorter sequences. 
We require a minimum support of 5% for an episode to be 
considered frequent.  
Applying the frequent episodes discovery algorithm on the 
data generated 101 frequent episodes. Short episodes have less 
possible realizations but enjoy high support. Table 2 presents a 
selection of episodes and their identifiers, which we will 
encounter below in model development. 

Identifier S19 S34 S61 S33 S3 S73
Temporal 
sequence L L - L H - H L-L-L H-H-H M- L 

Table 2.  Episodes and their identifiers  

In Table 3 the distribution of the frequent episodes over 
different possible lengths is presented. We discover episodes 
of maximum length 7 although in the current setup only 
patterns of length maximum 3 are used. 

Length  1 2 3 4 5 6 7 Total 
#episodes 3 7 13 18 31 19 10 101 

Table 3.  Distribution of the frequent episodes over length. 

3.3. Logistic regression models 
A logistic regression model [Hosmer and Lemeshow, 1989] is 
a parametric model that specifies the conditional probability of 
a binary variable         Y ({0, 1}) to have the value 1, given the 
values of the covariates of the model. Y = 1 indicates the 
occurrence of an event such as death in our concrete case. The 
logistic model has the following form: 
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where ),...,( 1 mxxx =  is the covariate vector. For m
variables (also called predictors) the logit function g(x) has the 
following form: 
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where bi, i=1,...,m, denote the coefficients of the m predictors. 
One reason for the popularity of the model is the interpretation 
that is given to each bi in terms of an odds ratio. Suppose the 
logit function is b0, + b1sex + b2age where sex = 1 for males 
and 0 for females, and age is calculated in years. The odds of 
dying for males, odds(sex=1), is P(Y=1|sex=1)/P(Y=0|sex=1)
and for females, odds(sex=0), is P(Y=1|sex=0)/P(Y=0|sex=0).
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The quantity 1be  turns out to be equal to the odds ratio 
odds(sex=1)/odds(sex=0). If there is no difference between the 
odds for dying for males compared to females, assuming all 
other variables (in this case only age) have the same values, 
the odds ratio will be 1. A higher value indicates higher risk to 
die for males, and a lower value than 1 indicates higher risk 
for females. The interpretation of 2be  is similar, it indicates 
the odds ratio between a group of patients who are one unit, 
here one year, older than the other group.  We will use the 
episode identifiers as binary dummy variables, like the 
variable sex above. 
The motivation for using logistic regression as our formalism 
of choice is two-fold. First, it is the most popular model used 
in medicine for binary classification problems, and is also the 
de facto model used in quality assessment programs in the 
ICU. Second, the bis take into account the dependence 
between the variables used, so the value of any bi is adjusted 
for all other variables in the model and there is no assumption 
that the variables are independent. 
Our idea in developing logistic-based prognostic models it to 
use a dummy (sometimes called design) variable for each 
episode. Each patient will have a vector of dummy variables, 
one for each episode. In our case every dummy variable will 
only have two values: 0, indicating the episode does not match 
the SOFA sequence of a patient, and 1 if it does match. When 
predicting mortality for patients on the kth day, one may only 
use episodes with maximum length of k. For example, to 
predict mortality for patients on the third day of their stay, we 
only consider patients who stayed for at least three days. That 
is, we use episodes of a maximum length of 3 which are 
matched against the SOFA sequences of the first three days. In 
total we will hence have 3 models to predict mortality on each 
of the first 3 days. Prediction in these days is relevant for the 
ICU. Note that the number of patients considered for 
prediction on day 1 includes all patients, and that this number 
decreases with each day due to patient discharge (regardless of 
survival status). To assess the added value of the temporal 
patterns to current logistic models, we develop for each day a 
model with only the SAPS score as a covariate, and we 
compare this model with a temporal one in which also dummy 
variables representing the existence of the episodes are 
included. 
The strategy for fitting the temporal models is as follows. For 
any given day for prediction, the best dummy variables are 
included by a simple hill-climbing search process. We first fit 
a model including only the intercept, b0, and the term for the 
SAPS score, b1SAPS. This is the reference model. We then 
assess the inclusion of each dummy variable to this model by 
the log-likelihood test [Hosmer and Lemeshow, 1989]. The 
dummy variable with the most significant p-value, as long as it 
is Ò 0.05, is included in the model. We reiterate this process 
till a maximum of 4 covariates. This restriction is meant to 
keep the models manageable and also to combat over-fitting.

The last 2 columns in Table 4 show, for each one of the three 
temporal models, the frequent episodes whose dummy 
variables were selected in the logistic regression and the 

corresponding bi. For example the first temporal model for 
predicting mortality after observing the first day is: 

1947.109.004.5

1947.109.004.5

1
)19,|1( SSAPS

SSAPS

e
eSSAPSYP -+-

-+-

+
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When inspecting the selected episodes we note that the models 
include episodes with consistently high or low values like H-H
or L-L-L. Also one model includes an episode that varies over 
time like M-L which apparently captures trends influential to 
mortality.  

SAPS model Temporal 
models 

Test set 
#patients

Log Brier Log Brier

A-
temporal+ 
Temporal 
covariates 

b

1576
LOS Ó 1 
day 

356.4333 0.1316 348.2468 0.1272
Intercept + 

SAPS + 
S19

-5.04
0.09 

 -1.47

504
LOS Ó 2 
days

222.2785 0.2838 215.7803 0.273
Intercept + 

SAPS + 
S34 + 
S61

-3.89
0.06 
-0.86
2.22

299
LOS Ó 3 
days

164.9534 0.3708 160.0427 0.356

Intercept + 
SAPS + 
S33 + 
S3 + 
S73

-2.02
0.04 
-1.57
6.22 
-0.69

Table 4. Comparative prediction model performance: SAPS 
models versus temporal models for day 1, 2 and 3 on the test 
set. LOS denotes length of stay in the ICU.   

The correspondence between the dummy variables in the 
temporal models and the temporal are shown in Table 2. 

3.4. Validation After model selection we validated the models 
on the test set. Our performance measures include the Brier 
score which is: 
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where N denotes the number of patients, Yi the random 
variable of the predicted outcome, and yi the value of the 
actual outcome. Also we use the logarithmic score: 
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Lower values mean better performance for both scores. These 
performance scores penalize models when they do not provide 
the true probability, and are more appropriate than purely 
discriminating measures such as error rate and the area under 
the ROC curve which might mask under- and over-prediction 
(see discussion in [Abu-Hanna and Keizer, 2003]). The 
performance of each temporal model is then compared to its 
respective reference model on the same part of the test set.  
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The validation results are presented in the columns labeled 
``Log'' and ``Brier'' in Table 4. Similar to partitioning the 
training set, three test sets were used having patients staying at 
least one day for the first data set until at least three days for 
the third data set. All the temporal models 1, 2 and 3 
outperform the reference model based on SAPS alone. This 
resembles the results from [Toma et al., 2005] where non-
consecutive sequential episodes have been considered. We are 
planning to statistically test the significance of the differences 
in the Brier score as described in [Redelmeier et al., 1991]. 
We have however extended the analysis to day 4 and day 5 as 
well and again the temporal models in these days have 
outperformed the respective static ones. Hence, in total the 
temporal approach, as a method, has outperformed the static 
approach in 5 out of 5 experiments. This provides evidence for 
the utility of the temporal approach although one should keep 
in mind that the experiments are not independent. We note 
however that the consecutive episodes described here have 
slightly better performance than the non-consecutive episodes.   

4. Discussion and Conclusion
In this section we reflect critically on our approach and results, 
draw conclusions, and provide context and an outlook for 
further research. 

4.1. Discussion on methods and results
The entropy-based categorization method using maximum 
SOFA score per patient resulted in three categories. Further 
inspection of these categories shows that these make clinical 
sense as they correspond to three groups of patients with 
distinctively different number of multiple organ failures as can 
be calculated from the mean of the 6 sub-scores (an organ is 
failing when its SOFA sub-score -which ranges from 0 to 4- is 
3 or 4). Alternatives to the usage of the maximum SOFA score 
include using the last SOFA value in a patient's sequence or 
the mean in the last 3 days. Further analysis showed that our 
choice for the maximum value for each patient is quite robust 
as the cut-off points hardly changed if the procedure is applied 
on different random training sets. The current cut-off points 
were obtained on a “frozen” version of the training set. 
The frequent consecutive-event episodes that were discovered 
have an intuitive clinical meaning in terms of improvement or 
worsening of a patient's condition. When an episode appears 
statistically significant to be included in a temporal model, the 
analyst can still judge how much it makes clinical sense by 
inspecting its corresponding b (either positive or negative). 
There seems to be a preference for selecting episodes that are 
as long as the number of days under consideration. A number 
of reasons could be responsible for this. First, we do not 
explicitly include trends in the episodes and hence more 
information in the episode is required. Second, we do not 
require alignment of an episode to the day of prediction, 
longer episodes tend to be aligned or at least closer to the last 
day of prediction. 
The results obtained are a proof of concept that consecutive 
SOFA score episodes, based on our categorization, is 
beneficial indeed and has an added value compared to static 
models. Note that this added value is inherent in the patterns 

themselves and not because the models are developed on 
cohorts with different lengths of stay: the static ones have 
been fitted separately for each of these cohorts as well. 

4.2. Existing and future work 
Our approach aims at understanding the merits of temporal 
information in prediction and thus the advancement of the 
state of the art in IC prediction by including the temporal 
content of the recently developed SOFA scores. With the 
exception of the work described in [Kayaalp et al. 2000] and 
[Kayaalp et al., 2001] all approaches known to us that use 
SOFA scores for prediction, e.g. [Kajdacsy-Balla Amaral et 
al., 2005], reduce the temporal information into few summary 
statistics and use them in prediction. In our approach, the 
temporality of the events is preserved. 
The work described in [Kayaalp et al., 2000] and [Kayaalp et 
al., 2001] investigates SOFA temporal patterns and share 
important elements with our work. In terms of [Kayaalp et al., 
2000], we adopt the stationarity assumption of the process 
(generating the SOFA scores) in the sense that the frequency 
of the episodes is calculated independently of when it occurred 
in time. 
In [Kayaalp et al., 2001] temporal patterns using SOFA sub-
scores are calculated from the data, then integrated in a Naive-
Bayes framework. In our approach the, discovered frequent 
sequential episodes, based on an adaptation of the algorithm in 
[Mannila et al., 1997], are integrated in a logistic regression 
framework. This not only allows for integrating new methods 
into the established framework in IC prediction, but also takes 
into account the possible inter-dependence between the 
sequential episodes, unlike the Naive Bayes approach which 
assumes conditional independence of patterns.  In addition, 
our approach provides an intuitive interpretation of 
significance of these episodes, by means of the bs, by which 
the episodes can be judged. Another difference is the way 
models are validated. We use the Brier score and the 
logarithmic score instead of the area under the ROC curve 
used there because, in quality assessment programs, it is 
important to measure discrimination and precision in 
combination, instead of relying on only the discrimination 
power of the model. 

Unlike in our approach, in [Kayaalp et al., 2001] patterns are 
always considered backwards from the day of the prediction. 
These properties might be beneficial and, as future research, 
we plan to investigate whether they would lead to 
improvements of our temporal models. Another future 
research is investigating new temporal event types. The 
intensivists hypothesize that dealing with the notion of 
recovery, instead of the SOFA scores themselves, might be 
useful. For example the sequence could reflect the recovery, or 
recovery rate, in time. Other possible improvements include 
more sophisticated search strategies for fitting the logistic 
regression temporal models. 

The idea of integrating logistic regression with other 
formalisms as we have done here, seems to bear fruit. In [Abu-
Hanna and Keizer, 2003] logistic regression models have been 
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fit to patient sub-groups implied by a decision tree partitioning 
of the data.  Another interesting way to use logistic regression 
is integrating it during the episode discovery stage: an episode 
is assessed not only by its frequency but also by its predictive 
power according to a logistic regression model. 
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Abstract

Diagnosing ventilator-associated pneumonia in
mechanically ventilated patients in intensive care
units is currently seen as a clinical challenge.
The difficulty in diagnosing ventilator-associated
pneumonia stems from the lack of a simple yet
accurate diagnostic test. To assist clinicians in
diagnosing and treating patients with pneumo-
nia, a decision-theoretic network was designed
with the help of domain experts. A major lim-
itation of this network is its inability to represent
pneumonia as a dynamic process that progresses
over time. In this paper, we construct a dynamic
Bayesian network that explicitly captures the de-
velopment of the disease through time. We dis-
cuss how probability elicitation from domain ex-
perts serves to quantify the dynamics involved
and show how the nature of patient data helps re-
duce the computational burden of inference. We
evaluate the diagnostic performance of our dy-
namic model and report promising results.

1 Introduction
Many patients admitted to an intensive care unit (ICU) need
respiratory support by a mechanical ventilator; in addi-
tion, many of these patients are affected by severe disease
which may result in depression of their immune system.
Both conditions promote the development of ventilator-
associated pneumonia (VAP) in these patients. Because of
the wide-spread dissemination of multiresistant bacteria at
the ICU, effective and fast treatment of VAP is seen as an
issue of major significance. The difficulty of the diagnosis
of VAP is in the lack of a gold standard; VAP is therefore
diagnosed by taking a number of different clinical features
into account [7].

A probabilistic and decision-theoretic network [3], rep-
resenting the uncertainties and preferences involved in
dealing with the treatment of VAP, was constructed by Lu-
cas et al. [4]. The network was developed with the help
of two infectious disease experts, who assessed both its
qualitative structure and its numerical part. The goal of the
network was to prescribe an optimal antimicrobial therapy,
and thereby assist clinicians in treating patients with VAP.

A prominent role in the domain of pneumonia is played
by two stochastic processes: the colonisation of the laryn-

gotracheobronchial tree by pathogens and the onset and de-
velopment of pneumonia. Although both processes evolve
dynamically, these dynamics were not explicitly modelled
by means of temporal transitions in the network described
above. Instead, the dynamics of the processes were implic-
itly modelled by additional interactions between the dura-
tion of stay and the duration of mechanical ventilation of
a patient with the colonisation by pathogens. The main
motivation for this simplification was the large amount of
data needed to specify the probability distribution underly-
ing the stochastic processes and the increase in computa-
tional requirements. The network thus constitutes a static
simplification of the domain which obscures its dynamic
nature. In fact, the static network was used for every pa-
tient for each day on the ICU separately, without taking
into account the patient’s characteristics from earlier days.
As the development of VAP is a dynamic process, we need
to model time in a more explicit way to improve the diag-
nosis.

In this paper, we ameliorate the problems related with
having modelled VAP as a dynamic process. We develop
a dynamic Bayesian network that explicitly captures the
temporal relationships between the variables [5]; our fo-
cus thereby is on the diagnostic part of the network. We
use the method of Van der Gaag et al. [9], for the elicita-
tion, from domain experts, of the probability distribution of
the underlying stochastic process. This method transcribes
probabilities and uses a scale with both numerical and ver-
bal anchors that assists experts to assess many probabilities
in little time. Moreover, we discuss how the computational
burden of inference in our model can be eased by exploiting
the nature of the observations involved, with just a small
loss in accuracy [2].

We evaluated our dynamic network on a group of pa-
tients, drawn from the files of the ICU of the University
Medical Centre Utrecht in the Netherlands. Our results in-
dicate that the dynamic model is capable of distinguishing
between patients with VAP and without VAP. By exploiting
all available past information of a patient, it in fact yields
better predictions than the static model. This occurs specif-
ically for patients without VAP, for whom we notice that the
use of previous information leads to much lower estimates
for VAP than the ones obtained from the static network.

The remainder of this paper is organised as follows. In
the next section, we briefly describe the static probabilistic
and decision-theoretic network that had been developed be-
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Figure 1: Global structure of the sVAP network. The
dashed box indicates the network’s diagnostic part.

fore for the management of patients with VAP. In Section 3,
we discuss the construction of a dynamic network for VAP.
Section 4 presents the results of an experimental evaluation
of our network. The paper ends with our conclusions and
directions for further research in Section 5.

2 Pathophysiology of VAP
Ventilator-associated pneumonia is a low-prevalence dis-
ease occurring in mechanically-ventilated patients in crit-
ical care and involves infection of the lower respiratory
tract [1]. In contrast to infections of more frequently in-
volved organs (such as the urinary tract), for which mor-
tality is low, ranging from 1 to 4%, the mortality rate
for VAP ranges from 24 to 50% and can reach 76% for
some high-risk pathogens. Important factors related to the
development of VAP include an increased body temper-
ature, the use of antipyretic drugs, an abnormal amount
of coloured sputum, signs on the chest X-ray, an abnor-
mal ratio between the amount of oxygen in the arterial
blood and the fractional inspired oxygen concentration,
that is, pO2/FiO2, the duration of mechanical ventilation,
and an abnormal number of leucocytes. As diagnosing a
disorder in medicine involves reasoning with uncertainty,
a decision-theoretic network was constructed as part of a
decision-support system to assist clinicians in the diagno-
sis and treatment of VAP in the ICU [4],[7]. Figure 1 illus-
trates the network, which we call the static VAP network,
os sVAP network for short. The signs and symptoms in-
cluded in the sVAP network are shown in more detail in
Figure 2.

The relationship between the colonisation by pathogens
and the development of pneumonia is captured in the sVAP
network as follows. Periodically, a sample of the patient’s
sputum is cultured at the laboratory. When the culture
shows a number of colonies of a particular bacterium that is
above a certain threshold, the patient is said to be colonised
by this bacterium. The seven groups of microorganisms
that occur most frequently in critically ill patients and cause
colonisation, are modelled in the therapeutic part of the
network. Figure 3 depicts the probabilistic relation be-
tween the seven groups of microorganisms of colonisation
to pneumonia. Information about which bacterium or bac-
teria are currently present in a patient and the current signs

Figure 2: Symptoms and signs of pneumonia.

Figure 3: Detailed structure of the influence of colonisation
on pneumonia.

and symptoms constitute the basis for choosing optimal an-
timicrobial treatment on multi-resistant bacteria and is con-
sidered best practice.

3 A dynamic Bayesian network for VAP
In this section, we describe the construction of a dynamic
Bayesian network that represents explicitly the develop-
ment of pneumonia. In addition, we address the compu-
tational burden of inference with the network.

3.1 Preliminaries

A dynamic Bayesian network is a graphical model that
encodes a joint probability distribution on a set of
stochastic variables, explicitly capturing the temporal re-
lationships between them. More formally, let Vn =
(V 1

n , . . . , V m
n ), m ≥ 1, denote the set of variables at time

step n. Then, a dynamic Bayesian network is a tuple
(B1, B2), where B1 is a Bayesian network that represents
the prior distribution for the variables at the first time step
V1, and B2 defines the transitional relationships between
the variables in two consecutive time steps, so that for ev-
ery n≥2

p(Vn | Vn−1) =
m∏

i=1

p(V i
n | π(V i

n))

where π(V i
n) denotes the set of parents of V i

n, for i =
1, . . . , m.
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We distinguish between two types of relationship in a
dynamic Bayesian network: transitional relations that cap-
ture a dependence among variables between different time
steps, and local relations that capture a dependence be-
tween variables within the same time step. If a relationship
exists between the same variable over different time steps,
this variable is called persistent. Based on the two types of
relationship, per time step, the set of variables Vn is split
into three mutually exclusive and collectively exhaustive
sets In,Xn,Yn, where the sets In,Yn constitute the input
and output variables and Xn consists of the hidden vari-
ables for the time step under study. Usually, In includes
observable variables that affect the probability distribution
of Xn, while Yn includes observable variables whose prob-
ability distribution is affected by Xn. The set Xn includes
the variables that represent the stochastic processes of the
network and whose values are never observed. Later in the
paper, we will need the notion of forward interface of a dy-
namic network, which is the set of variables at time step n
that affect some variables at time step n + 1.

Dynamic Bayesian networks are usually assumed to be
time invariant, which means that the topology and the pa-
rameters of the network per time step and across time steps
do not change. Moreover, the Markov property for tran-
sitional dependence is assumed, which means that π(V i

n)
can include variables either from the same time step n or
from the previous step n−1, but not from earlier time steps
[5]. Then, by unrolling B2 for N time steps, a joint prob-
ability distribution p(V1, . . . ,VN ) is defined for which the
following decomposition property holds:

p(V1, . . . ,VN ) =
N∏

n=1

m∏
i=1

p(V i
n | π(V i

n))

Applying a dynamic Bayesian network usually amounts
to computing the marginal probability distributions of the
hidden variables at different times. The computations in-
volved constitute the inference. Three types of inference
are distinguished. Monitoring is the task of computing the
probability distribution for Xn at time n given the observa-
tions that are available up to and including time n. Smooth-
ing is the task of computing the marginal probability distri-
bution for Xn at time n given the observations available up
to time N where N > n. Finally, forecasting is the task of
predicting the probability distribution of Xn at time n given
the observations that are available about the past up to time
N where N < n.

3.2 Modelling issues

A natural extension of the diagnostic part of the sVAP net-
work is a network that represents time explicitly [4]. Figure
4 gives an overview of the structure of the dynamic net-
work that we constructed for the diagnosis of VAP, which
we call the dVAP network. The dVAP network includes
two interacting dynamic hidden processes, modelled by the
variables colonisation and pneumonia; there is no transi-
tional influence between them, but both are persistent. The
process of colonisation is influenced by three input vari-
ables, hospitalisation, mechanical ventilation and previous
antibiotics, which in essence control its dynamics. We note

Figure 4: The dVAP network for the diagnosis of VAP;
clear nodes are hidden, shaded nodes are observable. The
dashed boxes indicate the hidden processes of the network.

that the variables hospitalisation and mechanical ventila-
tion are observed for a period that is longer than the transi-
tion interval of the model. The variables thus are modelled
as affecting adjacent time steps. The variable previous an-
tibiotics represents the effect of previous medication to the
patient on the process of colonisation.

One of the difficulties in constructing the dVAP model,
was defining the length of the transition interval. It may
seem trivial in general to decide upon the actual inter-
val length, but in our case it proved to be rather difficult
since there was no a-priori commonly acknowledged inter-
val length that appropriately represents the evolution of the
unobserved disease. Also, there was not a standard inter-
val with which observations were collected in our data files.
The latter can be attributed to most of the measurements be-
ing collected by nurses; for example, observable variables
such as body temperature and sputum colour were mea-
sured frequently (approximately every two or three hours),
while variables such as radiological signs and leucocytosis
were measured once per day. Based on these insights, we
decided to use a transition interval of one day (24 hours)
for the dVAP network. Within this interval, the network
aggregates the observations in a way similar to the previ-
ously constructed static network. For each observable vari-
able, the value most frequently observed during the day was
chosen as representative for that day; in cases where there
was no prevalent value in the data, the worst value observed
for the patient was chosen, to allow for conservative con-
clusions from the network. The chosen transition interval
appealed to be compatible with the application characteris-
tics and admissible by the domain experts.

A main issue in building the dVAP network was the ac-
quisition of all conditional probabilities required. Although
the three ICUs that acted as a setting for this study used the
same shared computer-based patient record system, it ap-
peared very hard to select relevant patient cases from the
collected data. The main reason was that VAP is always a
concomitant disease. As a consequence, clinicians tend to
not report the presence of VAP in a patient. We thus found
that only in a very small proportion of cases, a patient was
reported as having VAP. Since we could not exploit the data
for estimating the probabilities for our network, all param-
eters had to be assessed by experts. Compared to the sVAP
network, the new parameters to be assessed concerned the
dynamics of the stochastic processes of colonisation and
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Suppose a patient has been mechanically ventilated for
48 hours and now has pneumonia caused by s.aureus.
If this patient after 24 hours is not mechanically venti-
lated, but is colonized with s.aureus and has phagocyte
dysfunction, then how likely is it that the patient will
still have pneumonia caused by s.aureus ?
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Figure 5: The fragment of text and probability scale for the assessment of the conditional probability p(pneum.aureus=yes |
pneum.aureus=yes, mech.ventilation=no,colonisation.aureus=yes, phagocytes.dysfunction=yes)

pneumonia. To estimate those probabilities from domain
experts we used the elicitation method proposed by Van
der Gaag et al. [9]. This method is tailored to eliciting a
large number of probabilities in a short time. Its main char-
acteristic is the idea of presenting conditional probabilities
as fragments of text and of providing a scale for marking
assessments with both numerical and verbal anchors; for
every conditional probability that needs to be assessed the
domain experts are provided with a separate figure with the
text and associated scale. Figure 5 shows, as an example,
the figure pertaining to the conditional probability

p(pneum.aureus=yes |pneum.aureus=yes, mech.ventilation=no,

colonisation.aureus=yes, phagocytes.dysfunction=yes)
for the dVAP network. In total, 2226 probabilities were
elicited from a single domain expert within a few hours.

3.3 Computational issues
The practicability of the dVAP network depends to a large
extent on the computational burden of inference with the
network. For diagnosing patients with VAP, we monitor
them at each time step. For this purpose, we use the inter-
face algorithm with the dVAP network [5]. The interface
algorithm is an extension of the junction-tree algorithm for
inference with Bayesian networks in general [3], efficiently
exploiting the forward interface of a dynamic network. The
algorithm is linear in the total number of time steps and for
large time scopes, the computation time can prove to be
prohibitive for practical purposes.

Recent results show that, in case consecutive similar ob-
servations are obtained, the probability distribution of the
hidden process converges to a limit distribution within a
given level of accuracy [2]. After some number of time
steps, therefore, there is no need for further inference as
long as similar observations are obtained. The phenomenon
of consecutive similar observations was evident for several
patients in the ICU files. For example, for many patients we
found that the same configuration of values was observed
for all or almost all of the observable variables for a number
of consecutive days.

Using the relative entropy distance measure for distribu-
tions, we can further show that it suffices to use just the

most recent data for monitoring. This result depends on
the properties of the transition matrix that models the evo-
lution of the process, but a detailed description is out of
the scope of the present paper. We define the forward ac-
ceptable window ωf

n,εfor the present time step n given a
specified level of accuracy ε, to be the minimal number of
time steps that we need to use from the past to compute the
probability distribution of the hidden variable at the present
time within the level of accuracy ε. The scheme below
illustrates the concept of the forward acceptable window,
whose value can be established based upon the properties
reviewed above:

{1, . . . , nf , . . . , n}︸ ︷︷ ︸
total time scope

−→ {nf , . . . , n}︸ ︷︷ ︸
ωf

n,ε

We can now perform inference for time step n by consider-
ing only the forward acceptable window ωf

n,ε without los-
ing too much in accuracy. Note that by doing so, the run-
time requirements decrease from O(n) to O(n − nf ).

The main conclusion from the above considerations is
that monitoring in the dVAP network can be eased consid-
erably by exploiting the nature of the observations for a
patient and by using the forward acceptable window.

4 Diagnostic performance
We evaluated the performance of the dVAP network, fo-
cusing on its diagnostic prediction per day. At our disposal
we had a temporal database with data from 2233 distinct
patients. Each record contains data collected for a patient
during a one day stay in the ICU. The source of these data
is the clinical management system used at the Intensive
Care Units of the University Medical Centre Utrecht in the
Netherlands. For 157 of these patients, VAP was estab-
lished by two infectious-disease specialists. The conclu-
sions obtained by the dVAP network were examined on a
group of 20 patients in total, 5 of which were diagnosed
with VAP. For these 5 patients we used the data from the
day of admission to the ICU until the day they were diag-
nosed with VAP which was 10 days per patient. For each
of these 5 patients, three patients for whom it was known
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VAP no VAP
symptoms n = 5 n = 15
abnormal temperature 60% 7%
mech. ventilation (mean) 10d 10d
abnormal leucocytes 80% 53%
abnormal pO2/FiO2 60% 27%
abnormal sputum 80% 73%
coloured sputum 60% 60%
colonised 40% 13%
antipyretic drugs 100% 87%
positive X chest 40% 0%

Table 1: Data summary

that they did not develop VAP over time, were matched on
three criteria: gender, number of mechanically ventilated
days, and ICU ward. Table 1 summarises the data for the
5 patients with VAP and for the 15 patients without VAP at
the tenth day of admission.

To compare the diagnostic performance of the dVAP net-
work to that of the original sVAP network, we used the
Brier score [6], [8]. We illustrate the Brier score for our
dVAP network. For each patient i, the network yields a
probability distribution pi over the two values j = 1, 2
(yes, no) of pneumonia. The Brier score Bi for this dis-
tribution is defined as

Bi =
∑

j=1,2

(pij − sij)2

where sij = 1 if the medical record of the patient states the
value j, and sij = 0 otherwise. If the network would yield
the correct value with certainty for a patient, then the asso-
ciated Brier score would be equal to 0. For the probability
distribution computed for any patient, therefore, the Brier
score ranges between 0 and 2, and the better the prediction
is, the lower the score. The Brier scores for all patients
as well as the probability of VAP at the day it was diag-
nosed, for the dVAP and the sVAP networks respectively,
are shown in Table 3. We note that for 15 patients of the
total of 20 the computed Brier score was lower with the
dVAP model than with the sVAP network.

The quality of the two networks can be expressed in an
overall score that is computed from the scores for our col-
lection of patients. For m patients, the overall Brier score
is defined as

B =
1
m

∑
i=1,...,m

Bi

The overall Brier score for the sVAP network can be readily
computed from Table 3 and equals 0.3370, while the over-
all Brier score for the dVAP network is 0.2376. The lower
score for the dVAP network conveys the information that
this network is better informed than the sVAP network and
can arrive at relatively good estimates for diagnosing VAP.

Compared to the sVAP network, the dVAP network
takes into consideration the history of a patient. For the
patients 22122, 23844, 24114, 21542, 22736 for example,
who were not diagnosed with VAP, the dVAP network de-
rived low probabilities for the presence of VAP by exploit-
ing all previous information. The sVAP network, in con-
trast, used just the current information and produced much

patient id. 24528 22303 23505 23844
exact 0.9987 0.0015 0.0005 0.0325

ωf
10,0.003 0.9987 0.0013 0.0005 0.0347

Table 2: Exact and approximate probabilities for VAP for a
group of matched patients.
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Figure 6: The dVAP and sVAP performance over time for a
group of matched patients; dnVAP and snVAP represent the
performance for the three patients without VAP combined.

higher probabilities. For the patients diagnosed with VAP,
the two models behave more or less similarly, with the
highest absolute discrepancy observed in patient 28393, to
whom the sVAP network assigned a probability of VAP of
0.997 and the dVAP network assigned a probability of VAP
of 0.904.

To study the performance of the dVAP network over
time, we computed the probability of VAP for each day and
compared it to the respective probability from the sVAP
network. In Figure 6 we plot, for a single group of four
related patients, the probability of VAP for patient 28393
and the mean probability of VAP for the matched patients
21542, 22301, 22736, from both networks. We observe that
for the patient with VAP the trend in both networks is more
or less the same after the fifth time step; to the patients
without VAP, however, the dVAP network assigns lower
probabilities than the sVAP network. The dVAP network
thus is better able to distinguish between VAP and non-
VAP patients.

To conclude, we performed the computations in the
dVAP network using different values for the forward ac-
ceptable window ωf

n,ε. We conclude that instead of using
the observations for all 10 days in the ICU to compute the
probability of VAP, we can use the observations for just the
last 5 days with an average error for all patients smaller
than ε = 0.003. For a particular group of matched pa-
tients for example, the exact and approximate probabilities
for VAP are showed in Table 2. We can thus use this for-
ward acceptable window to speed up the computations and
obtain results with an almost negligible error.

5 Discussion
In this paper, we discussed the construction of a probabilis-
tic model that is aimed at assisting ICU clinicians in diag-
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patient id. VAP sVAP sBrier dVAP dBrier
22022 yes 0.996913 1.90591 · 10−5 0.9987 3.38 · 10−6

22563 no 0.0203017 8.24318 · 10−4 0.1395 0.0389205
22716 no 0.167208 0.055917031 0.0558 0.00622728
22730 no 0.00276365 1.52755 · 10−5 0.0002 8 · 10−8

23397 yes 0.00972048 1.961307055 0.0002 1.99920008
22122 no 0.430888 0.371328937 0.0316 0.00199712
22634 no 0.0203017 0.000824318 0.0003 1.8 · 10−7

22659 no 0.193411 0.07481563 0.0309 0.00190962
24528 yes 0.999959 3.362 · 10−9 0.9987 3.38·10−6

22303 no 0.0226662 0.001027513 0.0015 4.5·10−6

23505 no 0.0457446 0.004185137 0.0005 5 · 10−7

23844 no 0.297688 0.177236291 0.0325 0.0021125
25724 yes 0.0347989 1.863226327 0.0033 1.98682178
23872 no 0.0203017 0.000824318 0.0005 5 · 10−7

24114 no 0.43644 0.380959747 0.099 0.019602
24151 no 0.00999126 2.22311 · 10−5 7 · 10−8 9.8 · 10−15

28393 yes 0.996666 2.22311 · 10−5 0.9035 0.0186245
21542 no 0.175202 0.061391482 0.0218 0.00095048
22301 no 0.0740135 0.010955996 0.0013 3.38 · 10−6

22736 no 0.942073 1.775003075 0.581 0.675122

Table 3: Brier scores for the sVAP network and for the dVAP network, respectively.

nosing ventilator-associated pneumonia. In contrast to pre-
vious approaches that used a static decision-theoretic net-
work for this low-prevalence disease, we focused on its dy-
namic evolution and used a dynamic Bayesian network as
the primary tool for representation and inference.

We detailed various modelling steps in the construction
of our dynamic network and described the use of an ef-
ficient procedure for expert elicitation of the probabilities
required. We further argued that a number of convergence
properties of dynamic Bayesian networks can be exploited
to arrive at feasible algorithms that restrict the computa-
tional burden of inference with such a model. In this way,
we ameliorated two important problems that were consid-
ered impervious in the past: the specification of the prob-
abilities underlying the stochastic process modelled in the
network and the computational burden of inference.

We evaluated our network on a set of ICU patients to
examine its diagnostic accuracy. The lower overall Brier
score of the dynamic network in comparison to the static
one, indicated that representing time explicitly and taking
into consideration the history of the patient, increases di-
agnostic performance. In our evaluation experiments, the
dynamic network proved to be better at distinguishing be-
tween VAP and non-VAP patients than the static network,
especially by assigning lower probabilities of VAP to the
non-VAP patients. In the near future, we intend to improve
the dVAP network by use of the available data for param-
eter learning and to test it on more ICU patients with the
aim of embedding it in the clinical information system of
the ICU.
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Abstract
The values of continuous measured blood glu-
cose have little difference when measured at
short time intervals. As time increases so does
the difference in average. For discretely mea-
sured values the picture is quite different: mea-
surements made at short time intervals display
a surprising higher difference than continuous
measurements. We have not seen this effect re-
ported before.

1 Introduction
Today most people with diabetes measure their blood glu-
cose (BG) by sampling a drop of capillary blood—typically
from the finger tip—and measuring with a BG-meter. Con-
tinuous measuring devices also exist like the Minimed Con-
tinuous Glucose Monitoring (CGM) that measures the BG
value every 5 minutes. Here a needle has to be inserted and
replaced subcutaneously every third day.

One of the main problems in the management of dia-
betes is to balance the dose of insulin with the near future
values of the BG concentration. Being able to predict the
BG level would simplify the management. Many attempts
have been made to predict the value of the BG from his-
torical data [Arita et al., 1999; Hejlesen, 1998; Lehmann
and Deutsch, 1998; Liszka-Hackzell, 1999; Mougiakakou
and Nikita, 2002; Tresp et al., 1999]. No model has shown
good prediction power for more than one data set—like for
instance an error rate of less than 1mM/hour. The men-
tioned publications involve only strip based BG measure-
ments. Attempts to predict BG values from continuously
measured BG shows a clear connection between how far
into the future the prediction reaches and prediction error
[Hovorka and others, 2004; Prank et al., 1998]. No at-
tempts we know of have been made to examine whether
this is also true for predictions based on strip based mea-
surements. The general assumptions seem to be that strip
measurements are equal to continuous measurements, only
less frequent and that the BG measurement is a sampling
of the underlying reality. The present paper shows that this
assumption is not sound.

2 Strip versus CGM
The accuracy of strip measurements is slightly better than
continuous measurements. The accuracy is defined as the

percent of measurements that are within 20% of the refer-
ence value or in the hypoglycaemic area—the zone A in
the Clarke Error Grid [Clarke et al., 1987].) The accu-
racy of measurements with a handheld meter is somewhere
between 73.9% [Clarke et al., 1987] and 83.5% [Alto et
al., 2002] and the accuracy of Minimed CGM is 70.2%
[Gross et al., 2000]. From these accuracies, one might
think that the strip based BG measurements would be as
good as CGM, just less frequent.

However, there is a very strong correlation between why
people measure their BG and the actual value they measure.
Consider, for example, a Modal Day plot (see Figure 1).
The plot often shows low values in the small hours of the
night. Is it because the BG is always low at that time? Or
if the person wakes to make a measurement, is it because
BG is low? In the latter case the average of the measured
values have little to do with the real average.

Figure 1: Modal day for data set number 20 from the AAAI
1994 Spring Symposium. The data set is one person’s nor-
mal diary. Dots represent single measurements and the
curve is a Gaussian smoothed average with σ = 0.2.

The Gaussian smoothed average used in the Figure is
calculated by summing the value of a single BG measure-
ment (made at time ts) times the influence of that value at
time t. The influence is calculated as exp

(− (ts−t)
2σ2

)
1

σ
√

2π
.

We want to examine the degree to which BG values are
related by plotting the absolute difference as a function
of the time between the measured values—see Figure 2.
The short term difference is high and decreases as time in-
creases. The BG data covers 79 normal diaries including
the 70 data sets from the AAAI 1994 Spring Symposium, a
total of 13 615 strip measurements.

For continuously measured values the picture is quite

Page 44  of  86



Figure 2: The dots represent the difference for single pre-
dictions and the line is a Gaussian smoothed average with
σ = 0.2.

different. The deviation from one value to the next was ob-
served at different time intervals. Summing the deviations
through the complete dataset it is possible to plot the devia-
tion as a function of the time interval—see Figure 3. Here,
the deviation increases with time as would be expected.

Figure 3: The grey curves show data from 42 patients in
a Novo Nordisk study with 72 hours Minimed CGM mea-
surements. The black curve is the average of the curves.

Figure 4 shows the two averages curves in the interesting
area for small time intervals. The difference for small time
intervals is obvious.

Figure 4: Strip-based (solid) and CGM-based (dashed).

Why this difference for small time intervals? Consider
strip based measurements: If a person just made a mea-
surement, why perform one more, less than half an hour
later? It is likely that this occurs when there is suspicion
that the first measurement was not correct, or when the
person has a sensation of undergoing dramatic changes in
BG. Our calculations show that these suspicions are often
correct—measurements made shortly after each other are
less correlated than, for instance, measurements with half
an hour between them. This effect makes strip based short

term prediction difficult. This is not an issue with contin-
uously measured BG values as they are measured indepen-
dently of circumstances.

3 Conclusion
We have shown that strip measurements display a strong
dependence on the circumstances for measurements when
made at short time intervals, making prediction of these
blood glucose values relatively difficult. This is not an issue
with continuously measured BG values.
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Abstract

The demand for effective knowledge discovery
methods in a clinical setting is growing: the num-
ber of hospital information systems and medical
documentation systems in routine-use increases
rapidly. Then, often high-quality collections of
electronic patient records are available for sta-
tistical analysis. One interesting issue concerns
the quality of the examinations records which de-
pends both on the examination quality and the
documentation habits of the individual examin-
ers. We apply a subgroup mining approach for
explorative and descriptive data mining to tackle
this issue, and we provide a case study of the pro-
posed approach using data from a fielded system
in the medical domain.
Purely automatic data mining methods often suf-
fer from the limitation that too many uninter-
esting results are presented to the user. In or-
der to improve upon this situation, we propose
two strategies: we use background knowledge,
if available, and provide suitable visualizations
for guiding the discovery process. The context
of the presented approach is a knowledge-based
documentation and consultation system.

1 Introduction
The available data in clinical settings is growing with a
rapid pace. More and more hospitals use medical infor-
mation systems and/or (knowledge-based) documentation
systems that enable the storage of electronic patient records
(EPRs). Then, subsequent analysis of high-quality EPRs is
a promising option. The quality of the stored examination
records is determined by the documentation habits of the
examiners, i.e., depending on the experience and training of
the individual examiners. Therefore, the identification and
analysis of documentation patterns of different examiners
is a crucial task to improve the quality of the examinations
and therefore of the whole database of patient records.

We propose a subgroup mining approach to analyze the
inter-individual documentation quality of the examiners.
Subgroup mining or subgroup discovery [Wrobel, 1997;
Klösgen, 2002] is a promising technique for explorative
and descriptive medical data mining that aims to discover

”interesting” subgroups of individuals. Then, the sub-
groups can be defined as a subset of the target population
with a distributional unusualness concerning a certain prop-
erty we are interested in, e.g., in the subgroup of smokers
with a positive family history the risk of coronary heart dis-
ease is significantly higher than in the general population.

Subgroup mining is especially suited for the sketched
analysis task in the medical domain, since it does not neces-
sarily focus on finding complete relations between the spe-
cific target concept and the explaining variables; instead,
interesting partial relations are sufficient. Due to this crite-
rion the discovered patterns do not necessarily fulfill high
support criteria, which are necessary for other prominent
data mining approaches, e.g., methods for association rule
discovery [Agrawal and Srikant, 1994]. Furthermore, sub-
group discovery methods do not depend on support mea-
sures, but on a quality function which is flexibly defined
according to the criteria of the user.

Usually the ultimate goal of knowledge discovery meth-
ods is to identify novel, potentially useful, and interesting
knowledge. However, in real-world settings novelty and
interestingness criteria of the user often cannot be fully sat-
isfied: quite similar to a search query submitted to a web
search engine, (e.g., Google), the application of purely au-
tomatic methods can yield a huge number of (possibly un-
interesting) results which are hard to handle. Then, a ’query
refinement’ needs to be considered. In order to perform
the discovery process more intelligently, we propose the
combination of a semi-automatic subgroup mining method
guided by visualization and background knowledge.

We exemplify the approach in a case study based
on the knowledge-based documentation and consultation
system for sonography SONOCONSULT [Huettig et al.,
2004], which is in routine use in the DRK-hospital in
Berlin/Köpenick: we identify profiles of examiners con-
cerning their documentation habits for general quality con-
trol and management.

The rest of the paper is organized as follows: In Sec-
tion 2 we introduce our method, i.e., a process model for
knowledge-intensive subgroup mining. We describe suit-
able background knowledge for integration into the min-
ing method and a visualization method to guide the user
in the interactive discovery process. Finally, we provide
the results of a case study of the presented approach with
a fielded system in the medical domain in Section 3. We
conclude with a summary of the paper in Section 4.
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2 Methods: The Semi-Automatic Process for
Knowledge-Intensive Subgroup Mining

Subgroup mining aims to discover ”interesting” subgroups
of individuals that are described by relations between in-
dependent (explaining) variables and a dependent (target)
variable, rated by a certain interestingness measure. For
example, two possible criteria are the difference in the dis-
tribution of the target variable concerning the subgroup and
the general population, and the subgroup size. Subgroup
mining does not necessarily focus on finding complete rela-
tions; instead partial relations, i.e., (small) subgroups with
”interesting” characteristics can be sufficient.

In this section we first describe the process model for
intelligent subgroup mining. After that, we define the sub-
group mining task, and discuss the elements of the pro-
posed process model in detail, i.e., helpful background
knowledge applied for subgroup mining, and the core vi-
sualization method to guide the subgroup mining process.
Finally, we discuss related work.

2.1 Process Model

The general goal of a subgroup mining task is to identify a
set of highly interesting, diverse subgroups. Both the qual-
ity measures for the subgroup and the redundancy criteria
heavily depend on the goals of the user. A purely auto-
matic approach is often appropriate, if the analysis goals
of the user are fixed during the search process. However,
if the user wants to test specific hypotheses or already has
a lot of background knowledge and experiences about the
analysis domain, then an automatic search method may not
always be transparent enough.

In the proposed mining process both interactive and au-
tomatic elements are combined: the automatic methods can
be used to identify useful starting points for analysis, or for
a quick ”what if” analysis of the current situation. The pre-
sented approach includes the background knowledge and
experiences of the user in order to focus the mining method
on the interesting patterns, and to restrict the search space.
Then, direct user interaction enables an active mining ap-
proach (e.g., [Gamberger et al., 2003]). In this approach,
the user is directly integrated into the subgroup discovery
process and can manipulate the subgroup descriptions in-
teractively. The process model is depicted in Figure 1.

Figure 1: The Knowledge-Intensive Semi-Automatic Sub-
group Mining Process

2.2 Subgroup Mining
We first introduce our knowledge representation schema
before defining the subgroup mining task. After that, we
describe the background knowledge and the visualization
method used in the proposed subgroup mining process.

General Definitions
Let ΩA the set of all attributes. For each attribute a ∈ ΩA

a range dom(a) of values is defined. Furthermore, we as-
sume VA to be the (universal) set of attribute values of
the form (a : v), where a ∈ ΩA is an attribute and
v ∈ dom(a) is an assignable value. A diagnosis attribute
is represented by a binary attribute, i.e., for a diagnosis at-
tribute d ∈ ΩD, ΩD ⊆ ΩA we define a (boolean) range
dom(d) = {established ,not established}. Let CB be the
case base containing all available cases. A case c ∈ CB is
defined as a tuple c = (Vc,Dc), where Vc ⊆ VA is the set
of attribute values observed in the case c. The set Dc ⊆ VA

is the set of diagnoses describing the solution of this case.

Basic Subgroup Mining A subgroup mining task mainly
relies on the following four main properties: the target vari-
able, the subgroup description language, the quality func-
tion, and the search strategy. The target variable may be bi-
nary, nominal or numeric. Depending on its type, there are
different analytic questions, e.g., for a numeric target vari-
able we can search for significant deviations of the mean of
the target variable.

A subgroup mining problem encapsulates the target vari-
able, the search space of independent variables, the general
population, and additional constraints.

Definition 1 (Subgroup Mining Problem). A subgroup
mining problem SP is defined as the tuple

SP = (T,A, C,CB) ,

where T ∈ ΩA ∪ VA is a target variable. A ⊆ ΩA is the
set of attributes to be included in the subgroup discovery
process. CB is the case base representing the general pop-
ulation used for subgroup mining. C specifies (optional)
constraints for the discovery method. We define ΩSP as
the set of all possible subgroup mining problems.

The definition above allows for arbitrary target variables.
However, for our analytic questions we will focus on binary
target variables, i.e., T ∈ VA.
The description language specifies the individuals from the
reference population belonging to the subgroup.

Definition 2 (Subgroup Description). A subgroup de-
scription sd = {ei} consists of a set of selection expres-
sions (selectors) ei = (ai, Vi) which are selections on do-
mains of attributes, i.e., ai ∈ ΩA, Vi ⊆ dom(ai). A sub-
group description is defined as the conjunction of its con-
tained selection expressions. We define Ωsd as the set of all
possible subgroup descriptions.

A quality function measures the interestingness of the
subgroup (c.f., [Klösgen, 2002] for examples).

Definition 3 (Quality Function). A quality function

q : Ωsd × ΩSP → R

evaluates a subgroup description sd ∈ Ωsd given a sub-
group mining problem SP ∈ ΩSP . It is used by the search
method to rank the discovered subgroups during search.
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For binary target variables, examples for quality func-
tions are given by

qBT =
(p − p0) ·

√
n√

p0 · (1 − p0)
·
√

N

N − n
, qRG =

p − p0

p0 · (1 − p0)
,

where p is the relative frequency of the target variable in the
subgroup, p0 is the relative frequency of the target variable
in the total population, N = |CB | is the size of the total
population, and n denotes the size of the subgroup. In con-
trast to the quality function qBT (Binomial Test), the qual-
ity function qRG (Relative Gain) only compares the target
shares of the subgroup and the total population measuring
the relative gain. Therefore, a suitable support thresholds
is necessary to discover significant subgroups.

An efficient subgroup search strategy is necessary, since
the search space is exponential concerning all the possi-
ble selectors of a subgroup description: commonly, a beam
search strategy is used because of its efficiency [Klösgen,
2002]. We apply a modified beam search method, where
an initial subgroup description can be selected as the ini-
tial value for the beam. Beam search iteratively expands
the k best subgroup descriptions by adding the selector that
provides the best quality improvement. Iteration stops, if
the quality as evaluated by the quality function q does not
improve any further.

For the characterization of the discovered subgroups we
have two alternatives: Besides the principal factors con-
tained in the subgroup description there are also supporting
factors. These are attribute values supp ⊆ VA, which are
characteristic for the containing subgroup, i.e., the value
distributions of their corresponding attributes (supporting
attributes) differ significantly comparing two populations:
the true positive cases contained in the subgroup and non-
target class cases contained in the total population. In addi-
tion to the principal factors the supporting factors can also
be used to statistically characterize a discovered subgroup,
as described, e.g. in [Gamberger and Lavrac, 2002].

Background Knowledge for Subgroup Mining
There are different classes of background knowledge

which can be used in the knowledge-intensive process for
subgroup mining, e.g., constraints, ontological knowledge,
and abstraction knowledge. Knowledge acquisition is al-
ways expensive, so its costs should be minimized. Some-
times knowledge can be derived from already formalized
knowledge, e.g., we can derive constraints from ontolog-
ical knowledge, and thus reduce its acquisition costs. In
the following, we summarize the individual knowledge el-
ements; we refer to [Atzmueller et al., 2005] for a more
detailed discussion.

Constraints restrict the search process/space by specify-
ing the attributes and attribute values of interest. In addi-
tion, a set of attribute values can be used to define addi-
tional meta values specific to the application domain. For
example, for the diagnosis cirrhosis of the liver the val-
ues possible and probable can be defined as a disjunctive
attribute value. Furthermore, constraints can also include
quality and syntactical constraints that filter the mined pat-
terns during the discovery process.

Ontological knowledge includes information about the
domain ontology, e.g., abnormality information/normality

information about attribute values indicating either abnor-
mal/pathological states, or the normal state. For exam-
ple, consider the attribute temperature with the value range
dom(temperature) = {normal, marginal, high, very high}.
The values normal and marginal denote normal states of
the attribute, while the values high and very high describe
abnormal states. Using abnormality information, we can
define meta values containing several attribute values with
certain abnormality categories.

Similarity information about attribute values relates to
the relative similarity between attribute values. Significant
similarities between attribute values can indicate that the
respective values can be combined into a new value. Then,
appropriate meta values need to be defined. A high attribute
weight specifies, that an attribute is relatively important.

Ordinality information is used to indicate the ordinal
attributes which can be used to construct certain ’ordinal
groups’, e.g., summarizing certain consecutive age groups.
In general, specifying appropriate meta values can signifi-
cantly increase the interpretability of mined subgroup pat-
terns for the domain specialist (c.f. Section 3).

Derived attributes (abstraction knowledge) play a special
role in the mining process. These attributes are constructed
according to the needs of the user, e.g., intermediate con-
cepts which are not contained in the set of basic attributes
can be modelled, or attributes can be constructed such that
missing values are minimized.

In Table 1, we summarize the different classes and types
of background knowledge (CK = constraint knowledge,
OK = ontological knowledge, AK = abstraction knowl-
edge). We show their characteristics in terms of the ’deriv-
able knowledge’ if applicable, their costs, and their po-
tential contribution to restricting the search space and/or
focusing the search process for a qualitative comparison.
The individual ratings are based upon our experiences and
feedback provided by the domain specialists, e.g., during
the case study in Section 3. Considering the costs/impact
of the knowledge elements for subgroup mining, the label -
indicates no cost/impact; the labels +, ++, and +++ indicate
increasing costs and impact. A +(+) signifies, that the re-
spective element has low costs if it can be derived/learned,
and moderate costs otherwise. Similarly ++(+) indicates
this for moderate and high costs, respectively.

Knowledge Derivable Cost Search Space
Class Type Knowledge Restr. Focus
CK Syntactical Constr. – + + +
CK Quality Constr. – + ++ ++
CK Attr. Values Constr. – +(+) + +
CK Meta Values Constr. – +(+) – ++
CK Attributes Constr. – +(+) ++ ++
OK Normality Info Attr. Val. Constr. + + ++
OK Abnormality Info Attr. Val. Constr. ++ + ++

Meta Val. Constr. – ++
OK Similarity Info Meta Val. Constr. ++(+) – ++
OK Ordinality Info Meta Val. Constr. + ++ +++
OK Attr. Weights Attr. Constraints +(+) + ++
AK Derived Attributes Derived Attributes +++ +++ +++

Table 1: Background Knowledge for Subgroup Mining

The most important types of background knowledge
with an especially good cost/benefit ratio concerning the
subgroup mining task are indicated in bold type.
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Figure 2: The Zoomtable

Guiding Subgroup Mining by Visualization Techniques
In this section we present the main visualization for sub-

group discovery, i.e., the zoomtable depicted in Figure 2.
This visualization is associated with the current subgroup
view (Annotation I) showing the target variable and the se-
lectors of the current subgroup. The bars (Annotation II)
depict the target distributions in the whole population (up-
per bar), and in the subgroup. The left part of a bar shows
the positives, the right part the negative instances. The
zoomtable (Annotation III) shows the distribution of the
data restricted to the currently selected subgroup. Each row
of the zoomtable shows the value distribution of a specific
attribute. The width of a cell relates to the frequency of an
attribute value. The zoomtable is updated when the user
modifies the current subgroup, e.g., by adding a selector
from the zoomtable.
Figure 3 shows a row of the zoomtable concerning a binary
attribute with the values yes and no. The important param-
eters for subgroup mining w.r.t. a ”future” subgroup are
the subgroup size – given by the width of a specific selec-
tor cell, and the target share (precision), i.e., the share of
subgroup instances containing the target variable (positive
instances). In the current subgroup SGc, (a) indicates the

Figure 3: The Zoomtable – Detail View

(currently) positive instances, and (b) denotes the negative
ones. In the ’next’ subgroup SGn, i.e., including the par-
ticular attribute value, (c) shows the positive instances for
this subgroup, which can be compared to (a). So, if (c) is
larger than (a), then the precision increases adding this se-
lector. Finally, (d) shows the gain in precision, comparing
the subgroups SGc and SGn: if the height of (d) is zero,
the precision does not increase. If it fills the entire bar, then
the precision reaches 100%.

The zoomtable enables the user to directly manipulate
the subgroup and to estimate the effects of individual se-
lectors. Furthermore, interesting attributes and their values
are easy to spot due to the visual markers in the respec-
tive cells. Then, an active subgroup mining approach (c.f.,
[Gamberger et al., 2003]) can be implemented quite easily.

2.3 Related Work

The application of subgroup mining especially for the med-
ical domain using the guidance of an expert is described
in [Gamberger and Lavrac, 2002; Gamberger et al., 2003].
This active approach stresses the interaction between the
expert and the system to identify interesting subgroups.
However, in the semi-automatic process mainly the param-
eters of the search process can be adapted. In our semi-
automatic process, the domain specialist can adapt the sub-
group mining problem by including background knowl-
edge, and modifying the search process directly guided by
interactive visualizations.

The proposed interactive core component, i.e., the
zoomtable visualization was inspired by the InfoZoom sys-
tem [Spenke, 2001]. InfoZoom also visualizes the value
distributions of attributes in single rows of a table, and also
allows the user to zoom in on individual values. How-
ever, our approach extends this idea significantly, since
we also guide the user during the subgroup mining pro-
cess by visualizing additional quality parameters directly
in the zoomtable, e.g., the future target share or the gain
of a specific selector. Changes in the zoomtable, e.g.,
adding/removing selectors to the current subgroup (de-
scription) are also visualized dynamically.

Using background knowledge to constrain the search
space and pruning hypotheses during the search process has
been proposed in ILP approaches. [Weber, 2000] proposes
require- and exclude-constraints for attribute – value pairs,
in order to prune the search space. [Zelezny et al., 2003]
integrate constraints into an ILP approach as well; the used
constraints are mainly concerned with syntactical and qual-
ity constraints w.r.t. the discovered subgroups.

The main difference between the presented approach and
the existing approaches is the fact, that we are able to in-
tegrate several new types of additional background knowl-
edge. This knowledge can be refined incrementally accord-
ing to the requirements of the mining task. In our process
model for semi-automatic and knowledge-intensive sub-
group mining we aim to focus the discovery method on the
interesting patterns using background knowledge. Then,
interactive exploration is made more convenient, since
mostly interesting patterns/factors are presented. Further-
more, we apply a novel visualization technique in an active
and user-centered approach that is usually more transparent
for (experienced) users.
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3 Results: Case Study
In this section we describe a case study for the application
of the proposed subgroup mining process.

We first introduce the analysis task w.r.t. its clinical rel-
evance. Then, we describe the documentation and consul-
tation system SONOCONSULT. After that, we present and
discuss the results of the case study.

3.1 Profiling Examiners for Quality Control
Our application domain is the domain of sonography.
Sonographic examination and documentation is highly de-
pendent on the skills of the examiners. Individual exam-
iners rotate according to a defined schedule (e.g., every
6 months). Before performing the examinations, they get
special training and can always consult experienced col-
leagues. However, while performing the examination they
are on their own. Then, it is easy to see that the quality of
the examinations is dependent on the individual experience
and skills of the examiners. Therefore, documentation and
interpretation habits of examiners may differ significantly,
which is problematic considering the consistency and qual-
ity of the documented examinations; e.g., some examiners
may be more competent in identifying specific symptoms
concerning certain diagnoses or organ systems than others.

While a gold standard for the correct examination and
documentation is not available in sonography, the detection
of systematic discrepancies among different examiners is
clinically important in itself. To identify deviations regard-
ing the documentation habits of examiners, subgroup min-
ing is used to discover novel and unexpected (documenta-
tion) patterns, i.e., certain symptom combinations that are
observed significantly more (in-)frequently in conjunction
with certain examiners.

3.2 The Documentation and Consultation
System SonoConsult

We use cases taken from the SONOCONSULT system
[Huettig et al., 2004] – a medical documentation and con-
sultation system for sonography – which has been de-
veloped with the knowledge system D3 [Puppe, 1998].
The system is in routine use in the DRK-hospital in
Berlin/Köpenick and documents an average of about 300
cases per month. These are detailed descriptions of find-
ings of the examination(s), together with the inferred diag-
noses (binary attributes). The derived diagnoses are usually
correct as shown in a medical evaluation (c.f. [Huettig et
al., 2004]), resulting in a high-quality case base with de-
tailed case descriptions. The applied SONOCONSULT case
base contains 7096 cases. The domain ontology contains
427 basic attributes with about 5 symbolic values on av-
erage, 133 symptom interpretations, which are rule-based
abstractions of the basic attributes, and 221 diagnoses.

3.3 Results
The domain specialist performed subgroup mining consid-
ering individual diagnostic areas and organ systems, e.g.,
liver and kidney diseases, using the [VIKAMINE, 2005]
system. Then, the relevant factors that were important for
deriving the diagnoses of a certain area were identified;
these were then provided to the subgroup method in or-
der to constrain the search space and to focus the search

method. Furthermore, the domain specialist provided nor-
mality information to filter out some uninteresting normal
values, e.g., liver vessels = normal. Meta Values were de-
fined to build disjunctive meta values, e.g., liver plasticity
= moderately or strongly reduced. Additionally, several de-
rived attributes (abstractions) were defined to limit missing
values. For example, diagnostic attributes like cirrhosis of
the liver were either defined or tuned in order to minimize
missing values by providing a default normal value. After
that, the proposed process model was applied, using beam-
search as the automatic component for subgroup mining.

We show examples of the results in Table 2, considering
liver diseases, especially focussing on cirrhosis of the liver.
The cases that were used in the case study were acquired by
8 different examiners (E1 - E8). Concerning liver examina-
tions, each examiner contributed 200-600 cases, resulting
in a total population of 3931 cases where an examination
of the liver was performed. Then, we analyzed the individ-
ual factors concerning the individual examiners as the tar-
get variable (column E). We used the relative gain quality
function qRG (c.f., Section 2.2), which was easy to inter-
pret for the experts. Then, deviations concerning findings
or combinations of findings were measured.

Each row of the table depicts a subgroup with the sub-
group parameters Size (subgroup size), TP (true positives),
FP (false positives), Pop. (the defined population), the de-
fault and subgroup target share p0 and p, respectively, and
RG, i.e., the value of the relative gain quality function qRG.

# E LP LS LE LV LC Subgroup Parameters
mr sr uk kn mi si rp tp po pr Size TP FP Pop. p0 p RG

1 E1 X 221 44 177 2295 0.164 0.199 0.24
2 E1 X 435 41 394 2295 0.164 0.094 -0.51
3 E1 X X 420 28 392 2295 0.164 0.066 -0.71
4 E1 X 13 0 13 2295 0.164 0 -1.19
5 E2 X 248 19 229 2295 0.123 0.076 -0.43
6 E2 X 689 25 664 2294 0.123 0.036 -0.8
7 E3 X X X X 129 91 38 2294 0.129 0.705 5.12
8 E3 X 248 116 132 2295 0.128 0.467 3.01
9 E3 X X X 385 131 254 2294 0.129 0.34 1.87

10 E3 X X 420 132 288 2295 0.128 0.314 1.64
11 E3 X 13 4 9 2295 0.128 0.307 1.59
12 E3 X X 102 0 102 2294 0.13 0 -1.14
13 E5 X 13 9 4 2295 0.057 0.692 11.8
14 E5 X X X 227 85 142 2295 0.057 0.374 5.89
15 E5 X 248 87 161 2295 0.057 0.35 5.45
16 E5 X X 420 96 324 2295 0.057 0.228 3.18
17 E5 X X 440 56 384 3918 0.053 0.127 1.46
18 E5 X X X X X X X 271 39 232 2294 0.057 0.143 1.61
19 E5 X 221 6 215 2295 0.057 0.027 -0.55
20 E5 X X X X X 109 0 109 2294 0.058 0 -1.06

LP = Liver Plasticity LS = Liver surface LC = Cirrhosis of the liver
mr = moderately reduced uk = uneven, knotty po = possible
sr = strongly reduced kn = knaggy pr = probable

LE = Liver Echogenicity LV = Liver Vessels
mi = moderately increased rp = rarefication of portal branches
si = strongly increased tp = tapering of portal branches

Table 2: Interesting subgroups and individual factors con-
cerning liver diseases. The first line depicts the subgroup
(target variable Examiner=E1) described by Liver surface
= uneven, knotty with a target share of 19.9% (p) in the
subgroup compared to 16.4% (p0) in the total population
with a relative gain of 24% (RG).

Applying the process model, the domain specialist con-
sidered the visualization component very helpful, since it
enabled an easy step by step analysis: single factors could
be identified first, and then subgroups were refined. Fur-
thermore, subgroups discovered by the automatic search
method were also validated and refined interactively.
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3.4 Discussion
The results in Table 2 show significant differences in the
documentation habits of the individual examiners. Nega-
tive relative gain (RG) values indicate that the examiner
documented/interpreted certain findings less frequently
than his colleagues, while a positive relative gain indicates
the opposite. For a comprehensive overview, we also show
some single factors in addition to significant combinations,
which were also very interesting for the domain specialist.
Especially significant deviations are shown in lines 7, 14
and 15, which are very descriptive for the respective exam-
iners. Line 7 also shows a significant correlation with the
diagnosis cirrhosis of the liver combined with the relevant
findings.

Lines 4, 11, and 13 show a surprising result: the exam-
iners E3 and E5 are the only examiners that document a
specific finding, i.e., Liver surface = knaggy in comparison
to their colleagues. Further investigation turned up that the
specific attribute value was added to the consultation sys-
tem in a later step. Therefore, only some examiners had the
opportunity to use this finding.

Furthermore, as shown in the table, examiner E5 (lines
14-20) deserves special attention, since the shown docu-
mentation habits differed most significantly compared to
the peer examiners. Especially interesting were the sub-
groups depicted in line 17, 18 and 20: it is easy to see that
examiner E5 documents a cirrhosis of the liver = probable
or possible more frequently than his peers. An even more
significant subgroup is shown in line 18 that shows a spe-
cialization of the subgroup in line 17. For the very indica-
tive finding combination in line 20 (regarding the diagnosis
cirrhosis of the liver) even no case of E5 could be identi-
fied. It is striking that E5 uses very special patterns for in-
ferring the diagnosis cirrhosis of the liver compared to his
colleagues: e.g., symptoms of plasticity are much more fre-
quent (lines 14-16) whereas liver surface = uneven, knotty
is significantly infrequent (lines 19, 20).

In summary, these results show a high variability of doc-
umentation and interpretation habits of the different exam-
iners. They indicate the need for further prospective stud-
ies. These results are a starting point for initiating a discus-
sion on training or standardization actions to increase the
inter-examiner homogeneity of the sonographic reports.

4 Conclusion and Outlook
In this paper we presented an approach for semi-automatic
and knowledge-intensive subgroup mining. We exempli-
fied the approach in a case study in the medical domain of
sonography, where we were able to extract interesting pro-
files of examiners concerning their documentation habits.
The proposed approach applies background knowledge and
visualization to guide the subgroup mining process, which
was regarded as extremely important by the domain spe-
cialist. The obtained results are a first step toward survey-
ing the documentation performance of individual examin-
ers, and to support their learning phase.

In the future, we are planning to embed a component for
subgroup analysis in knowledge-based documentation sys-
tems directly. A prerequisite is a comprehensive analysis
applying the presented method to identify interesting pat-

terns. Then, using these patterns, the completeness of find-
ings regarding specific examiners can be checked instantly.
This provides a transparent survey of general documenta-
tion habits and the potential for training certain examiners.
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Abstract

This paper presents insightful analysis of med-
ical data collected in regular hospital practice.
The domain consists of patients suffering from
brain ischaemia, either permanent as brain at-
tack (stroke) with positive computer tomography
(CT) or reversible ischaemia with normal brain
CT test. The goal of the analysis is the extraction
of useful knowledge that can help in diagnosis,
prevention and better understanding of vascular
brain disease. The work demonstrates the appli-
cability of subgroup rule induction as the basis
for insightful data analysis and describes intel-
lectual process of converting rules into reason-
able medical concepts. Detection of coexisting
risk factors, selection of relevant discriminative
points for numerical descriptors, as well detec-
tion and description of characteristic patient sub-
populations are important results of the analysis.
Graphical representation is extensively used to il-
lustrate the detected regularities.

1 Introduction
Data analysis in medical applications is characterized by
the ambitious goal of extracting potentially new relation-
ships from the data, and providing insightful representa-
tions of detected relationships. Applications of quantitative
statistical methods seldom lead to insightful results, leaving
a large workload on the human experts who have to provide
appropriate interpretations of results, with no guarantees
that—due to a huge search space of possible solutions—the
most relevant combinations have been tested at all [Fayyad
et al., 1996]. The goal of intelligent data analysis is to ef-
fectively detect most relevant dependencies in an explicit
qualitative form and to enable that quantitative analysis
and human expert interpretation can concentrate on a rel-
atively small set of potentially relevant hypotheses. This
approach is specially suited for medical data analysis, as
large amounts of available medical expert knowledge allow
for appropriate interpretation of detected relations.

This work demonstrates that rules induced by the exist-
ing methodology of supervised subgroup discovery [Gam-
berger et al., 2003] can serve as an appropriate basis for
data analysis, if supplemented by the sufficient intellec-
tual effort of medical experts, willing to convert machine-

induced rules into adequate medical interpretations. The
proposed approach, applied to a typical database collected
in regular hospital practice describing brain ischaemia pa-
tients, is used to illustrate this expert-guided approach to
knowledge discovery. The next section presents the prob-
lem domain. Section 3 presents the proposed data analysis
approach leading to insightful knowledge, interpreted by
medical specialists in Section 4.

2 Brain ischaemia data
The database consists of records of patients who have been
treated in the Intensive Care Unit of the Department of
Neurology, University Hospital Center ”Zagreb”, in Za-
greb, Croatia during the year 2003. In total, 300 patients
are included in the database: 209 with the confirmed diag-
nosis of brain attack (stroke), and 91 patients who entered
the same department with adequate neurological symptoms
and disorders, but were diagnosed (based on the outcomes
of neurological tests) as patients with transition ischaemic
brain attack (TIA, 33 patients), reversible ischaemic neu-
rological deficit (RIND, 12 patients), and serious headache
or cervical spine syndrom (46 patients). In this paper, the
goal of data analysis experiments is to discover regularities
that characterize brain stroke patients.

Patients are described with 27 different descriptors rep-
resenting anamnestic data, physical examination data, lab-
oratory test data, ECG data, CT test result and information
about previous hospital therapies. Descriptors used in the
analyses are listed in Table 1.

It must be noted that the control group does not con-
sist of healthy persons but patients with serious neurolog-
ical symptoms and disorders. In this sense, the available
database is particularly appropriate for studying specific
characteristics and subtle differences that distinguish pa-
tients with stroke. The detected relationships can be ac-
cepted as true characteristics for these patients. However,
the computed evaluation measures—including probability,
specificity and sensitivity of induced rules—only reflect
characteristics specific to the available data, not necessarily
holding for the general population or other medical institu-
tions [Victor and Ropper, 2001].

3 Data analysis process
This section presents the data analysis process, using rules
induced by the SD subgroup discovery algorithm [Gam-
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Descriptor Abbreviation
sex (f,m) sex
age (years) age
family anamnesis (n,p) fhis
present smoking (y,n) smok
stress (y,n) str
alcohol consumption (y,n) alcoh
systolic blood pressure sys
cont. (mmHg) normal value < 139 mmHg
diastolic blood pressure dya
continuous (mmHg)
normal value < 89 mmHg
uric acid ua
continuous (µmol L−1)
ref. value for men < 412 ref.
value for women < 380
fibrinogen fibr
continuous (g L−1) ref. value 2.0-3.7
glucose gluc
continuous (mmol L−1) ref. value 3.6-5.8
heart rate ecgfr
continuous ref. value 60 − 100 /min
atrial fibrillation (y,n) af
left ventricular hypertrophy (y,n) ecghlv
aspirin therapy (y,n) asp
anticoagulant therapy (y,n) acoag
antihypertensive therapy (y,n) ahyp
antiarrhytmic therapy (y,n) aarrh
statins (antihyperlipoproteinaemic t.) stat
yes, no
hypoglycemic therapy hypo
none, yesO (oral), yesI (insulin)

Table 1: List of most relevant descriptors in the brain is-
chaemia domain with abbreviations used in induced rules.
Included are also reference values representing the range
typically accepted as normal in the medical practice.

berger et al., 2003]. The process begins with a set of
rules that are obtained by repetitively applying the SD algo-
rithm with different generalization parameter values. In the
experimental setting determined for the ischemia domain,
the process of expert-guided subgroup discovery was per-
formed as follows. The SD algorithm was run for values
g in the range 5 to 100, and a fixed number of selected
output rules equal to 3. The rules induced in this iterative
process were shown to the expert for selection and inter-
pretation. The intention of this paper is to illustrate what
type of insights are possible by the analysis based on indi-
vidual rules and what can be additionally obtained if rules
are analysed in groups. The SD algorithm,1 described in
detail in [Gamberger et al., 2003] is—due to paper length
restrictions—out of scope of this paper.

The basic characteristic of the presented approach is su-
pervised learning of subgroup defining rules that character-
ize the target (positive) class cases (in this domain stroke

1The algorithm is available as part of the publicly available
Data Mining Server at http://dms.irb.hr, and can be used to induce
rules for domains with up to 250 cases.

cases) in contrast to cases in the non-target (negative or
control) class (in this domain transitory ischaemia cases).
This means that examples of two classes have to be avail-
able. Sometimes the decision about what is the target class
is not simple and the complete data analysis process can
have a few task definitions with different choices of target
and non-target classes. For example, in the same brain is-
chaemia domain the target class could be also patients with
stroke taking some therapy, and the non-target class being
stroke patients not taking the therapy. In this setting, the
process of data analysis is far from completely automatic.
Moreover, the process should be sometimes repeated for
different subpopulations with specific properties, like sex
or age range, or with different subsets of descriptors. In
this section we demonstrate only the process performed
for the complete database with patients who experienced
stroke selected as the target class. We have performed a
series of experiments also with patients separated in differ-
ent age and sex groups, some of them also with reduced
descriptor sets. Although the results are very interesting,
specially due to the possibility of the comparative analysis
of rules, they are not included in this paper due to space
restrictions.

4 Results of rule analysis
Table 2 presents rules generated for the class stroke. There
are in total 15 rules, three for each of the five selected g-
values in the range 5 ≤ g ≤ 100. By selecting a low g-
value, the subgroup discovery algorithm tends to construct
very specific rules with relative low sensitivity. With the in-
crease of the g parameter the sensitivity typically improves
at the cost of decreased specificity. The sensitivity and the
specificity values for each rule are given in columns 3 and
4, respectively. The last column indicates the overlap be-
tween the current rule and one/two rules induced previously
for the same g-value. The overlap value is defined as the
number of positive cases that are covered both by the cur-
rent rule and the previously generated rule(s) divided by the
number of positive cases covered by either the current rule
or the previosly generated rule(s), whichever is the smaller.
Low overlap values mean relative independence between
the rules.

Because inductions with different generalization param-
eters are independent, there is a possibility that the same
rule (e.g. ahyp=yes) is induced with different generaliza-
tion parameter values. The order of rules in each group is
the order selected by the algorithm and it is determined by
the rule quality value and the rule covering properties.

4.1 Analysis of individual rules
The interpretation of induced rules starts by independent
interpretation of each individual rule. There is no apriori
preference of either more specific or more sensitive rules.
Highly sensitive rules, like those induced with parameter
g = 100 describe general characteristics of the target class.
In the given domain we see that stroke is characteristic for
middle aged or elderly population (age > 52.00), that peo-
ple with the stroke typically have normal or increased dyas-
tolic blood pressure (dya > 75.00), and that they have al-
ready detected hypertension problems and take some ther-
apy (anti-hypertension therapy yes). We also see that the
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Ref. Rule
Sens. Spec. Overlap

generalization parameter value 5
g5a (fibr > 4.55)and(str = no)

25% 100% -
g5b (fibr > 4.45)and(age > 64.00)

41% 100% 94%
g5c (af = yes)and(ahyp = yes)

28% 95% 36%
generalization parameter value 10
g10a (fibr > 4.45)and(age > 64.00)

41% 100% -
g10b (af = yes)and(ahyp = yes)

28% 95% 34%
g10c (str = no)and(alcoh = yes)

28% 95% 67%
generalization parameter value 20
g20a (fibr > 4.55)

46% 97% -
g20b (ahyp = yes)and(fibr > 3.35)

65% 73% 71%
g20c (sys > 153.00)and(age > 57.00)and(asp = no)

45% 88% 80%
generalization parameter value 50
g50a (ahyp = yes)

74% 54% -
g50b (fibr > 3.35)and(age > 58.00)

79% 63% 76%
g50c (age > 52.00)and(asp = no)

64% 63% 96%
generalization parameter value 100
g100a (age > 52.00)

96% 20% -
g100b (dya > 75.00)

98% 8% 98%
g100c (ahyp = yes)

74% 54% 100%

Table 2: Rules induced for generalization parameter g val-
ues in the range[5,100]. Presented are their sensitivity and
specificity values measured on the available data set as well
as their overlap with previouly induced rule(s) in the same
g-value group.

selected boundary values are relative low (52 years for the
age and 75 mmHg for the dyastolic pressure) which is due
to the fact that the rules should satisfy a large number of
cases. This is the reason why the rules are not applicable as
decision rules but they give useful descriptive information
about the target class.

Expert interpretation of each individual rule is essen-
tial for the generation of useful knowledge. For example,
the interpretation of rules like (age > 52.00) or (dya >
75.00) is straightforward. In contrast, the interpretation of
the rule (ahyp = yes) could lead to the conclusion that an-
tihypertensive therapy itself is dangerous for the incidence
of stroke. A much better interpretation is that hyperten-
sion is dangerous and because of that people with detected
hypertension problems, characterized but the fact that they
already take antihypertensive therapy, have larger proba-
bility of having a stroke. Indirectly, this rule also means
that we have little chance to recognize the danger of high

Figure 1: The proportion of patients with brain attack
(stroke) in dependence of the total number of patients in the
hospital department presented separately for patients with
and without antihypertensive therapy for different systolic
blood pressure values.

blood pressure directly from their measured values because
many serious patients have these values artificially low due
to a previously prescribed therapy. This is a good example
of expert reasoning stimulated by an induced rule. In this
situation we try to answer the question how the probabil-
ity of stroke with respect to the transitory ischemia cases
changes with the increasing systolic blood pressure. From
the rule we have learned that we should compare only pa-
tients without anti-hypertension therapy. The result is pre-
sented in Figure 1. It can be noticed that the probability
of stroke grows significantly with the increase of systolic
blood pressure. The same dependency can be drawn also
for the patients with the therapy. The differences between
the two curves are significant and a few potentially relevant
conclusions can be made. The first is that antihyperten-
sive therapy helps in reducing the risk of stroke: this can
be concluded from the fact that the probability of stroke
is decreasing with the decrease of systolic blood pressure
also for the patients with the therapy (as long as the sys-
tolic blood pressure is not lower than 130 mmHg). But it is
also true that for systolic blood pressure between 130 and
170 mmHg the probability of stroke is significantly higher
for patients with recognized hypertension problems than
for other patients. The interpretation is that also in cases
when successful treatement of hypertension is possible, the
risk of stroke still remains relatively high and it is higher
than for patients without hypertension problems.

As noticed earlier, very general rules are good for ex-
tracting general properties of the target class. In contrast to
that, very specific rules induced by generalization param-
eter values 5 or 10 are good as classification rules for the
target class. For example rule g5c (af = yes)and(ahyp =
yes) well reflects the existing expert knowledge that hy-
pertension and atrial fibrillation are important risk factors
for the stroke. The rule is significant as it emphasizes the
importance of the combination of these two risk factors,
what is not a generally known fact. The relevancy of de-
tected correlation is illustrated in Figure 2. It shows that
the probability of stroke is at least 85% in the age range 55
- 80 years for persons with both risk factors measured on
the available hospital population. We can not estimate this
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Figure 2: Probability of stroke in dependence of patient age
presented for all patients in the available hospital popula-
tion (thick line), probability of stroke for persons with hy-
pertension problems, with atrial fibrillation problems, and
with both hypertension and atrial fibrillation problems (thin
solid lines). The percentage of patients with both risk fac-
tors is about 20-25% for the available hospital population
(dashed line). The curves are drawn only for the range with
a sufficiently large numbers of patients in the database.

probability on the general population but we can assume
that it is even larger. The observation might be important
for prevention purposes in general medical practice, espe-
cially because both factors can be easily detected.

Other two rules induced for g-value equal 5 contain con-
ditions based on the fibrinogen values about 4.5 or more
(reference values for negative fibrinogen finding are in the
range 2.0 - 3.7 g · L−1). The rules without doubt demon-
strate the importance of high fibrinogen values for the
stroke patients. In the first rule the second necessary con-
dition is the absence of stress, while in the second rule
the second condition is age over 64 years. The interpre-
tation of the second rule is relatively easy, leading to the
conclusion that fibrinogen above 4.5 is itself very danger-
ous, which is confirmed also by rule g20a, being especially
dangerous for elderly people. The interpretation of rule
(fibr > 4.55)and(stres = no) is not so easy because
it includes contradictory elements ’high fibrinogen value’
and ’no stress’, knowing the fact that stress increases fib-
rinogen values and increases the risk of stroke. The first
part of the interpretation is that ’no stress’ is characteristic
of elderly people and this conclusion is confirmed by the
high overlap value of rules g5a and g5b (see the last col-
umn for the g5b rule). The second part of the interpretation
is that high fibrinogen values can be the result of stress and
such fibrinogen is not as dangerous for stroke as fibrinogen
resulting from other changes in the organism.

From the rules induced with generalization parameter
values 10–50 we notice that conditions on age and fibrino-
gen values repeat often, confirming already made conclu-
sions about their importance. Also they suggest much more
reasonable boundary values for the numerical descriptors
(age over 57 or 58 years, fibrinogen over 3.3, systolic blood
pressure over 153) which, if different from generally ac-
cepted reference values, can initialize research in the direc-
tion of accepting them as new decision points in medical
decision making practice.

Figure 3: The probability of stroke in dependence of patient
age presented for patients taking aspirin as the prevention
therapy, and the probability of stroke for patients without
this therapy. The percentage of patients with the aspirin
therapy is presented by a dashed line.

Also rules in this middle range of parameter g stress rel-
evant relations among different descriptors like (ahyp =
yes)and(fibr > 3.35) or (age > 52.00)and
(asp = no). The later rule stimulated the analysis pre-
sented in Figure 3 which seems as excellent motivation for
patients to accept prevention based on aspirin therapy. It
can be easily noticed that the inductive learning approach
correctly recognized the importance of the therapy for per-
sons older than 52 years.

4.2 Analysis of rule groups
Besides the possibility to analyse each rule separately,
combinations of co-occurring rules can give some addi-
tional information. In this respect it is useful to look at
the overlap values of rules. A good example is a group of
three rules induced for g-value 10. These rules have low
overlap values, meaning that they describe relative diverse
subpopulations of the target class. Their analysis enables
global understanding of the hospital population in the In-
tensive Care Unit of the Neurology Department. Results of
the analysis are presented in Figure 4.

The figure graphically and numerically illustrates the im-
portance of each population subgroup and its overlap with
other subgroups. The textual description is also important,
reflecting the results of basic statistical analysis (mean val-
ues of age and fibrinogen, as well as sex distribution) for
the subpopulation described by the rule, followed by the
so-called supporting factors. The supporting factors are
those descriptor values that are characteristic for the sub-
population in contrast to the cases in the negative class.
The importance of these factors lies in the fact that they
can help to confirm that a patient is a member of a subpop-
ulation, also giving a better description of a typical member
of a subgroup. The results show that the induced subgroups
describe three relatively different types of stroke among el-
derly people (mean age between 70 and 75 years).

The largest subgroup can be called elderly patients; it is
characterized by extremely high fibrinogen values (mean
value 5.5) and increased glucose values (mean value 8.4).
In most cases these are women (about 70%) that do not
smoke, do not suffer from stress, and do not have prob-
lems with lipoproteins. Very different is the subpopula-
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Figure 4: Comparative study of three important subgroups of stroke patients detected by rules induced with generalization
parameter value 10. The large circle presents the stroke patients, negative cases are outside the large circle. Small circles
present three detected subgroups. One of them includes only positive cases while the other two include also a small part of
negative cases. The numbers present the percentages of patients that satisfy the conditions of one, two, or all three rules.
In total, 68% of positive cases are included in at least one subgroup. The definitions of patient groups (in bold-face letters)
are followed by a list of most relevant properties that characterize the patient group. The list ends with the expert’s name
given to the group (in bold-face letters).

tion that can be called patients with serious cardiovascular
problems characterized with diagnosed hypertension and
atrial fibrillation. It is a mixed male-female population.
Its main characteristic is that they typically receive many
different therapies but still they have increased—but inside
reference—heart rate frequency (about 90) and acid uric
(about 360). In between these two populations—in terms of
age—is a subpopulation that can be called do-not-care pa-
tients characterized by alcohol consumption and no stress.
It also a mixed male-female population characterized only
by the increased glucose values of laboratory tests. It seems
as these people would have the largest chance not to be
among patients with stroke because their relevant property
is negative family history. Their do-not-care attitude is vis-
ible also from not taking aspirin as the prevention therapy.

Conclusions

This work demonstrates that rules induced by the subgroup
discovery methodology can be an appropriate starting point
for data analysis leading to insightful descriptions of the
available data. The extensive presentation of the analysis
process intends to illustrate the intellectual effort necessary
to convert the induced rules into reasonable medical knowl-
edge. Special attention was devoted to the selection of ap-

propriate visualization, enabling effective and convincing
presentation of obtained results. The paper demonstrates
that this type of data analysis, besides expert knowledge,
requires also a lot of human imagination. Further work is
expected in developing the methodology which could be
used for semi-automated insightful data analysis.
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Abstract
Probabilistic close medical record linkage tech-
niques have been used to link the Dutch perinatal 
registries. Close agreement weights further en-
hance the probabilistic procedure. External vali-
dation showed that the developed procedure is 
highly reliable.   

1 Introduction 
In the Netherlands, four different caregivers (midwifes, 
general practitioners, obstetricians and paediatricians) are 
involved in perinatal care. Each caregiver collects data 
into their own national registry. These registries are 
anonymous and because of privacy laws in the Nether-
lands, no unique personal identifier exists. 

A combined dataset of the separate registries is needed 
to produce valid reports on outcome measures of perinatal 
healthcare and to enable further data analysis. Medical 
record linkage is a technique to identify records belonging 
to the same individual in the absence of a unique identifier 
[Newcombe, 1988]. Partly identifying variables present in 
both datasets are combined to create a powerful discrimi-
nating linking key.  

There are two different approaches to medical record 
linkage; deterministic medical record linkage and prob-
abilistic medical record linkage. Deterministic strategies 
only look at (dis)agreement on the linking variables. For 
full deterministic linkage all linking variables have to 
agree, while N-1 deterministic linkage allows one of the 
linking variables to disagree [Newcombe, 1988]. Prob-
abilistic medical record linkage strategies use the informa-
tion value of the different linking variables by assigning a 
weight for agreement and disagreement for every variable. 
This weight is calculated using two probabilities: the 
probability that a variable agrees among matches (mi) and 
the probability that a variable agrees among non-matches 
(ui). The mi value reflects the reliability of the variable, 
while the ui value reflects the discriminating power of the 
variable [Newcombe, 1988; Bell et al.,1994].  

This paper in short describes the applied probabilistic 
medical record linkage algorithm incorporating close 
agreement to link the registry of midwifes (“MR”) and the 
registry of obstetricians (“OR”). 

2 Methods 
The datasets of the perinatal registries were linked for the 
years 2001 - 2003. First, both datasets for one year were 
internally linked to detect administrative doubles using a 
deterministic N-1 approach. In the next step, the MR and 
OR were linked using a probabilistic medical record link-
age algorithm. The two datasets were separated for single-
tons and twins. Records of multiple births require a differ-
ent, stricter, approach because these records have a lot of 
variables in common. Ui probabilities were calculated 
from the marginal distribution in the two files as true non-
matches make up the largest part of the total number of 
pairs. Because the matching status is unknown, mi values 
were estimated using the Expectation Maximization (EM) 
algorithm with the observed patterns of agreement and 
disagreements of the singleton files without missing val-
ues [Felligi and Sunter, 1969; Reitsma, 1999]. Missing 
values influence the calculation of weights in an undesir-
able way because a missing value on a variable in both 
records is seen as agreement by the EM algorithm. Be-
sides full agreement, close agreement was defined for 
certain variables. Even in case of agreement the value of a 
variable in two records can differ because of different 
calculation methods or rounding off of figures. Identifica-
tion of these variables, and the definition of the close 
range was established with help of caregivers combined 
with information from the data (Table 1).  

Because of large file sizes (about 160.000 records for 
MR, 125.000 for OR) blocking was applied in two steps. 
Records were only compared if they agreed on the block-
ing variable  in the first step 
and  in the second step. 

Table 2 list the variables there were compared in the 
linking procedure. For  (DOB), 

 and  close ranges were defined. 

Table 1 Effect of choice of close range on linking weight for the 
variable

Close range Weight agree Weight disagree 
Birth weight (full) 7,99 
Birth weight (± 5g) 1,44 -4,16 
Birth weight (± 10g) 0,91 -4,44 
Birth weight (± 25g) 0,17 -4,70 
Birth weight (± 50g) -0,45 -5,17 
Birth weight (± 100g) -1,12 -5,76 

Page 57  of  86



Table 2 Linking variables with mi and ui value and linking 
weight for 2002 data 

m i

value
u i

value
weight 
agree

weight 
close
agree

weight 
dis-
agree

DOB mother Blocking
ZIP code 
mother 

0,9573 0,0006 10,74 -4.55 

DOB child  
(± 1 day) 

0,9780 
0,0156 

0,0028 
0,0055 

8,47 1,50 -7,28 

Exp. DOB child 
(± 7 day) 

0,8877 
0,0949 

0,0027 
0,0371 

8,36 1,35 -5,79 

Birth weight 
(± 10 gram) 

0,9356 
0,0191 

0,0037 
0,0102 

7,98 0,91 -4,44 

Place of birth 0,8818 0,0064 7,11 -3,07 
Minute of birth 0,9173 0,0180 5,67 -3,57 
Hour of birth 0,9701 0,9701 4,50 -5,00 
Gravidity 0,9457 0,3016 1,65 -3,69 
Gender 0,9918 0,5006 0,99 -5,93 

Linkage weights of the different variables were calculated 
using the mi and ui values (Table 2): 
Full agreement weight of the ith variable: log2 (mif/uif)
Close agreement weight of the ith variable: log2 (mic/uic)
Disagreement weight of the ith variable:
log2 (1-(mif+mic)/ 1-(uif+uic))

For every record pair a total linkage weight was calculated 
by adding up the individual variable weights. Linking 
weight was set to zero if a variable was missing in one or 
both records compared. All pairs were sorted by this total 
weight and a threshold value was determined separating 
links from non-links based on the estimated match rate by 
the EM algorithm and by reviewing pairs around this es-
timated threshold value.  

A double blind external validation with the medical re-
cord as gold standard was carried out for the MR^OR 
linkage, focussing mainly on the uncertain area of the 
linkage (around the threshold value). 

3 Results 
Duplicates were removed from the separate registry files; 
0.5% in the MR and 0.05% in the OR. Linking of the MR 
with the OR showed that 41% of all pregnancies were 
present in both files. Figure 1 shows all pairs sorted by 
total linkage weight together with the threshold value 
(15.4) above which value pairs are considered a link. Ex-
ternal validation revealed no errors outside the uncertain 
region (weight of ±5 around threshold value) and a false 
margin of 13% in the uncertain region. Only 0.35% of the 
linked pairs are in the uncertain region and only 0.055 % 
of the non-linked pairs, which means that our total linkage 
procedure has a margin of error of less than 1 %. 

4 Discussion 
A perinatal healthcare data file now exists with combined 
data from the different involved disciplines, which can be 
used to produce valid tables on outcome measures and 
offers new possibilities for further data analysis. As exter-
nal validation showed, the developed probabilistic close 
medical record linkage procedure is highly reliable.  

Figure 1 MR^OR singleton pairs sorted by total linking weight  

The weights calculated for the linking variables proved to 
be very stable for variations in the number of linking vari-
ables and close ranges. Blocking had to be applied be-
cause of large file sizes, but we believe two step blocking 
minimizes the number of false negative links. Our deci-
sion the separate the linkage of singleton and multiple 
births worked well, although multiple births remain diffi-
cult to link. Choices made on handling missing values and 
defining close ranges should be further founded by simu-
lation studies. SAS was used for all linking procedures 
and proved to be a flexible and powerful tool.       

5 Further research 
Additional simulation studies will further ground choices 
made so far in particular the dependency of their optimal-
ity on dataset characteristics (number of records, the ratio 
of possible links to file sizes and error rates of variables). 
Simulation studies conducted to refine the linking strategy 
will focus on the range of close agreement, the handling 
of missing values and dependencies between linking vari-
ables by using a simulated dataset with known match 
status. Yet a valid probabilistic linking procedure is now 
available and can be used for similar problems. 
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Abstract
Since diagnosis of dysmorphic syndromes is a
domain with incomplete knowledge and where
even experts have seen only few syndromes
themselves during their lifetime, documentation
of cases and the use of case-oriented techniques
are popular. In dysmorphic systems, diagnosis
usually is performed as a classification task,
where a prototypicality measure is applied to
determine the most probable syndrome. Our
system additionally applies adaptation rules.
These rules do not only consider single symp-
toms but combinations of them, which indicate
high or low probabilities of specific syndromes.

1 Introduction
When a child is born with dysmorphic features or with
multiple congenital malformations or if mental retarda-
tion is observed at a later stage, finding the correct diag-
nosis is extremely important. Knowledge of the nature
and the etiology of the disease enables the paediatrician
to predict the patient’s future course. So, an initial goal
for medical specialists is to diagnose a patient to a rec-
ognised syndrome. Genetic counselling and a course of
treatments may then be established.

A dysmorphic syndrome describes a morphological
disorder. It is characterised by a combination of various
symptoms, which form a pattern of morphologic defects.
The main problems of diagnosing dysmorphic syn-
dromes are as follows [Gierl ., 1994]:

- existence of more than 200 syndromes,
- many cases remain undiagnosed with respect to

known syndromes,
- usually many symptoms are used to describe a case

(between 40 and 130),
- every dysmorphic syndrome is characterised by

nearly as many symptoms.

Furthermore, knowledge about dysmorphic disorders is
continuously modified, new cases are observed that can-
not be diagnosed, and sometimes even new syndromes
are discovered.

We have developed a diagnostic system that uses a large
case base. Starting point to build-up the case base was a
large case collection of the paediatric genetics of the Uni-
versity of Munich, which consists of nearly 2,000 cases
and 229 prototypes. A prototype (prototypical case) repre-
sents a dysmorphic syndrome by its typical symptoms.
Many dysmorphic syndromes have been defined in lit-
erature. Additionally, nearly one third of our case base
was determined by semiautomatic knowledge acquisition,
where an expert selects cases that should belong to the
same syndrome and subsequently a prototype, character-
ised by the most frequent symptoms of it’s cases, is gen-
erated.

In our system the user can choose between two meas-
ures of dissimilarity between concepts, namely one meas-
ure proposed by Tversky [Tversky, 1977], the other one
by Rosch and Mervis [Rosch ., 1975]. However, the
novelty of our approach is that we do not only perform
classification but subsequently apply adaptation rules.
These rules do not only consider single symptoms but
specific combinations of them, which indicate high or low
probabilities of specific syndromes.   

2 Diagnosis of Dysmorphic Syndromes
Our system performs four steps. At first the user has to
select symptoms that describe a new patient. This selec-
tion is strenuous and time consuming, because more than
800 symptoms are considered. However, diagnosis of
dysmorphic syndromes is not a task requiring great
speed, but it usually requires thorough reasoning and is
followed by a long-term therapy. Since our system is still
in the evaluation phase, the user can select a prototypi-
cality measure. In routine use, this step shall be dropped
and instead the measure with better evaluation results
shall be used automatically. There are two choices.

As humans look upon cases as more typical for a
query case with increasing numbers of common features
[Rosch ., 1975], distances between prototypes and
cases usually mainly consider the shared features. The
first measure was developed by Tversky [Tversky, 1977].
It is a measure of dissimilarity of concepts. From the
number of features shared by the query case and the pro-
totype two numbers are subtracted. Firstly, the number of
symptoms that are observed for the patient but are not
used to characterise the prototype (X-Y), and secondly the
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number of symptoms used for the prototype but are not
observed for the patient (Y-X) is subtracted.

The second prototypicality measure was proposed by
Rosch and Mervis [Rosch ., 1975]. It differs from Tver-
sky’s measure only in one point: the factor X-Y is not
considered:

In the third step to diagnosis dysmorphic syndromes, the
chosen measure is sequentially applied on all prototypes
(syndromes). Since the syndrome with maximal similarity
is not always the right diagnosis, the 20 syndromes with
highest similarity are presented ranked according similar-
ity.

2.1 Application of Adaptation Rules
In the fourth and final step, the user can optionally
choose to apply adaptation rules on the syndromes.
These rules state that specific combinations of symptoms
favour or disfavour specific dysmorphic syndromes. For
example, this is an adaptation rule favouring Lenz-
Syndrome:

IF medial diffuse hypoplast brows
AND IF prominent Corpus-Anthelicis
THEN the Lenz-Syndrome is probable

Unfortunately, the acquisition of these adaptation rules is
very difficult, because they cannot be found in textbooks
but have to be defined by experts of paediatric genetics.
So far, we have got only 10 of them and so far it is not
possible that a syndrome can be favoured by one adapta-
tion rule and disfavoured by another one at the same
time. When we, hopefully, acquire more rules such a
situation should in principle be possible but would indi-
cate some sort of inconsistency of the rule set.

The question is how shall adaptation rules alter the re-
sults. Our first idea was that the similarity values should
be changed. A syndrome that is favoured by an adaptation
rule might get a higher similarity. But we had no idea how
much an adaptation rule shall increase a similarity. Of
course no medical expert can help here and a general
value for favoured or disfavoured syndromes by adapta-
tion rules would be arbitrary. So, instead the result after
applying adaptation rules is a menu that contains up to
three lists. On top the favoured syndromes are depicted,
then those neither favoured nor disfavoured, and at the
bottom the disfavoured ones. Additionally, the user can

get information about the specific rules that have been
applied on a particular syndrome.

3 Results
Cases are difficult to diagnose when patients suffer from a
very rare dymorphic syndrome for which neither detailed
information can be found in literature nor many cases are
stored in our case base. This makes evaluation difficult. If
test cases are randomly chosen, frequently observed syn-
dromes will be frequently selected and the results will
probably be fine, because these syndromes are well-
known. However, the main idea of our system is to sup-
port diagnosis of rare syndromes. So, we have chosen our
test cases randomly but under the condition that every
syndrome can be chosen only once. For 100 cases we
have compared the results obtained by both prototypical-
ity measures, before and after applying adaptation rules
(table 1).

Table 1. Comparison of prototypicality measures

With
Adaptation

With
Adaptation

Right
Syndrome

Rosch,
Mervis

Tversky Rosch,
Mervis

Tversky

on Top 29 40 32 42
among top 3 57 57 59 59
among top 10 76 69 77 71

Obviously, the measure of Tversky provides just very
slightly better results, especially when the right syndrome
should be on top of the list of probable syndromes. Since
the acquisition of adaptation rules is very difficult and
time consuming, the number of acquired rules is rather
limited, namely 10 rules. Furthermore, again holds: the
better a syndrome is known, the easier adaptation rules
can be generated. So, the improvement mainly depends on
the question how many syndromes involved by adaptation
rules are among the test set. In our experiment this was
the case only with five syndromes. Since some of them
had already been diagnosed correctly without adaptation,
the improvement by adaptation rules is very small.
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Abstract

Within biomedical data analysis, visualization
can greatly improve data understanding and
support various data mining tasks. The pa-
per presents FreeViz, a visualization technique
for analysis of class-labelled, multi-dimensional
data. FreeViz visualizations can present data on
many features in the same graph, but through
optimization procedure choose a projection that
best separates instances of different class. The
paper gives mathematical foundations of Free-
Viz, and presents its utility on various biomed-
ical data sets, including those with thousands of
features from cancer gene expression studies.

1 Introduction
Medical data analysis may largely benefit from visualiza-
tion. The right visualization may outline which factors
govern the data and uncover their interactions. In the pa-
per, we will be concerned with predictive data mining tasks,
where each data instance (case) is described with a set
of features (predictive variables) and labelled with a class
(e.g. outcome, diagnosis). Despite many visualization
techniques available, there are not too many of those that
can visualize several features in the same graph, and, for
instance, include scatterplot (two or three features, the later
if plotted in 3D), parallel coordinates and RadViz (both for
presentation of data using many features) [Keim, 2002].

When considering data sets with many features, which
are typical in the domain of biomedicine, the principal
problem to solve is which features to visualize and which
projection to use, that is, how to order the selected fea-
tures in the graph. With increasing number of features,
any manual search for good projections becomes unfeasi-
ble. In principle, we would then prefer to use some au-
tomatic search for good projections, that would optimize
some criteria for quality of interestingness. For a single-
class (unsupervised) data, a well-known technique of pro-
jection pursuit is available for the task [Huber, 1985]. But
interestingly, for class-labelled data, such intelligent data
analysis approaches are at best rare, while the task is some-
how better defined: interesting visualization is the one that
well separates data instances of different class. We are
aware of two approaches in this category, McCarthy et al.’s
RadViz projections that place correlated features in RadViz

close to each other and thus try to improve on class sepa-
ration, and Leban et al.’s Vizrank [Leban et al., 2005] that
directly optimizes class separation and uses the heuristic
search through projection space [McCarthy et al., 2004].

In the paper, we propose an iterative algorithm that op-
timizes class separation in visualization of class-labelled
data sets. The visualization it uses is based on Rad-
Viz [Brunsdon et al., 1998], and is called FreeViz since it
relaxes the constraints of placement of feature anchors; in
RadViz, these are placed on the boundary of a circle. Free-
Viz is fast, can propose good visualizations even in the case
of highly-dimensional data sets such as those from cancer
genomics within seconds, and can be further used for fea-
ture subset selection and feature interaction discovery.

We first give the background on RadViz and its intelli-
gent visualization counterpart VizRank. We formally de-
scribe FreeViz, present a mathematical derivation of its fit-
ness (quality) function describe the corresponding imple-
mentation of the optimization algorithm. We then give sev-
eral cases that show a utility of FreeViz in biomedical data
analysis, also including examples that use large cancer gene
expression data set. We conclude with discussion and ideas
for further work.

Before we go on, notice that any modern visualization
can largely benefit from colored display. Figures in the
paper are printed in black and white, which at places sig-
nificantly decreases their clarity. The reader is invited to
visit a supplemental web page (www.ailab.si/supp/freeviz-
idamap) for better images.

2 Background
RadViz [Brunsdon et al., 1998] is a visualization that is
suitable for data described with a set of continuous features
scaled to the interval [0, 1]; discrete features can be visu-
alized through first transforming them to continuous. The
features are represented by anchors placed evenly on the
unit circle. The data instances are plotted inside the circle;
the position of each is determined by its features and the
positions of the corresponding anchors. Informally, each
anchor pulls the instance towards itself with a strength pro-
portional to the value of the corresponding feature, so the
position of an example depends upon the relative values of
features (e.g. if all features have equal values, the instance
is placed in the center).

Figure 1(a) shows a RadViz for three features (smooth-
ness, worst area, worst concavity) of the Wisconsin Di-
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(b) RadViz using all twenty features

Figure 1: Two RadViz graphs for Wisconsin Breast Cancer Data

agnostic Breast Cancer data (WDBC) from the UCI ML
repository [Blake and Merz, 1998]. The interpretation of
such a graph is rather obvious: tissues with a large “worst
area” tend to be malign and tissues with a large “worst
concavity” are benign, while the role of smoothness is not
clear. The problem arises when (or, better, because) the
data instances are described by more than a few features.
The actual WDBC data has 20 features and the correspond-
ing RadViz looks as shown in Figure 1(b); the order of fea-
tures is the same as in the data.

RadViz can be truly useful only when used with
some methods for optimizing it. The features for Fig-
ure 1(a) were chosen using the algorithm VizRank devel-
oped by [Leban et al., 2005], which exhaustively searches
through all combinations of features within the specified
parameters (usually we set the upper number of features to
four or five) and evaluates the projection using a k nearest
neighbors classifier. A projection is good if each instance is
surrounded mostly by instances of its own class. To avoid
overfitting, cross-validation is used instead of computing
the quality of the graph directly. Since the number of com-
binations rises exponentially with the number of features,
VizRank checks the projections ordered by the quality of
the features they use, where the features are evaluated with
a common measure such as ReliefF or information gain.
Despite the huge number of combinations which can on
microarray data easily reach 1020, RadViz can most often
find good projections within minutes of runtime.

By placing the anchors evenly around the circle and let-
ting each pull in its own direction, Radviz assumes that the
features are not correlated. Placing the anchors correspond-
ing to strongly correlated features closer together would be
potentially beneficial in conquering the noise and would, at
the same time, offer a cleaner and more informative visual-

ization. This idea is successfully exploited by McCarthy et
al. [2004], but where a limitation with respect to RadViz is
that visualization includes all available features.

The other limitation of RadViz is that it in principle as-
sumes that all features are equally important. Since this
is usually not the case, the quality of the projection is de-
creased since the pull of a less important feature(s) is as
strong as those of the important ones.

The visualization we propose, FreeViz, overcomes both
limitations by allowing the anchors to be placed anywhere
in the circle. The correlated features can thus be placed
together and the less important features can be put nearer
to the circle’s center to lower their impact. Even more than
with RadViz, the usefulness of FreeViz depends upon the
methods for optimizing it.

3 Formal Description and Optimization
Let Ai = [Ai

x, Ai
y] be the i-th anchor, and A be a matrix of

anchors. Each instance is described by a vector of feature
values, e = [e1, e2, . . . , en]. The position of instance e in
the circle is computed as ex =

∑
i eiAi

x, ey =
∑

i eiAi
y

or, in matrix notation, e′ = eA. A thus represents a linear
transformation that projects from the original feature space
to a two-dimensional FreeViz.

Instead of using k-nearest neighbours, as VizRank does,
we will optimize the projection by minimizing its potential
energy, vaguely following the real-world physics of grav-
itational/electric fields [Halliday and Resnick, 1978]. Let
Ff→e be the force acting on instance e due to instance
f . The force will depend on the distance between the
two instances, their charges (weights of instances) and the
type of their charges (instances’ class – instances of the
same class will attract and instances of different classes
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will repel each other). When a particle e is moved by
de′ the work and the change of the potential energy equals
dE = A = −Ff→ede′.

In a system of multiple particles, the force acting on a
particle equals the sum of forces exerted by all other parti-
cles,

Fe =
∑

f �=e

Ff→e

and the change of potential energy when moving e is
dEe = Fede′. When multiple particles are moved at once
(as they will be in our case), the change of energy equals
the sum of changes,

dE = −
∑

e

Fe de′

We shall use the gradient method to optimize the system,
i.e. to minimize its potential energy by moving the anchors.
For this, we need to compute the gradient of the energy as
a function of the anchors’ position. Consider that e′ = eA
and so e′ = e dA. When anchors are moved, the change in
energy equals

dE = −
∑

e

Fe (e dA)

For moving the x-coordinate of the i-th anchor, the related
change in energy is dE =

∑
e Fe,xeidAi

x, where Fe,x is
the x-component of the force Fe, therefore

dE

dAi
x

= −
∑

e

Fe,xei

The computation of the y-coordinate is analogous. The
formula is consistent with our intuition and with the na-
ture which (at least on grand scale) minimizes the potential
energy by accelerating the objects in the direction oppo-
site to the energy gradient (that is, in the direction of the
force). Instances are attracted or repelled from each other,
but since they are held in place by the anchors, the forces
between them are transmitted to the anchors. The force
acting on each particle is distributed between the anchors
proportionally with the values of corresponding features,
ei.

The formula is independent of the definition of the force.
Its sign should depend upon whether the two instances are
from the same class or not, so the force is attractive in the
former and repulsive in the latter case. If instances are
weighted, the force should rise linearly with the instance’s
weight. As for the distance, in our three dimensional space
the usual large scale forces decrease by the inverse-square
law, F ∼ 1/r2. In the two-dimensional world of Free-
Viz, the density of the field lines decreases linearly with
the distance, so the force should be proportional to 1/r. On
the other hand, we can borrow the idea of Gaussian ker-
nels from the statistics and let the force be proportional to
e−r2

. After some testing we found that the inverse-square
law works best, while with linear or Gaussian kernels the
force decrease with distance seems too slow.

A more important consideration regarding the force is
whether it needs to decrease or increase with the distance.
When separating instances of different classes, we are most

Input: number of instances N
number of features A
instance projections P
a table of instances E
classes of instances C

Output: a vector of gradients G

initialize F to 0
for e := 1 to N

for f := e+1 to N
dx := P[e].x - P[f].x
dy := P[e].y - P[f].y
r := sqrt(sqr(dx) + sqr(dy))

if C(e) = C(f)
then F_ef := -rˆ2
else F_ef := 1/rˆ2

Fefx := F_ef * dx/r
F[e].x += Fefx
F[f].x -= Fefx

Fefy := F_ef * dy/r
F[e].y += Fefy
F[f].y -= Fefy

initialize G to 0
for e := 1 to N

for i := 1 to A
G[e].x += F[e].x * E[e][i]
G[e].y += F[e].y * E[e][i]

Figure 2: Computation of gradients for FreeViz optimiza-
tion

concerned with those that are close together, while we do
not need to push the groups that are already well separated
even further apart. The repulsive force must therefore fall
with the distance. On the other hand, the attractive force
would try to squeeze the well-defined groups of instances
from the same class into a point, and this unneeded effect
would rise as the instances come closer together. For a con-
trast, if an instance is far from other instances of its own
class and surrounded by instances of another, the former
will not attract it, due to a large distance, while the latter
will push it around and, in the best case, throw it out in
a random direction. The attractive force should therefore
increase with the distance.

In a sense, the repulsive forces act like the electromag-
netic or gravitational forces which decrease by the distance,
while the attractive forces resemble the strong force that
binds quarks and which increases by the distance, like a
rubber band.

In the algorithm for computation of gradients (Figure 2)
we make use of the action-reaction symmetry: the force
between each pair of instances is computed only once and
added to the sum of forces for both instances, but with dif-
ferent directions (Ff→e = −Fe→f ). The force (F ef) is
separated into its x and y components (Fefx and Fefy)
by multiplying it by projections to x and y axis, dx/r and
dy/r, respectively.

The algorithm is rather simple and relatively fast: its
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Figure 3: FreeViz for Wisconsin Breast Cancer data

time complexity is O(N2 + NA), where N is the number
of instances and A the number of features; the first term
comes from computation of forces between particles and
the second from the loop that distributes the forces acting
on each instance between the anchors. Although the oper-
ations performed by the algorithms are rather elementary,
the squared number of instances suggests that the algorithm
may be less useful when the number of instances is large.

The computed gradients can be used in optimization with
the ordinary gradient method; at each step, the gradient
vector is subtracted from the vector of anchors, the anchors
are centered and renormalized (the farthest anchor should
lie on the unit circle), and the projections are recomputed.
The procedure is repeated until there is no considerable de-
crease (e.g. 1 %) of the potential energy for few consecu-
tive steps.

Gradient method of optimization could be replaced with
more advanced methods, but we found it fit for our purpose:
it is fast and does not seem to stop in local minima.

Figure 3 shows a FreeViz for WDBC optimized by the
proposed algorithm. For a clearer picture, we did not plot
the features whose anchors are less than 0.5r from the cen-
ter (marked with a dashed circle). The “area”, “fractal-
dimension” and “worst-area” listed in order of importance,
seem to be correlated evidences for benignity, while the
other three features speak for malignity of the tumor.

An important note about the algorithm is that it should
not be used when the number of features exceeds the num-
ber of instances. Formally, if E is a matrix of instances
and its rank equals the number of instances, the system
EA = P can be solved for any matrix of instances’ po-
sitions P. In other words, if we have more features than
instances, there exists a matrix of anchor positions for any
prescribed positions of instances. The described algorithm
is in this case able to overfit the data, resulting in meaning-
less projections.
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Figure 4: FreeViz for zoology database

4 Case Studies and Discussion
We start with an example on a zoology data set which
contains 101 animals described by their properties (lay
eggs, breath, have hair. . . ) and classified into seven groups
(mammals, birds, reptiles. . . ). As Figure 4 shows, the ani-
mals can be separated using the FreeViz projection and the
corresponding positions of features make sense. For in-
stance, mammals (◦) have hair, backbone, and as the most
important feature, milk. Being airborn is typical of birds
(×) and insects (÷); the former are distinguished by feath-
ers, and the latter have more legs (this feature can have
values 0, 2 and 4). Amphibians are put between fish and
reptiles.

To test the visualization on a more complex data, we
have tried FreeViz on several microarray cancer data sets.
The resulting visualizations are shown in Figure 5. The fea-
ture names are intentionally uninformative (paper focuses
on the study of class-separability, and while biomedical in-
terpretation would be useful, it is beyond the scope of our
reported study) and we have hidden them for the sake of
clarity. The legend is omitted for the same reasons. To
limit the number of features well below the number of in-
stances, we have used ReliefF [Kononenko et al., 1997] to
select 20 most important genes for each data set (except
for Lung cancer which has somewhat larger number of in-
stances, where we have chosen a subset of 40 features).

Figure 5(a) shows the visualization of the data set that
studies the outcome for the diffuse large B-cell lymphoma
(DLBCL) [Shipp et al., 2002], where the selected 20 fea-
tures are well able to separate between the two classes. In
another example, the data on four types of tumors in child-
hood (SRBCT) [Wang et al., 2003], see Figure 5(b), the
optimization yielded an even clearer separation.

The largest data set we tackled is that on a lung can-
cer [Bhattacharjee et al., 2001] with 203 instances, 12600
genes and five classes (Figure 5(c)). The separation is gen-
erally good, except for the class ∗, which is apparently too
small, so the total force that its instances exert on anchors
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(a) DLBCL: 77 instances, 20 (out of 5469) genes
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(b) SRBCT: 82 instances, 20 (out of 2308) genes
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(c) Lung cancer: 203 instances, 40 (out of 12600) genes
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(d) Brain tumor: 90 instances, 20 (out of 5920) genes

Figure 5: FreeViz on cancer microarray data
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is incomparable to the forces by instances of the larger
classes. In such cases, the algorithm could be augmented
by adjusting the strength of forces according to the size of
classes.

For the brain tumor data with 5920 genes and 90 in-
stances (Figure 5(d)), separation was somewhat worse.
Again, the instances belonging to the smaller classes (� and
∗) are lost between those of the large classes.

In all cases, running ReliefF took up to half a minute,
while FreeViz optimization took a few seconds on a
mediocre PC (Pentium IV, 1800 MHz).

5 Conclusion and Future Work

The paper presents a new method for intelligent visualiza-
tion of class-labelled, multi-dimensional data sets. We have
presented its utility on a number of biomedical data sets.
Results of these preliminary studies are very encouraging:
FreeViz is very fast and in all presented cases found visu-
alizations of high quality with clear class separation.

There are many ideas that we have on how FreeViz can
be exploited further. Some most important include:

• Visualization of probabilities. By computing the po-
tential fields for a grid of points in the circle, it is pos-
sible to color the inside of the circle so that the color
corresponds to the most probable class for an instance
projected to that point and the color’s saturation to the
probability. We have implemented this functionality,
but presenting it in the proceedings would require a
color print, so we show it only on supplemental web
pages (www.ailab.si/supp/freeviz-idamap).

• Classification. FreeViz visualization can be employed
in classification of new cases. The simplest method,
for instance, to produce a classifier from those pic-
tures is to project the instance which is to be classi-
fied into the FreeViz space and observe its k nearest
neighbors. Our experiments (not published here) with
this are very encouraging and show that obtained clas-
sification accuracy, AUC and Brier scores are in the
same range as those from logistic regression, naive
Bayesian classifier and SVM.

• Misclassification costs. With the current implementa-
tion of the algorithm, the strength of repulsive forces
depends upon the distance between the instances but
not on their classes. By modifying it so that differ-
ent combinations of classes would repel with different
strengths, misclassification costs could easly be incor-
porated within analysis.

FreeViz is a available as a part of RadViz visual-
ization widget in open-source data mining suite Orange
(www.ailab.si/orange, [Demšar and Zupan, 2004; Zupan et
al., 2004]. As such it also offers other functionality, such as
manual placement of anchors, selection of subsets of exam-
ples and similar, which is not described in this paper. See
also supplemental web page (www.ailab.si/supp/freeviz-
idamap) for additional material and figures from the paper
in color.
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Abstract
Tracking and comparing psychotherapeutic data
derived from questionnaires involves a large
number of highly structured, time-oriented pa-
rameters. Descriptive and other statistical meth-
ods are only suited for partial analysis. There-
fore, we invented a spring-based interactive In-
formation Visualization method for analysing
these data more in-depth. With our method the
user is able to find new predictors for a positive
or negative course of the therapy due to the com-
bination of various visualization and interaction
methods.

1 Introduction
Visualization tools have been used in the medical domain
for a long time. The majority of methods and tools was
developed for the field of scientific visualization, for exam-
ple 3D volume visualization tasks or computer tomography
visualizations. In the field of medical treatment planning
different kinds of data need to be explored in the reasoning
process, such as time-oriented patient data or the course of
the patient state. Information Visualization (InfoVis) tech-
niques can be used to support this exploration process and
promote a deeper level of understanding of the data and in-
formation under investigation. To complement them, task-
specific interaction methods have to be developed.

We are aiming for supporting a psychotherapeutic study
on anorexic girls where high dimensional, abstract, time-
oriented medical data is collected. The analysis of these
data is a challenging process. One way to deal with this
problem would be to apply statistical methods. However,
these methods are limited to prove known hypotheses and
can hardly capture the complex process of therapeutic inter-
ventions with not yet discovered hypotheses. To overcome
this limitation, we are investigating interactive information
exploration techniques.

We have developed a new interactive InfoVis method,
called Gravi++1, to observe new interdependencies be-
tween various kinds of parameters. Gravi++ uses the capa-
bilities of the human perceptual system by displaying mov-
ing icons on the screen following a spring-based model to

1The name Gravi++ is a mixture of two metaphors. “Gravi”
stands for gravitation and the two summation signs stand for two
magnetic plus poles.

facilitate the reasoning process. Furthermore, this process
is strongly supported by task-specific interaction methods.

2 The Medical Problem
Gravi++ is intended to analyze questionnaires of girls with
eating disorders (Anorexia Nervosa (AN)). At the Depart-
ment of Child and Adolescent Neuropsychiatry, Medical
University of Vienna, a study is taking place, in which al-
ternative therapeutic processes (cognitive behavioral ther-
apy) of anorexic girls are compared. The psychologists
and physicians who are working with the girls need to ex-
plore the data in an experimental way in order to derive
time-oriented quantitative and qualitative information on
the states of the patients. The important features of the
involved data structures are their data types, complexity
(highly structured), and temporal dimensions.

Data Characteristics
Every patient, their parents, and their therapists have to
answer an extensive set of questionnaires before, during
(three-monthly), and after the therapy (each time 20 ques-
tionnaires per patient, four per parent and one per thera-
pist). Each questionnaire consists of about 40 questions.
An additional challenge is that the questionnaires are not
all asked in the same interval. Some are even used only
once. After a normalization process the data derived from
these questionnaires ranges from ’0’ to ’6’. This range can
mean ’yes’ to ’no’, but can also stand for nominal values
like ’feeling guilty after eating a meal’.

Example questions of different questionnaires are:
FAMOS14: ’To relax is’: (1) totally unimportant (2) unim-
portant, (3) does not matter, (4) rather important to me, (5)
extremely important to me.
MRFSF1: ’I treat myself to tranquility and recreation’: (1)
no, (2) rather no, (3) rather yes, (4) yes.
EAT13: ’I feel sick after eating’: (0) never, (1) seldom, (2)
sometimes, (3) often, (4) very often, (5) always.

Some questions are concatenated to so called predictors.
These predictors should give an idea about a specific status
of a patient and is used to predict the further development
of the therapy.

The following predictors have been identified during our
analysis: (1) Predictors for a negative therapeutic course
are ’lacking close friendships’, ’comorbid personality dis-
order’, ’low self directedness’, ’lacking sincerity in answer-
ing questionnaires because of highly social desirable an-

Page 67  of  86



Figure 1: General Principle: A person is attracted by three
questions. The answer is modelled with an invisible spring.
The higher the question is answered, the stronger the spring
pulls to the black disk. We plotted the springs to illustrate
this general principle.

swering style’, and ’denying disease’; (2) Predictors for
positive course are a ’decreasing depression score after half
a year of cognitive behavioral therapy (CBT)’ or an ’in-
creasing value of feelings of pleasure by doing favoring ac-
tivities after 3 months of CBT’.

The task of finding new predictors, like the ones men-
tioned above, lead to the development of the new visualiza-
tion technique Gravi++.

3 Related Work
Different kinds of InfoVis methods were developed in the
last years. Important features of InfoVis methods are to
support the exploration process of complex, heterogeneous
data promoting a deeper level of understanding of the data
and information and to foster new insights into the under-
lying exploration process and the data themselves [Ware,
2000; K. Card, 1999].

Medical highly structured data, such as psychothera-
peutic data, impose an additional challenge due to their
complexity and their temporal dimensions. Worm Plots
[Matthews and Roze, 1997], the Zoom Star solution
[Noirhomme-Fraiture, 2002], the TimeWheel [Tominski et
al., 2003], the Table Lens [Rao and Card, 1994], Stardi-
nates [Lanzenberger et al., 2003b], and LinkVis [Lanzen-
berger et al., 2003a] are techniques that try to visualize
and explore such kinds of data. However, none of these
techniques provide enough interaction possibilities to find
new interdependencies (such as predictors) and explore
the data thoroughly. Furthermore, we are dealing with a
huge amount of highly structured time-oriented data, which
needs appropriate methods to analyze and to discover pat-
terns. Therefore, we created Gravi++ with the help of the
following concepts.

We were inspired by the outstanding idea of the Vibe
System [Hendley et al., 1995] to position document icons
according to the occurrence of keywords with a spring-
based system and adapted that idea for our core visual-
ization. A similar approach was proposed in the RAD-
VIZ method [Brunsdon et al., 1998] to map a set of m-

Figure 2: Simple example of finding a cluster: All persons
gave similar answers to the three questions. Therefore, a
cluster of all person’s icons can be seen.

dimensional points onto two dimensional space. The idea
for the different metaphors was inspired by the work of
[McGinn and Picking, 2003]. Animation is one way to
effectively visualize temporal changes, which is shown in
[Nakakoji et al., 2001]. Furthermore, to present another
view of multidimensional data, we used Star Glyphs such
as those presented in the XmdvTool [Ward, 1994].

4 Gravi++
4.1 Concept
The human perceptual system has a remarkable ability
to organize and locate things spatially, judge comparative
sizes, distinguish between a large range of colors and pat-
terns and perceive motion [Olsen et al., 1993]. Gravi++
tries to utilize these human capabilities by positioning icons
on the screen. There are two kinds of icons representing (1)
patients and (2) questions from the questionnaires respec-
tively (compare Figure 3). Every patient is attracted by the
questions according to the answer she gave. This is mod-
eled with a spring-based system. Every question is con-
nected with every person by a spring. This is illustrated in
Figure 1 showing a person who is attracted by three ques-
tions.

The strength of the individual springs depends on the an-
swer the patient gave. This way, every persons’ icon posi-
tion on the screen identifies how she answered the involved
questions. This leads to the formation of clusters of persons
who gave similar answers. Because of the fact that things
that are close together are perceived as a group, the find-
ing and differentiation of clusters is an easy task for the hu-
man perceptual system according to the Gestalt Laws [Kof-
fka, 1935]. In Figure 2 all persons gave similar answers
to the questions MFRS1, FAMOS14, and EAT13. There-
fore, their icons form a cluster near EAT13. Furthermore,
this tells us, that all persons have answered EAT13 with a
higher value than the other questions.

The size of a person’s icon can be mapped to any addi-
tional parameter (for example to the body mass index of the
patients) or to the attraction force. In the second case the
sphere is larger if it is attracted by higher values. This fea-
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ture helps discriminating different icons that are attracted
by the same values with a different coefficient. For exam-
ple, if a person has answered the questions one, two, and
three with answer number one, the icon is on the same place
as a person that has answered each question with answer
number five.

To visualize the changing values over time, Gravi++ uses
animation. The position of each person’s icon change over
time allowing to trace, compare and analyze the changing
values. Alternatively the change over time can also be rep-
resented by traces. The size and path of the person’s icon is
shown corresponding to all time steps or only to a restricted
subset like the previous and the next time step.

To visualize the exact values of each question, rings
around the question’s icon can be drawn. The ring size
corresponds with the attraction to the question. To avoid
overlapping rings with the same value, they are put closely
side by side.

In addition, Star Glyphs [Ward, 1994] can be shown,
which communicate the exact values. The edges of the Star
Glyph are connected with the corresponding question rings
and both are drawn in the same color as the person icon.
This helps the user to identify the corresponding person.

Missing data is handled by the system in two ways. If
a person has answered no questions at a specific time step,
the icon of the person is transparent. If a value of the size of
a person’s icon is missing, the icon is shown with a special
marking.

Gravi++ is intended for a restricted parameter space. The
more questions are selected, the smaller is the influence of
a single question on the position of the person’s icons. Fur-
thermore, too many person icons lead to clutter because of
overlapping icons. To select a suitable subset of parame-
ters, we have implemented a list-based overview visualiza-
tion.

The main aim of the visualization is to derive predic-
tors. In the following, different kinds of interactions are
explained to support that task.

4.2 Interactions with Gravi++
Gravi++’s main intention is to provide functionalities to get
new insights into the data, like finding clusters or similari-
ties in the movement over time. Furthermore, icons that are
drifting apart can give important clues regarding the data.
For this purpose Gravi++ provides a set of interactions.

All interactions can be classified in three categories: (1)
interactions on question’s icons, (2) interactions on per-
son’s icons, and (3) general interactions. In the following
these categories are explained in detail.

Interactions on Question’s Icons
• Add or remove a question.

• Change the position of a question: The position can be
changed either freely or arranged on a circle. Further-
more, the user can choose to evenly space the distance
between the questions on the circle. When changing
the position of the questions, the corresponding po-
sitions of the person’s icons change simultaneously.
With this feature the user can interactively change
the positions of the questions to find new clusters or
other interesting visual structures. The traces and the

Star Glyph also change their form automatically when
dragging a question around. This feature is called ’live
preview’.

• Change the influence of a question (see strengthj in
subsection 4.3): This enables the user to emphasize
the influence of a chosen question.

• Add complementary question: By executing this op-
tion on a question, a new question with complemen-
tary values is created.

• Highlighting a question: By highlighting a question,
only the highlighted question’s rings are shown. If no
question is highlighted, all rings are shown.

• Hide question icons: All question icons can be hidden
to reduce clutter and facilitate the analysis of traces or
the Star Glyph.

Interactions on Person’s Icons
• Add or remove a person’s icon.

• Change the parameter representing the sphere size:
You can map the parameters of a single question, the
power of attraction, or an increasing size over time to
the sphere size.

• Change the speed of movement: Adjust how fast the
person icons are moving to their destination.

• Hide person icons: All person icons can be hidden to
reduce clutter and facilitate the analysis of traces or
Star Glyphs.

• Show traces: The user has the option to show traces
ranging over all time steps or only a restricted subset.

General Interactions
• Save and load current settings and visualization: The

position of all elements and all settings can be saved
for later analysis or logging purpose.

• Show Star Glyph: The user can superimpose a Star
Glyph of the currently displayed data set to clarify the
actual values. The corners of the Star Glyph corre-
spond to the positions of the questions.

• Inverse Star Glyph: The edges of the Star Glyph are
painted either to the center of the visualization or out-
wards.

• Next and previous time step function: This changes
the time parameter to the next or previous one.

• Direct selection of time steps: The user can directly
choose the time step on a time line or in a list.

• Highlighting: Persons and questions can be high-
lighted.

• Show grid: The user may fade in a grid in the back-
ground. This helps judging distances and sizes.

4.3 Algorithm
As we explained the idea and concept of Gravi++ in sec-
tion 4.1, now we present the algorithm for positioning
the person’s icons. The force from each person i and
each question j for each axis (in our case for the x and
y axis) is xforcei =

∑n
j=0 strengthj · valueij · f(qx)
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Figure 3: Typical application case with Gravi++.

and yforcei =
∑n

j=0 strengthj · valueij · f(qy), where
strengthj stands for the manually set strength multipli-
cator of the question j (can be altered in the user inter-
face and ranges from 0 = no attraction to n = an arbitrary
value). valueij stands for the answer of person i to ques-
tion j. f(qx) and f(qy) stands for the attraction over the
distance for each axis. Currently, we use a linear function
that grows stronger over the distance: f(qx) = qxj − pxi,
f(qy) = qyj − pyi. Here qxj and qyj stand for the x, y
coordinates of the question j and pxi and pyi stand for the
x, y coordinates of the person i.

Now we can analytically solve the equations by substi-
tuting the force with zero (xforcei = 0 and yforcei = 0),
to find the final position for each person (pxi, pyi).

4.4 Implementation
Gravi++ was implemented as a prototype during the in2vis
project2. The prototype was implemented in Macromedia
Flash MX 2004 because of its rapid visual development
possibility.

The system consists of two visualizations that work
closely together. There is an overview visualization
(ListVis), to select a subset of a large data set. This subset
can then be analyzed with the main visualization Gravi++.
The data exchange between these two modules is imple-
mented by drag and drop. You can simply drag a person or
question to Gravi++ and explore it further. Both modules
support linking and brushing.

Gravi++ was implemented with different metaphors
which can be exchanged. In the first of the currently two
implemented metaphors the persons are symbolized by iron
spheres that are attracted by magnets standing for the ques-
tions. The circles around the magnets stand for the mag-

2Interactive Information Visualization: Exploring and Sup-
porting Human Reasoning Processes

netic fields and visualize the concrete answers. The second
metaphor shows the persons as people and maps the ques-
tions to paintings in an art exhibition. Here the metaphor is
explained by persons who are attracted by beautiful paint-
ings. The person moves closer to those paintings she likes.
The circles around the images stand for how much the per-
son likes the image or not. Other metaphors can be imple-
mented by exchanging the icons representing persons and
questions.

The persons are color-coded with twelve distinct colors
as Colin Ware proposed in [Ware, 2000]. To enable the user
to recognize icons that lie on top of each other, all icons
are drawn slightly transparent. To control the time steps, a
time line was implemented showing the current time step
and providing the “video-like” controls play, rewind, stop,
go to first/last frame, go to next/previous frame. Tool tips
give complete information on the data item pointed at with
the mouse.

In Figure 3 you can see a screenshot of a typical applica-
tion case.

5 Example: How to Find a Predictor
Predictors allow to assess the development of parameters
after a certain treatment step had been performed. There-
fore, we have to analyse the differences in the first answers
and compare them with the differences over all timesteps.
This can be done by watching the animations over time or
analysing the plotted traces of the persons’s icons. Further-
more, the change over all timesteps can also show some
sort of pattern that indicates a new predictor.

Experimenting sessions with our partners of the Depart-
ment of Child and Adolescent Neuropsychiatry identified
the following steps to find predictors. We will illustrate
these steps using an example of our dataset consisting of
nine patients and 73 questions in six time steps:
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Figure 4: The left-hand screenshot shows four questions and no discernable pattern in the traces. The right-hand screenshot
shows the same questions ordered differently with two easyly distinguishable clusters in the traces.

1. We choose the questionnaires ASW (inverted)3, BDI4,
MR EVA5, MR SOC6 and all persons from the
overview visualization and add them to Gravi++.

2. With the enabled option “Full Traces” we can analyse
the traced paths of the persons over time.

3. By moving around the questions we try to find clus-
ters of traces. In our example we have nine differ-
ent persons. They are color coded the following way:
The icons and traces with dark grey shades had not
a favourable outcome in the therapy. The icons and
traces with light grey shades had a positive therapy
progress. This means we have to find clusters of
evenly coloured traces.

4. By positioning MR EVA and MR SOC on the one side
and ASW (inverted) and BDI on the other side we
can build two clusters of light and dark traces. In the
left screenshot on Figure 4 you can see the four ques-
tions before positioning (with no identifyable cluster-
ing of the traces) and on the right screenshot after-
wards (with two identifyable clusters of light and dark
traces).

5. By moving through the timesteps we can see that the
randomly located persons in the first timestep, com-
pose two clusters in the second and all later timesteps.
Therefore, we can conclude that high values of BDI
and the inverted ASW after three months therapy pre-
dict a bad outcome of the therapy, whereas high values

3ASW: The Self-Efficacy Scale Index is a summary of the test
items assessing self-esteem and strategies to cope with difficult
situations independently.

4BDI: The Beck-Depression-Index describes the severity of
depression.

5MR EVA: The Marburg Inventory Index specifies the feeling
of pleasure in hedonistic behavior.

6MR SOC: The Sense of Coherence Scale Index indicates the
intensity of comprehensibility, manageability and meaningfulness
as the internal psychological mechanism mediating the effects of
external stressors and resources on psychological dysfunction.

of MR EVA and MR SOC predict a good outcome.
Furthermore, we verify this claim by watching the
movement over all remaining timesteps. In our exam-
ple the persons with a positive therapy outcome still
move further to the pole with MR EVA and the MR
SOC and the persons with a negative outcome to the
other pole. This means we can conclude that low BDI
values and high MR EVA, MR SOC, and ASW values
could be a predictor for a positive therapy outcome.
This is confirmed by the clinical impression that pa-
tients who repsond more rapidly to the primary ther-
apeutic goals (enjoying pleasure and being in a good
mood), have a better outcome.

6 Benefits and Limitations

The visual elements of Gravi++ use several advantages
from a cognitive perspective [K. Card, 1999]. Especially,
the interactive manipulation can help the user get new in-
sights through the data. This can be used to formulate and
test a hypothesis on the data e.g., to find a new predic-
tor. The combination of different visualization techniques,
like Star Glyph, traces, an overview visualization, and the
Gravi++ core itself increases the possibilities to find new
insights. What is special about Gravi++ is the combination
of these advantages and its orientation on medical data.

Nevertheless, some problems and shortcomings of
Gravi++ are still not solved. Incomplete data leads to in-
comparable person icon positions because there is no at-
traction from questions that were not answered. A solution
to this problem could be to use the value from the last time
step, to use an average value, or a default value. A restric-
tion of Gravi++ is the parameter space. Too many questions
lead to clutter and make the interactive change very diffi-
cult. The impact of one question on the person’s position
declines the more questions are shown. Furthermore, if too
many persons are analyzed, many icons would overlap and
it would be difficult to interact with the representation. The
values of the rings surrounding each question would be in-
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distinguishable. This happens because rings representing
the same value are not shown on top of each other but next
to each other. The solution for such situations ist to use
highlighting of subgroups for detailed exploration.

7 Conclusion and Future Work
We have presented an interactive InfoVis method, called
Gravi++, which addresses the particular features of ab-
stract, highly structured data which are acquired during
cognitive behavioral treatment (CBT) of anorexia ner-
vosa in adolescent girls. This data is difficult to explore
by descriptive and other statistical methods. Because of
Gravi++’s various visualization and interaction techniques
it is an appropriate method for finding new predictors in
the data. Our cooperating psychologists see various appli-
cation areas for this InfoVis technique within their clinical
study of anorexic girls.

A possible extension to Gravi++ could be an algorithm
that automatically positions the questions to find clusters of
persons.

In the next step we plan to integrate the results of an in-
depth user interface study with about 20 participants. Af-
terwards, a large number of subjects will be involved in a
study, that will compare Gravi++ with supervised machine
learning and exploratory data analysis to get new insights
on the impact on the human reasoning process.
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Abstract
The primary course of therapy for breast cancer 
patients, following surgery, depends on the
expected prognosis together with the key clinical 
indicators.  An interface for use by clinical
oncologists is proposed, which addresses three 
fundamental questions, namely; evidence that the 
currently used Nottingham Prognostic Index can 
be enhanced by additional clinical features,
prognostic inference for individual patients with 
quantified confidence levels, and visualisation of 
the patient database by clinical indicator of
adjuvant treatment. This interface is underpinned 
by detailed prognostic analysis validated through 
longitudinal cohort studies of mortality with 931 
TNM stage I/II patients recruited between 1990 
and 1993 at Christie Hospital, Wilmslow. The
data shown in the interface are Kaplan-Meier
curves from prognostic risk groups inferred by 
cross validation.

1. Introduction

The starting point for this paper is the commonly used 
clinical prognostic index for breast cancer, the
Nottingham Prognostic Index (NPI) [1]. While widely
applied to inform the choice of adjuvant therapy, advances 
in therapy, detection technologies and health policy, such 
as the introduction of breast cancer screening for women 
aged 50 and over in the UK, has skewed the patient 
population and has added potential prognostic indicators.
This study proposes an interface for clinical oncologists to 
show the added value of expanding the covariate basis for 
prognostic inference. It is important to note that the basis 
of our approach is to keep NPI and expand rather than 
replace current practice.

Furthermore, there is now an interest in
predictive inference of prognosis for individual patients, 
witness the web-based prognostic interface
www.Adjuvantonline.com [2].  This model is gaining
clinical support in part because it infers the potential effect 
of different treatment choices.  It also points towards a 
visualisation format that appears to be readily accepted by 
practicing clinicians.  However, the predictions made do 
not include confidence estimates, yet are likely subject to 
substantial uncertainties for particular groups of patients, 
notably in NPI group 3, which is known to be

heterogeneous in its composition.  Moreover, it is not 
clear that the development of this interface has followed 
the recommended staged process of the continuum of 
evidence, which is modelled on the development of
medicinal drugs and is intended to assure the accuracy and 
generalisability of clinical inferences [3-4].

In addition to prognostic inference, a previous 
study of the prevalence of adjuvant treatment, typically 
hormone therapy e.g. tamoxifen, chemotherapy, or both in 
combination, showed that the different treatments are
clustered primarily by key clinical important indicators of 
the likely response to treatment, namely oestrogen
receptor count, lymph nodes affected and menopausal 
status [5]. The proposed interface switches between
survival modelling and treatment allocation profiles.

In summary, there are two aspects of novelty 
presented, firstly a methodology for an individual
prediction of survival with confidence intervals using 
neural networks and Monte Carlo methods. Secondly,
implementing an interface that shows the added value of a 
new prognostic model over the current clinical standard 
prognostic model supported by a personal prognosis and 
data-based rules for treatment allocation.

The next section explains what the NPI is and 
how it was extended by modelling with additional
covariates using Cox regression with the proportionality 
of hazards’ assumption. This leads to the derivation of a 
cross-matching framework to discriminate between the
survival of patients in each NPI risk group.  Section 3 
summarises the derivation of prognostic models with
confidence intervals for individual patients, using Monte 
Carlo methods.  This is followed, in section 4, by a brief 
overview of the rule extraction algorithm used to explain 
treatment allocation. Finally, the interface is described in 
its entirety.

2. Extended prognostic indices of  survival

Survival analysis is an important field in medical statistics 
where the proportional hazard model [6], also known as 
Cox regression, is the most widely used method. 

The form of the Cox regression model is:

0
1

( ) exp
n

i i
i

h t xβ
=

 
  ∑ (1)
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where ho(t) is the baseline hazard function. ho(t)  is called 
the baseline function because when all the x variables are 
equal to zero the formula reduces to this form, hence the 
‘baseline’ of the model. ß are the coefficients of x, which 
are the explanatory variables.

Cox regression is a semi-parametric model that 
incorporates censored data, which arises when an
individual drops out of a study for reasons other than the 
event of interest, death due to breast cancer in this study. 
Omitting these data from a survival analysis can introduce 
significant bias to any results [7].

This forms the basis for a prognostic index that is 
clinically widely accepted, the Nottingham Prognostic
Index (NPI), which uses 3 variables identified as being 
significant in the prediction of survival, namely;
pathological size of tumour, histological grade of tumour
and the number of axillary nodes affected and requires a 
calculation in the form of a simple equation, which for a 
clinician makes it easy to use and understand.  In the case 
of NPI:

0.2*pathological size + histological grade + nodes involved (2)

From this index, using the log-rank statistic, patients are 
allocated into 4 prognostic risk groups, ranging from very 
good to poor, at cut-off points   < 2.41, < 3.41, < 5.41 and 
≥  5.41 respectively.

A further Cox regression model using six
variables; age, clinical stage nodes, histology, node ratio, 
pathological size and ER status has been developed from 
917 patients and validated on 931 patients from Christie 
Hospital near Manchester referred between 1983 – 89 and 
1990-93 respectively. The latter dataset, the validation 
group, showed that the NPI and the new Cox model
separated the patient profiles into prognostic groups with 
similar mean survival but with different risk group
allocation, where NPI could be calculated (559 patients).

By cross-matching the two prognostic indices we 
are able to examine survival for patient groups within each 
matrix cell using Kaplan-Meier (KM) estimated survival 
curves in figure 1, in order to discover heterogeneity in 
estimated survival for any of the models prognostic
groups. These differences in survival are an indication of 
the added value of cross-matching NPI with another
survival model that uses additional variables and are
providing supplementary information for prognosis.

This same idea of cross-tabulation can be
extended to a scatter-plot of the prognostic indices, which 
allows the patient to be identified within this framework 
figure 2 and therefore identify how borderline a patient 
may be to adjacent prognostic groups or cells.

3. Individual Prognostic Predictions with 
Confidence Intervals

In addition to the detailed analysis of the group in which a 
particular patient belongs, there is interest in predictive 
inference of prognosis for that individual patient. The
website http://www.adjuvantonline.com/  presents such

information but without confidence intervals, so the
uncertainties inherent in the prediction cannot be assessed. 
We present a method, using hazard predictions from a 
Partial Logistic Artificial Neural Network with Automatic 
Relevance Determination (PLANN-ARD) [8] and Monte 
Carlo methods, that give prognostic predictions with
confidence intervals for individual patients.

The PLANN-ARD model provides a prediction 
of smooth estimates of the discrete time hazard. It is 
implemented as a direct extension of the Multi-Layer
Perceptron (MLP) neural network applied as a discrete 
model of the hazard function. Using this MLP structure 
with time as an input we have
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Estimating the weights requires a likelihood term for the 
status of one patient at time tk, by using an indicator label 
0 if a patient is alive at time tk and a label 1 for the event 
of interest. This generic non-linear model is called the 
Partial Likelihood Artificial Neural Network (PLANN)
[9]. In contrast to a proportional hazards model [6],
PLANN does not require proportionality of the hazards 
over time and predicts a smooth hazard function.

At time ti the estimated summed weights to each 

output unit has a Gaussian distribution 2( , )i iN a σ [10].

The estimated hazard is calculated by the sigmoidal
activation:

1
( ) ( )

1 exp( )
i i

h t g a
a

= =
+ −

(4)

Once the network weights are estimated, the survivorship 
is calculated from the estimated discrete time hazard by 
multiplying the conditionals for survival over successive 
time intervals treated as independent events, this gives:

( ) ( )( )
1

1
k

k l
l

S t h t
=

= −∏ (5)

Estimating an individual prognosis for patient x we use 

Monte Carlo methods by taking a random sample ia~  from 
2( , )i iN a σ , calculate ( )i ih g a=! !  and finally estimate

survival ( )kS t! . Repeat these steps n times, enough to 

build up a distribution of survival estimates, as shown in 
figure 3. The personalised prognosis is the mean survival 
of the distribution with 95% confidence intervals
determined by omitting the upper and lower 2.5% of the 
sample estimates. 

The survival estimate can be presented as a
simple colour coded green, amber and red bar representing
probabilities of survival, with 95% confidence interval
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and death respectively to a particular time period of
interest, 5 years in this study figure 1.

4. Data-based Rules to Describe the Patient 
Allocations Made by the Analytical Risk 
Scores

In this paper the Orthogonal Search Rule Extraction
(OSRE) algorithm [11] is used to extract rules for the
treatment of the 559 patients in this study.
      The OSRE algorithm finds conjunctive rules for
classifications of data using a Multi-layer Perceptron 
(MLP), or any other smooth response surface, that has 
been trained to accurately predict the classifications of a 
dataset. A detailed account of the algorithm and the
mathematical framework that underpins it can be found in 
chapters 3 & 4 of [12].

In essence OSRE searches for changes in
response from an MLP, starting from each data point in 
turn in the data set and systematically searching in
orthogonal directions.  To demonstrate the algorithm we 
take a data set that has three variables and each variable 
has values ranging from 1 to 6. Figure 4 shows the data-
space and a surface boundary that separates the in and out 
of class data.  The arrows show the directions in which the 
algorithm searches for changes in the response of the 
surface. Notice that in the direction of the variable a1, 
there is no change in response from the surface.

The consequence of there being no change in 
response of the surface for a particular variable is that the 
variable does not feature in the set of conjunctive rules for 
this surface.  Figure 5 shows the ‘hyper-box’ that the 
algorithm generates for the data-point represented in 
figure 4. 
The rule generated from the ‘hyper-box’ is 

(a1 ≤  6) AND (a2 ≤  4) AND (a3 ≥  3)

or more simply, as a1 takes all possible values,

(a2 ≤  4) AND (a3 ≥  3).

This process is repeated for each data-point for which the 
surface predicts it to be in-class.  A set of rules the size of 
the number of data predicted in-class is generated. The
algorithm is enhanced with a refining method to reduce 
the number of explanatory rules conditional on
maintaining sensitivity and specificity values above
minimal acceptable thresholds [5].

5. Integrated Intelligent Interface for Breast 
Oncology

Combining all the elements described above enables us to 
present an integrated intelligent interface for clinicians. 
This is achieved with the cross-matching matrix where 
each column represents patients in prognostic risk groups
for the current standard NPI model, the rows representing 
the risk groups for the new prognostic prediction.  This 
can inform the clinician on a patient’s survival outcome 
(figure 1) as well as giving NPI survival estimates with 
extended survival predictions for sub-groups within the 
cross-tabulation matrix. This allows the clinician to assess 
heterogeneity in survival within a prognostic risk group. 
Presenting a new model as an extension of NPI enables 
clinicians to relate to their own reasoning model, where
the use of the current prognostic group allocation assists 
as an indicator for choice of therapy [13]. In addition the 
bar graphic above the cross-matching matrix presents the 
individual prognosis with 95% confidence intervals

Figure 5. The OSRE algorithm generates a
‘hyper-box’ from which conjunctive rules are 
found.

Figure 3. Distribution from 1000 iterations of
estimated survival for an individual patient with 
mean survival and 95% confidence intervals
indicated in red

Figure 4. OSRE searching for changes in 
response in orthogonal directions.
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Abstract
Clinical practice guidelines (CPGs) are increas-
ingly common in clinical medicine for prescrib-
ing a set of rules that a physician should fol-
low. Recent interest is in accurate retrieval of
CPGs at the point of care. Examples are the
CPGs digital libraries National Guideline Clear-
inghouse (NGC) or Vaidurya (DeGeL), which
are organized along predefined concept hierar-
chies, like MeSH and UMLS. In this case, both
browsing and concept-based search can be ap-
plied. Mandatory step in enabling both ways to
CPGs retrieval is manual classification of CPGs
along the concepts hierarchy. This task is ex-
tremely time consuming. Supervised learning
approaches, where a classifier is trained based on
a meaningful set of labeled examples is not a sat-
isfying solution, because usually too few or no
CPGs are provided as training set for each class.
In this paper we present how to apply the Tax-
SOM model for multi-classification. TaxSOM
is an unsupervised technique that supports the
physician in the classification of CPGs along the
concepts hierarchy, even when no labeled ex-
amples are available. This model exploits lexi-
cal and topological information on the hierarchy
to elaborate a classification hypothesis for any
given CPG. We argue that such a kind of unsu-
pervised classification can support a physician to
classify CPGs by recommending the most prob-
able classes. An experimental evaluation on var-
ious concept hierarchies with hundreds of CPGs
and categories provides the empirical evidence of
the proposed technique.

1 Introduction
Clinical practice guidelines (CPGs) are an increasingly
common and important format in clinical medicine for pre-
scribing a set of rules and policies that a physician should
follow. According to studies, clinical guidelines improve
medical practice. They improve the quality (and possibly
also the cost-efficiency) of care in an increasingly complex
health care environment [Grimshaw and Russel, 1993]. It
would be best if automated support could be offered to
guideline-based care at the point of care.

To support tasks such as the run-time application of a
guideline, it is often important to be able to quickly retrieve
a set of guidelines most appropriate for a particular patient
or task. Correctly classifying the guidelines, along as many
semantic categories as relevant (e.g., therapy modes, disor-
der types, sighs and symptoms), supports easier and more
accurate retrieval of the relevant guidelines using concept
based search. This approach is implemented in Vaidurya
– a concept based and context sensitive search engine for
clinical guidelines [Moskovitch et al., 2004], which is the
search engine of the Digital Electronic GuidelinE Library
(DeGeL). Electronic CPG repository, such as the National
Guideline Clearinghouse (NGC) provide a hierarchical ac-
cess to electronic CPGs in a free-text or semi-structured
format (see <http://www.ngc.org>).

The construction of such concept hierarchies and the
consequent classification of CPGs along the provided con-
cepts is usually committed to physicians that in the follow-
ing of this paper will be also referred to as “taxonomy ed-
itors”. This classification, however, is mostly manual and
extremely time consuming. Thus, an automatic process
where CPGs are classified automatically along the concepts
hierarchy is crucial, while very challenging.

The main aim of this paper is to provide a tool that assists
the domain expert (physician), who classifies the CPGs.
The idea is that whenever the physician needs to classify
a set of CPGs, the tool provides recommendations on the
most probable classes for each CPG. In particular, the tool
is specially suited to help the physician when concept hi-
erarchy is built from scratch, and no examples of labeled
CPGs are provided for each class. In this case there is not
any premise for a successful training of any existing super-
vised classifier, therefore, recommendations can be given
only using an unsupervised model. We refer this task to as
the bootstrapping problem [McCallum and Nigam, 1999;
Adami et al., 2003a]. Then, once the physician is provided
with the set of recommended classes for each CPG she can
select the most appropriate.

The interesting part of this approach is that while the
physician manufactures the concept hierarchy she also in-
serts some prior knowledge on the desired organization of
data. Actually, each new concept added to the hierarchy is
usually labeled by a few keywords describing the supposed
semantic meaning of its content. Moreover, the concept
is related to other concepts (more specific, more general,
related to, etc.). This prior knowledge is exploited by the
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proposed model in order to perform a preliminary classifi-
cation of CPGs according to their contents and the desired
organization within the hierarchy.

The evaluation of the proposed approach has been per-
formed on a set of real data selected from the above men-
tioned NGC database. The promising results showed that
the approach can be valuable in order to create and populate
new electronic hierarchical repositories of CPGs.

In Section 2 some research works related to medical
knowledge management are discussed. Section 3 gives a
description of the addressed task with some references to
works aiming at solving similar problems. Section 4 intro-
duces the model used to test the proposed solution. Sec-
tion 5 describes the experimental setup. Finally, Sections 6
and 7 discuss the results of experiments and draw some
conclusions respectively.

2 Related Works
Traditional text retrieval systems use the “vector space
model” in which terms are extracted from the document
and represented by either their term frequency as a bag-
of-words or their term presence/absence as a set-of-words.
The limitation of this approach is that humans search using
concepts instead of terms. In the medical domain, concept-
based search refers to a text retrieval approach where the
documents are mapped to concepts based on their contents.
SAPHIRE system [Hersh and Greens, 1989], for exam-
ple, uses an approach in which concepts used for indexing
are automatically extracted from the document. Actually,
within biomedical domains, documents and queries are of-
ten mapped into a large vocabulary such as MeSH (see
<http://www.nlm.nih.gov/mesh>) or UMLS [Humphreys
and Lindberg, 1993], which is one of the major resources
offered by the National Library of Medicine. The concepts
in these vocabularies are represented in a hierarchical struc-
ture. This approach is somewhat limited, since users aren’t
always familiar, while querying, with the concepts in these
vocabularies. Moreover, several studies had shown that
such implementation of concept-based search might actu-
ally decrease the retrieval performance [Hersh and Hickam,
1993], mainly because there are no good automatic concept
extractors.

This hierarchical organization of documents, also allows
browsing through the concepts using the hierarchical struc-
ture. Such a browsing method forces the user to navi-
gate the conceptual hierarchical structure. Alternatively, in
these directories, searches can be limited to a specific con-
cept and its sub-concept contents. However, in the medical
domain documents are usually classified by a multitude of
concepts, often as many as a dozen or even tens of con-
cepts.

An example of solution to this problem is provided by
Vaidurya, a concept based and context sensitive search en-
gine for clinical guidelines [Moskovitch et al., 2004]. This
engine implements a concept based search where the user
has to choose few concepts and the logic relation between
them. In his query the user defines a relevant subset of the
collection, based on the conceptual indexing.

Recent results had shown that searching within a hierar-
chical concepts indexing improved full text retrieval, even

at the first and second level of the hierarchy, especially
when using conjunctive queries [Moskovitch and Shahar,
2004]. However, in order to implement an accurate con-
cept based search manual classification should be applied
by an expert, a very time consuming task. Thus, an auto-
matic hierarchical classifier for clinical guidelines is cru-
cial. At least it can help during the manual classification
recommending the most probable concepts to be assigned
to the documents.

3 Task Definition
A concept hierarchy (also referred to as taxonomy) is a
hierarchy of categories (also referred to as classes) which
are represented as nodes in a tree. Each node is described
in terms of both linguistic keywords (also referred to as
labels) that ideally denote the “semantic meaning” of the
nodes, and relationships with other categories. The leaves
of the tree represent specific concepts, while nodes near the
root of the tree represent more general concepts. In our par-
ticular task, each node of the hierarchy can contain CPGs
and, in general, each CPG can belong to more than one
category.

Annotation of document to classes is a typical task in
information retrieval. The goal here is to identify the set
of categories that best describe the content of an unclas-
sified CPG. A wide range of statistical and machine learn-
ing techniques have been applied to text categorization (see
for example [Ceci and Malerba, 2003; Chakrabarti et al.,
1997; Cheng et al., 2001; Doan et al., 2003; Dumais and
Chen, 2000; Joachims, 1998; Jordan and Jacobs, 1994;
Koller and Sahami, 1997; Ruiz and Srinivasan, 2002;
Sun and Lim, 2001; Wang et al., 1999; Weigend et al.,
1999]). However, none of the above models can be used to
solve the proposed task. Actually, these techniques are all
based on having some initial pre-labeled documents, which
are used to train a (semi)-supervised model. Moreover, Al-
though many real world classification systems have com-
plex hierarchical structure, few learning methods capitalize
on this structure. Most of the approaches above ignore the
hierarchical structure and treat each category or class sep-
arately, thus in effect ’flattening’ the hierarchical structure.
In the case this hierarchical structure is kept the models
only classify on the leaves of the structure.

These problems are partially solved by the way we use
the TaxSOM model [Adami et al., 2003b]. The model uses
the prior knowledge to drive a clustering process and, as a
result, it organizes the CPGs on a given concept hierarchy
without any need of supervision during training. Basically,
the model bootstraps the given taxonomy with a prelimi-
nary classification of CPGs that afterward need to be re-
viewed by the taxonomy editor.

The basic idea of the bootstrapping process is to sup-
port and alleviate the manual labeling of a set of unlabeled
examples, providing the user with an automatically deter-
mined preliminary hypothesis of classification. The idea is
to exploit the linguistic and the relational information en-
coded within a taxonomy through an unsupervised learning
model. The paper illustrates how TaxSOM can be used to
learn the prior knowledge encoded within a concept hier-
archy in order to perform this preliminary classification of
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CPGs.
In particular, the task goal is to provide the user with a

list of recommended classes for each CPG, i.e., the most
probable k classes to which the CPG could belong.

4 Classification Models
A strategy to classify documents using prior knowledge is
proposed by Yang [Yang, 1994]. Unlabeled documents are
classified according to the lexical information associated to
the categories. Specifically, a reference vector is built for
each category, through the encoding of its labels. The doc-
uments are then associated to the category having the near-
est reference vector (a standard prototype–based minimum
error classifier). In the following, this simple class of key-
word matching algorithms will be referred to as baseline
categorization approach.

This classification method uses only lexical information,
while topological information is neglected. To also use the
hierarchical information we revised the baseline model ac-
cording our scenario. Specifically, hierarchical knowledge
was exploited building codebooks through the encoding of
all labels in the current node and in all its ancestors, i.e., all
labels of the nodes in the path from the root to the current
node.

The above idea has been developed even more in the
TaxSOM model [Adami et al., 2003b]. Specifically, a Tax-
SOM is a collection of computational units connected so
as to form a graph having the shape isomorphic to a given
taxonomy. Such computational units, namely codebooks,
are initialized as for baseline. Then an unsupervised train-
ing algorithm (similarly to Self Organizing Maps [Koho-
nen, 2001]) adapts these codebooks in order to take into
account both the documents similarity and the constraints
determined by the labels and the relationships. The basic
idea is that once a TaxSOM has been properly trained the
final configuration of the codebooks describes a clustered
organization of documents that tailors the desired relation-
ships between concepts.

The learning procedure of a TaxSOM is designed as an
iterative process that can be divided into two main stages:
a competitive step and a cooperative step. During compet-
itive step the codebook most similar to the current input
vector (a document) is chosen as the winner unit. In the
cooperative stage all codebooks are moved closer to the in-
put vector, with a learning rate proportional to the inverse
of their topological distance from the winner unit. The it-
erations of the two steps are interleaved with an additional
phase where the codebooks are constrained by the a priori
lexical knowledge localized on the nodes.

5 Experimental Setup
We used the NGC CPGs collection to evaluate the sug-
gested approach. The CPGs in the NGC hierarchy are clas-
sified along two hierarchical concept trees, Disorders and
Therapies. Each concepts tree has roughly 1,000 unique
concepts, in some regions the concepts trees are 10 lev-
els deep, but the mean is 4 to 6 levels. There are 1136
CPGs, each CPG may have multiple classifications at dif-
ferent nodes by both concept trees and within the same tree.
The classification is not necessary only on the leaves. CPGs

Disease Condition Treatment Intervention

Therapeutic Devices Analytical
Diagnostic Techniques

Diagnosis

Surgical Operative Procedures

Therapeutics

Amp Drugs Chemicals

Organic Chemicals

Neoplasms

Diseases

System Diseases Nervous

Virus Diseases

Pathological Symptoms
Conditions Signs

Figure 1: The eight selected taxonomies are sub-
taxonomies of the two original concept hierarchies. Specif-
ically, the eight leaves in the above two trees (dark bordered
boxes).

have a mean of 10 classifications, while there exist CPGs
classified by 90 concepts.

To evaluate the model with a plurality of datasets, we
decided to split down the two original dataset (“treatment
intervention” and “disease condition”) into eight smaller
and different datasets (see Figure 1). These datasets were
selected according to dimensional criteria decided in the
beginning of our testing process – their depth (i.e., how far
the leaves are from their root), the number of nodes and the
number of CPGs. The variability of both topics and dimen-
sions allows the evaluation of the model without biases due
to any prior knowledge, such as topic vocabulary, dimen-
sion of taxonomy, number of classes for each CPG, etc.

Table 1 summarizes the statistics of the selected tax-
onomies. It can be seen that the depth of the hierarchies
ranges from 5 to 9 layers, with few hundreds nodes. While
the number of CPGs range from hundreds to thousand.
More interestingly, many nodes are not represented by any
CPG, therefore, supervised classifiers cannot be learnt on
these datasets. The main characteristic of such datasets
is that usually the leaves are not empty, while the inte-
rior nodes (i.e., nodes that appear as parent of other nodes)
many times are empty (sometimes more that 50% of times).

Each taxonomy was preprocessed separately. The con-
tent of documents and the category labels were cleaned
removing stop–words (articles, conjunctions, and preposi-
tions) and reducing the vocabulary (i.e., the vector space
representation) to 500 important keywords plus the labels
of nodes. The important keywords were selected using the
notion of Shannon Entropy1. Finally, CPG contents were
encoded with a set–of–words representation (i.e., binary
vectors).

As previously outlined, since to our knowledge there are
not models devised to solve the proposed bootstrapping
problem, we compared TaxSOM with the simple approach
based on keyword matching refer to as baseline.

The model was tested on each taxonomy performing
an hypothesis of classification for all CPGs, and the re-
sults were then compared with the original labeling. Ac-
tually, the addressed task requires the multi-classification
of CPGs, therefore, given a CPG, both models generate a
membership value for each class. These membership val-

1Shannon entropy is a standard information theoretic approach
that can be used to measure the amount of information provided
by the presence of a word in the dataset.
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taxonomies
diagnosis neoplasms organic pathol. surgical system therap. virus

chem. sympt. operat. diseases
cond. proced. nervous

statistics signs

max tree depth 7 8 9 8 5 7 6 6
tot nodes 278 230 326 214 210 318 247 124
tot docs 1248 501 367 516 396 606 929 432
min docs/node 0 0 0 0 0 0 0 0
max docs/node 20 20 20 20 16 20 20 20
average docs/node 4.49 2.18 1.13 2.41 1.89 1.91 3.76 3.48
min w/doc 52 66 40 563 582 587 571 704
max w/doc 463 387 444 5132 5050 5726 6074 10599
average w/doc 218 223 232 1633 1378 1573 1707 261
docs on leaves 67% 63% 85% 62% 67% 66% 66% 61%
% of leaves 66% 55% 48% 62% 68% 56% 63% 52%
empty nodes 14% 23% 46% 21% 15% 25% 10% 30%
empty leaves 1% 3% 6% 4% 5% 9% 0% 0%
empty interiors 39% 46% 84% 50% 35% 46% 26% 64%

Table 1: Statistics of the selected concept hierarchies. The first group of rows describe the trees’ dimension. The second
group describes the datasets’ dimension. The third group the documents’ dimension. While the last two groups of rows
describe respectively the distribution of CPGs in the hierarchies.

ues are then used to rank the classes, and this ranking is
then used to select the best classes to recommend to the
user. To evaluate the proposed two models we devised a
specific measure – the multi-classification k-coverage pre-
cision. This measure allows a comparison of models rather
than an objective evaluation.

The measure counts the percentage of CPGs “correctly”
classified with respect to the total number of CPGs. The
meaning of k-coverage is strongly related to the definition
of “correct classification”. In this case, a document is cor-
rectly classified when all the classes to which it belong are
in the first k recommended classes. The idea is that the
system provide the user with a set of probable classes with
which to label a give CPG. If all the interesting classes are
among the recommended k then the document is correctly
classified.

For example, suppose we know that a CPG should be
classified to three specific classes. If the model proposes all
the three classes among the k recommended, then the docu-
ment is considered correctly classified. If, on the contrary,
the model fail to propose at least one of the three classes
in the recommended k classes then the CPG is considered
wrongly classified.

For example, a model having k-coverage equal to 60%

for k = 10 means that for 60% of the documents all the
corresponding correct classes appear in the first ten ranked
classes.

6 Discussion of Results

The evaluation of the proposed model has been performed
on all 8 smaller taxonomies and the two original tax-
onomies determining the k-coverage for all possible ks. In
Figure 2 are depicted the graphs of the k-coverage for all
ks for all the eight smaller taxonomies. It can be easily
seen that for almost all reasonable ks the proposed TaxSOM
model always outperform the baseline approach.

Actually, providing the best k ranked classes for each
CPG (where k should be reasonable small to be explored
by the physician) the probability of finding all the correct
classes is higher for TaxSOM than for baseline. This means

k-coverage
baseline TaxSOM

taxonomies k = 10 k = 20 k = 10% k = 10 k = 20 k = 10%

diagnosis 11.3 23.3 30.9 (28) 32.9 46.8 55.9 (28)
neoplasms 38.2 46.2 48.1 (23) 47.2 63.7 67.5 (23)
organic chem. 60.7 71.0 79.3 (33) 73.1 80.0 81.4 (33)
pathol. sympt. 42.8 55.4 56.8 (21) 64.2 76.5 77.9 (21)
surgical op. 44.1 70.4 72.0 (21) 68.8 76.9 78.0 (21)
system dis. 26.1 38.9 50.0 (32) 53.5 71.2 79.6 (32)
therapeutics 23.9 39.2 40.9 (25) 52.5 69.0 73.4 (25)
virus diseases 27.5 48.9 30.5 (12) 58.0 72.5 59.5 (12)
disease cond. 8.0 14.0 55.3 (283) 21.6 34.7 80.0 (283)
treatment int. 3.9 5.9 38.3 (299) 11.2 20.0 57.0 (299)

Table 2: Results of baseline and TaxSOM k-coverage with
three different values for k.

that the recommendations made by TaxSOM are “more cor-
rect” than those made by the baseline approach. Notice
that the curves sometimes intersect with high values of k.
In this case, however, the result is less interesting. In fact,
the system is used to recommend the best classes, and the
number of suggested classes should be as small as possi-
ble. Actually, in a real task, what we can expect from such
a system is that for each CPG few classes are recommended
as probable labeling classes for the given CPG.

In Table 2 are shown the results for three different situ-
ations: (i) a case where the system suggest a selection of
10 possible classes; (ii) a case where the system suggest a
selection of 20 classes; (iii) a case where the system select
the 10% most probable classes among all classes. For all
the three cases and for all taxonomies it is always valuable
to use TaxSOM driven by the prior knowledge encoded in
the taxonomy than just using baseline which only uses the
keywords that best represent the concepts.

In the table we also provided the results of the same
type of analysis done for the original two NGC hierarchies.
From these results it can be seen that the behavior of the
models is (obviously) influenced by the absolute number
of classes in the hierarchy. Nonetheless, TaxSOM is still
better that the baseline approach. Moreover, looking at the
results of the third case (i.e. k = 10%) the model still give
interesting results also for the two big hierarchies.
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7 Conclusions and Future Work
In the paper we presented an approach for helping physi-
cians to organize CPGs into hierarchies of concepts. The
challenge was twofold: to avoid the need for labeled doc-
uments in advance and to exploit relational knowledge en-
coded by a taxonomy. Experimental evaluation on a collec-
tion of CPGs gave the empirical evidence of the potential
benefit for physicians while using the proposed model.
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derived by using an Artificial Neural Network with Monte 
Carlo methods as described in section 3.

By replacing survival estimates with a scatter-
plot of prognostic scores for each prognostic model
(figure 2), we can examine whether a particular patient is 
borderline between cells in the matrix as the cross-
tabulation matrix is placed over the cut-off points for 
prognostic group scores. In addition, a patient’s TNM 
stage (a commonly used prognostic model) is highlighted 
by colour coding the data points, this shows the wide 
scatter of the TNM stage across the map, thus providing 
another level of insight to the clinician. 

This information is also supported by empirically 
derived rules using the rule extraction method, OSRE,
described in section 4, this informs the clinician about the
treatment given to similar patient groups and presents the 
rules derived from the data for the treatment received by 
this group.

With all elements combined an intelligent
interface is presented to the clinician, by expanding NPI 
into a matrix, maintaining their current knowledge of
survival expectation and treatment allocation for patient 
groups while showing the difference additional
information has on sub-groups of patients survival
prognosis. It also informs on patient cases that may be 
borderline between prognostic groups. Additionally, it 
provides an individual prognosis of survival to 5 years 
with 95% confidence intervals and presents a Boolean 
expression of group characteristics for treatment derived 
from evidence in historical data.

6. Conclusion

An interface for breast oncology is proposed, which shows 
the value of additional covariates in discriminating
patients by mortality risk. The interface starts from a
currently used clinical index, NPI, and extends this to 
include a cross-matching matrix of grouped survival
curves and the position a patient resides within the matrix, 
complemented with individual prognostic predictions
qualified with predicted confidence intervals, additionally 
treatment allocation is explained by data-based rules.
These data in combination add significantly to the
discriminatory information currently available to
clinicians about prognostic risk and allocation of adjuvant 
treatment.

This complex information is presented in a
format designed to match the clinician's own reasoning.
Further work is now required to evaluate the clinical
acceptance of the proposed methodology.
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Figure 2: The graphs depict the k-coverage precision for all eight datasets.
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Abstract

When trying to solve two medical decision prob-
lems we have encountered several difficulties:
how to represent and operate with decomposable
utility functions, how to calibrate our human ex-
perts and explain them the “reasoning” of our in-
fluence diagrams, and how to deal with partially
ordered decisions. This paper describes these dif-
ficulties and the solutions we have adopted.

1 Introduction

One of the medical problems we are currently working
on is the mediastinal staging of non-small cell lung can-
cer. There are several tests available, such as computed to-
mography scan (CT scan), transbronchial needle aspiration
(TBNA), mediastinoscopy (MED) and others, which have
different characteristics of sensitivity, specificity, morbidity
and mortality. The other problem on which we are working
is the management of mild head injury.

Influence diagrams are a framework which serves as an
effective modeling tool for decision problems. An influ-
ence diagram (ID) [3], consists of a directed acyclic graph
having three kinds of nodes: decision (graphically repre-
sented by squares or rectangles), chance (circles or ovals),
and utilities (diamonds). Each decision node represents to
actions under the direct control of the decision maker. Each
chance node represents a random variable. In medical IDs,
utility nodes represent medical outcomes and costs (mor-
bidity, mortality, economic cost...).

The quantitative information that defines an ID is given
by assigning to each chance node Xi a probability distrib-
ution p(Xi|pa(Xi)), where pa(Xi) represents the parents
of the node Xi in the graph, and assigning to the utility
node U a function ψ(pa(U)). The objective of the evalua-
tion of an influence diagram is obtaining a policy for each
decision, which prescribes a set of optimal actions for the
decision maker. The policy for each decision is a function
of the variables that are known when the decision is made.

∗This research has been supported by the Spanish Ministry of
Science and Technology under grant TIC-2001-2973-C05-04.

2 Limitations of influence diagrams for
medical decision problems

This section describes the difficulties we have found when
building those IDs and how we have extended Elvira to
cope with them. Elvira1 is a Java tool to construct prob-
abilistic decision support systems. Elvira works with
Bayesian networks (BN) and influence diagrams and it can
operate with discrete and continuous variables. It has an
easy Graphical User Interface (GUI) for constructing BNs
and IDs.

2.1 Decomposable utilities

An essential component of an influence diagram is the util-
ity function. In its original formulation [3], each ID had
only one utility node, which entails several disadvantages.
First, the human expert has to assess more parameters. Sec-
ond, the bigger the utility function the more time and mem-
ory space is required for the computational evaluation of
the ID. Third, policies tend to include more variables than
when using decomposable utility functions.

In order to overcome these shortcomings, Tatman and
Shachter [5] introduced a new kind of utility node, called
super-value nodes, which represent a function of their par-
ents’ utilities, and proposed an algorithm for evaluating
such generalized IDs.

The first limitation we encountered when building our
medical IDs is that current software tools do not admit
super-value nodes. At most, they accept several utility
nodes under the assumption that the global utility is the sum
of all of them. For this reason, we extended Elvira’s GUI
and format so that it could cope with super-value nodes.
Figure 1 shows the current version of our ID for mediasti-
nal staging. The three rectangles represent the decisions:
one of them represents the decision of performing a TBNA
or not, the second represents the decision about perform-
ing a mediastinoscopy, and the third represents the decision
about the treatment, which can be thoracotomy, radiother-
apy, chemotherapy, or palliative care. Rounded rectangles
represent chance variables: one is the main diagnosis (N2-
N3), three are tests, and the forth indicates whether the pa-
tient survives the mediastinoscopy. At the bottom, there
are seven utility nodes; two of them are super-value nodes,
which indicates a decomposition of the utility function.

1See http://www.ia.uned.es/˜elvira and [1].
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Figure 1: Explanation for a medical decision problem in
Elvira

Furthermore, we realized that the algorithm of Tatman
and Shachter was unsatisfactory because it is based on arc
reversal, an operation that involves inefficient divisions of
potentials and often introduces unnecessary variables in the
resulting policies. For this reason, we developed a new al-
gorithm which is in general more efficient and does not tend
to introduce so many unnecessary variables in the policies
[4].

2.2 Explanation in influence diagrams
One of the key factors for the acceptance of expert systems
in real world domains and especially in medicine is the ca-
pability to explain their reasoning. For this reason we have
extended Elvira’s explanation facilities from Bayesian net-
works to IDs. In addition to showing the resulting policies
by opening a window for each decision, Elvira can also dis-
play numerical and graphical information inside each node
(see Figure 1): horizontal bars inside the nodes represent
the probability that a chance variable takes on a certain
value, the probability that the decision maker chooses a
certain action for a decision,2 or the expected utility for
a utility node.

In Elvira it is possible to assign values to chance and de-
cision variables in the same way as evidence is assigned to
the corresponding nodes of a Bayesian network. It is also
possible to show several “evidence cases”, i.e., the prob-
abilities and utilities for several subpopulations. For in-
stance, Figure 1 shows two horizontal bars for each value
of a chance or decision variable and for each utility node,
thus comparing the situation in which we know the patient
belongs to the N2-N3 positive group with the situation in
which we have not any previous information. Please note
that the node Total Expected Utility shows the global util-

2Policies are deterministic functions, but it makes sense to
speak of the probability of an action because decisions are based
on chance variables.

ity, while other utility nodes, such as Survivors Quality of
Life, represent partial utilities.

2.3 Order of decisions
The traditional definition of the influence diagrams assume
that there is an order between decisions. However, in some
medical problems the question is just which tests should be
performed and in what order. For example, in the mediasti-
nal staging problem, we may wonder what is the best order
among the three tests, CT scan, MED and TBNA.

Several representations of decision problems have been
proposed in order to let have a partial order between de-
cisions (see [2] and references therein). The task of find-
ing the best order is performed by the evaluation algorithm.
The aim of these representations is representing and solv-
ing asymmetric decision problems. However, they tend
to obscure the structure of the medical decision problems,
because they are too general and do not consider the spe-
cific characteristics of the medical decision problems. This
makes more difficult any kind of explanation of the reason-
ing and less efficient the evaluation of the decision prob-
lem.

For this reason we are currently exploring new represen-
tational schemes that will lead to more simple and intuitive
influence diagrams, and in turn would require new algo-
rithms for their evaluation.

3 Conclusion
In this paper we have discussed the shortcomings of in-
fluence diagrams for solving real-world problems in medi-
cine, as well as the limitations of some of the current algo-
rithms and software packages. We have also shown some
of our current efforts aimed at having more efficient repre-
sentation schemes, algorithms and software tools.
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