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Abstract

Problems with modeling survival outcome arise
when this outcome is censored informatively.
Dichotomization of the survival outcome is a
possible solution for this problem. However,
no consensus exists on the threshold selection
procedure. This paper argues that the thresh-
old should be selected in a structured fash-
ion. It presents a dichotomization method that
builds on the notion of separability of outcome
classes, which is quantified in term of the Bayes
error rate. The approach is applied on the
problem of predicting length-of-stay at the in-
tensive care unit.

1 Introduction

A possible approach to building a prognostic model for
survival outcomes, such as time until death and length
of hospitalization, is by conducting survival analysis [9]
in the form of developing a Cox proportional hazards
model [7]. However, when the outcome is censored by
an event that is strongly related to the survival time
itself, which is, for instance, the case when length of
hospitalization is censored by death, the standard Cox
model is not suitable: this informative censoring can
lead to parameter estimates that are seriously biased
and false predictions [1].

A solution for modeling this type of survival outcome
is dichotomization of the variable; this reduces the pre-
diction problem to a classification problem with two
categories allocating all censored cases to the worst out-
come class. The loss of information in the outcome vari-
able may be compensated for by increased possibilities
to build a reliable prognostic model.

The dichotomization of survival variables is frequently
applied in medical prediction problems [12; 13; 14].
However, the method of dichotomization is often ad
hoc (e.g. based on the 95% percentile) when no clin-
ical knowledge is available to do so. This is unfortunate
as suboptimal threshold selection can lead to low accu-
racy of the prognostic model that is developed for the
dichotomized outcome and to restricted insight into the
structure of the prediction problem. In this paper, we
argue that threshold selection should be conducted in a
structured fashion, and be based on the available data

as much as possible. We present two structured meth-
ods to select the threshold for dichotomization, based on
separability [10] of the resulting outcome classes which
is quantified in terms of the Bayes error rate [2].

The paper is organized as follows. Section 2 describes
methods to dichotomize based on separability measure-
ment. These methods are applied to the problem of pre-
dicting length of stay in the intensive care unit (ICU) in
Section 3. We discuss the results in Section 4.

2 Separability measurement

The degree of difficulty of a classification problem de-
pends on how well the outcome classes can be sepa-
rated from each other. The concept of class separability
stems from Bayesian decision theory [2]. First, we will
introduce some notation. Let the two classes of the di-
chotomized outcome variable be denoted by ω1 and ω2

and let P (ωj) denote the prior probability of class ωj ,
j = 1, 2. Furthermore, let p(x) denote the probability
density function, and let a class-conditional probability
be denoted by P (ωj |x), where x is a covariate vector
with k different features x1, · · · , xk.

2.1 Bayes error rate
In Bayesian decision theory, the task is to design a de-
cision rule that assigns a class to a given object x. For
minimizing the probability of error, the Bayes decision
rule says: Decide ω1 if P (ω1 |x) > P (ω2 |x); otherwise
decide ω2. Under this rule, the probability of misclassi-
fying x becomes

PBayes(error |x) = min{P (ω1 |x), P (ω2 |x)}. (1)
The Bayes error rate (BER) is defined as

P ∗ =
∫

PBayes(error |x)p(x) dx, (2)

and provides a lower bound on the error rate that may
be achieved by any decision rule [8]. If P ∗ = 0, then
the two classes are completely separable; higher values
represent increasing inseparability of the classes, and
indicate that we are dealing with increasingly difficult
problems. Therefore, assessing the BER for outcomes
dichotomized using different thresholds can be used to
select the threshold that best separates the outcome
classes.

In practice, the assessment of the BER is hindered
because not all probability values that are relevant to



the problem are known, but need to be estimated from
a finite sample. Furthermore, even if these probabilities
are known, full calculation of the BER requires the com-
puting of a k -fold, multiple integral. Below, we describe
two approaches to solve these problems by approximat-
ing the BER.

2.2 Approximation of upper bounds
The first approach to overcome difficulties related to
BER assessment is based on deriving upper bounds of
the BER. We discuss three theoretical upper bounds of
the right-hand side of Equation 2 and describe how they
are computed in practice.

The first upper bound is derived by simply neglecting
all information from the covariate vector x and focusing
on the prior probabilities of both outcome classes. This
results in the decision rule ‘Decide ω1 if P (ω1) > P (ω2);
otherwise decide ω2’, which has an associated error rate
of

P ∗prior = min{P (ω1), P (ω2)}. (3)
It is easily verified that P ∗ ≤ P ∗prior. Furthermore, it
can be proved that P ∗ = P ∗prior in case of highly unbal-
anced prediction problems (i.e. one of the prior proba-
bilities P (ω1) and P (ω2) is very small). In practice, the
prior probabilities can be estimated reliably from a rel-
atively small number of observations. The bound P ∗prior
is therefore simple and reliable, but probably not very
effective when much information resides in the covariate
vector x.

More sophisticated upper bounds are obtained by the
methods of H. Chernoff [5] and A. Bhattacharyya [3],
for which the assumption is made that the observations
are drawn from class-conditional normal densities. The
Chernoff bound has the form

P ∗Cher. = P β(ω1)P 1−β(ω2)e−k(β) (4)
for 0 ≤ β ≤ 1 where

k(β) =
β(1− β)

2
α +

1
2

ln
|βΣ1 + (1− β)Σ2|
|Σ1|β |Σ2|1−β

and
α = (µ2 − µ1)

t[βΣ1 + (1− β)Σ2]−1(µ2 − µ1).
In this equation, µj and Σj are respectively the mean
vector and the covariance matrix of x for class ωj . To
compute the Chernoff bound on P ∗, we have to choose
the parameter β such that e−k(β) is minimal, and sub-
stitute the results in Equation 4. The proper value for
β is easily found by numerical optimization.

A computationally simpler but slightly less tight
bound can be derived by simply setting β = 0.5. This
is called the Bhattacharyya bound. This bound can be
used instead of the Chernoff bound when the majority of
class separation comes from differences in class means
and (co)variances because the prior class probabilities
are roughly equal, i.e. P (ω1) ' P (ω2).

For calculation of the Chernoff and Bhattacharyya
bounds in practice, not only the prior probabilities
P (ω1) and P (ω2), but also the parameters µ1, µ2, Σ1

and Σ2 have to be estimated from data and plugged
into the relevant formulas. Note that a d× d covari-
ance matrix has 1

2d · (d− 1) independent entries, and

that each of these entries is estimated from a subset of
the data that corresponds to one outcome class. These
estimates may quickly become unreliable with a grow-
ing number of features d, or when the problem is highly
unbalanced. Furthermore, when the assumption of nor-
mality of the class-conditional densities is violated, the
computed bounds may be false.

2.3 Building predictive models
Determining the BER requires knowledge of the class-
conditional probability values P (ωj |x), which are in
practice unknown. A second approach to estimating
these probability values consist of developing a predic-
tive model from the data at hand. The potential dis-
advantage of this approach is that the results may be
highly dependent on the modeling method. If the chosen
method is unable to separate the two outcome classes,
this may be related to the difficulty of the classification
problem, but also to limitations of the method.

Here, we have used two methods to develop predic-
tive models: kernel smoothing [6] and regression trees
[4]. Kernel smoothing is a nonparametric regression
method that avoids lack-of-fit problems by making very
few assumptions on the characteristics of the classifi-
cation problem. A disadvantage of kernel smoothing
that is provides very little insight into the structure of
problem; however, this is not a problem here as we are
only interested in finding the optimal dichotomization
threshold. The regression tree method belongs to the
family of recursive partitioning techniques and was cho-
sen here because it represents a popular choice of model-
ing method in the literature on classification problems.
Both methods are briefly described below.

For the BER estimation using predictive models, the
probability P (ωj |x) is estimated for every observation x
in the data set. The computation of the k -fold, multiple
integral is replaced by a summation over each of these
observations. This approach approximates the BER it-
self. Theoretically, these approximations are also upper
bounds, because no classification could improve over the
Bayes decision rule. However, due to instable estima-
tions and overfitting, the BER can also be underesti-
mated.

3 Application to ICU data

We have applied the methods for dichotomization to the
outcome length of stay at intensive care unit (ICU LOS)
after cardiac surgery. This outcome can be used as a
proxy for the ‘degree of complication’ during the recov-
ery process and therefore, as a measure of the quality
of delivered care. Prediction of this outcome helps doc-
tors to get insight into the complication risk of their pa-
tients and supports ICU managers in planning the ICU
capacity. ICU LOS is informatively censored by death,
because this most serious complication that may occur,
breaks off the stay at the ICU. Therefore, we have deter-
mined a threshold for dichotomization based on a data
set, allocating all patients who died to patients with an
ICU LOS longer than the threshold value. So, two out-
come categories have been created: short LOS, and long
LOS or death.



Table 1: Approximations of the Bayes error rate P ∗ for dichotomized outcomes of ICU LOS.

threshold # events prior Bhattacharyya Chernoff kernel regression

bound bound bound smoothing tree

P∗prior P∗Bhat. P∗Cher. P∗kernel AUC P∗tree AUC

2 days 1137 0.449 0.464 0.459 0.385 0.681 0.324 0.684
3 days 818 0.397 0.448 0.456 0.339 0.703 0.260 0.704
4 days 623 0.302 0.417 0.433 0.268 0.712 0.232 0.730
5 days 530 0.257 0.395 0.415 0.225 0.719 0.197 0.733
6 days 443 0.215 0.371 0.394 0.191 0.726 0.171 0.741
7 days 385 0.187 0.348 0.374 0.167 0.733 0.153 0.742
8 days 342 0.166 0.327 0.350 0.147 0.757 0.137 0.749
9 days 320 0.155 0.319 0.341 0.140 0.757 0.128 0.754

10 days 290 0.141 0.303 0.326 0.126 0.767 0.118 0.703
12 days 254 0.123 0.286 0.311 0.108 0.774 0.108 0.692
14 days 224 0.109 0.272 0.298 0.091 0.776 0.094 0.672
16 days 206 0.100 0.259 0.284 0.084 0.785 0.092 0.689
18 days 189 0.092 0.248 0.274 0.075 0.788 0.086 0.625
20 days 177 0.086 0.239 0.263 0.070 0.789 0.078 0.681
25 days 159 0.077 0.225 0.241 0.062 0.789 0.074 0.617
30 days 140 0.068 0.209 0.222 0.052 0.802 0.063 0.754
40 days 121 0.059 0.190 0.203 0.045 0.816 0.057 0.683
50 days 116 0.056 0.188 0.201 0.043 0.811 0.052 0.699
70 days 108 0.052 0.180 0.195 0.039 0.825 0.051 0.694

110 days 103 0.050 0.173 0.186 0.038 0.836 0.047 0.660

# events: number of patients with ICU LOS higher than threshold value or death

3.1 Data and methods
A data set was used from cardiac operations conducted
at the Academic Medical Center in Amsterdam, the
Netherlands, in the years 1997–2001. Based on this data
set, regression trees for the outcome mortality have been
developed [15]. The data set contains 144 data items in-
cluding patient characteristics such as age, surgery type
and indicators of the patient’s state during the first 24
hours at the ICU such as blood and urine values for 3855
patients. Because of including these latter data items,
we have excluded all patients who left the ICU within
one day. Based on data of the remaining 2063 patients,
of which 101 patients died (4,9%), we have determined
the separability of the dichotomized outcomes of ICU
LOS.

We have quantified the separability of outcomes that
are defined according to thresholds of 2 days up to and
including 110 days by approximating the BER. Separa-
bility of outcomes with higher thresholds was not deter-
mined, because of the low proportion (< 5%) of patients
who stay more than 110 days or die. Note that from a
threshold of 18 days onwards, the majority of patients
in the category long LOS or death died, so that empha-
sis in the classification problem shifts towards predicting
death instead of prolonged ICU stay.

The computation of the Chernoff and Bhattacharyya
bounds and application of kernel smoothing require that
a small number of continuous features be selected. We
have selected the features perfusion time (the duration
of using the heart-lung machine), maximal creatinine
value and minimal systolic blood pressure based on uni-
variate statistical analyses. The latter two variables are
measured during the first 24 hours of the ICU stay. Be-
cause for calculation of the Bhattacharyya and Chernoff
bounds normal class-conditional densities are assumed,
we have used the logarithmic transformation of the fea-
tures perfusion time and maximal creatinine value. The
model building procedure of regression trees includes

its own feature selection mechanism. We have evalu-
ated the ability of the predictive models to discriminate
between the two outcome classes using the area under
the ROC curve (AUC). The approximations of the BER
based on predictive models and the model evaluation
measures were calculated using 10-fold cross validation.

3.2 Results
The results are summarized in Table 1. Each table row
contains the threshold that is used for dichotomization,
and the number of cases with an ICU LOS higher than
the threshold value or death. Furthermore, approxima-
tions of the BER are described based on prior proba-
bilities, the Bhattacharyya and Chernoff bounds, and
using kernel smoothing and regression trees. For these
predictive models, the AUC values are also described in
the table.

It appears from this table that BER approximation
using the Bhattacharyya and Chernoff bounds result in
high values, compared to approximations made based on
prior probabilities and using predictive models. Com-
pared to the Chernoff bound, the lower values of the
Bhattacharyya bound are unexpected, as this bound is
theoretically less tight.

Kernel smoothing is found to be well able to sepa-
rate the outcome classes when the number of events are
low (threshold of 110 days: P ∗kernel is 0.038, which is
24% error improvement compared to P ∗prior), while the
regression tree only reduces 6% of the error (P ∗tree is
0.047). This confirms the flexibility of kernel smoothing
by fitting the data well, also when the number of events
is low. Compared to kernel smoothing, we found that
regression trees reduce more error in the case of low
threshold values (3–10 days). This indicates that for
more balanced classification problems regression trees
provide better predictions probably due to the feature
selection method.

We have found that beginning at the threshold of 10



days, the sensitivity of kernel smoothing is equal to 0.
So, in these cases, using the decision rule ‘Decide ω1

if P (ω1 |x) > P (ω2 |x); otherwise decide ω2’, kernel
smoothing classifies all patients who stayed long at the
ICU or who died into the outcome category short LOS.
Combining these findings to the AUC values, kernel
smoothing is found to discriminate well between both
outcome classes, but only when using probability thresh-
olds for classification that are at least lower than 0.5.
Comparing this to the regression trees, we found lower
AUC values, while the sensitivity is higher than 0 for all
thresholds. So, for these cases, the regression trees give
only the appearance of separation.

We can draw some conclusions from the approximated
BER about the selection of threshold values for ICU
LOS. When increasing the threshold value, the BER
decreases to 0. For that reason, we have focused on
the decrease of BER per increase of the threshold value
instead of the approximation of the BER itself. We
have found that the decrease of BER based on prior
probabilities, the Bhattacharyya and Chernoff bounds,
and using kernel smoothing is maximal between 3 and 4
days (a decrease of 0.095, 0.031, 0.023 and 0.071 respec-
tively), while for the regression tree method the decrease
is maximal between 2 and 3 days (a decrease of 0.064).
In practice, the optimal value would possibly be some-
where between these values; insight into this value would
be derived when using smaller scales to dichotomize (e.g.
hours instead of days).

4 Discussion and conclusions

If threshold selection to dichotomize survival variables
cannot be based on clinical knowledge, it should be
based on data analysis conducted in a structural fashion.
This paper describes approaches to select thresholds
based on the notion of separability of outcome classes,
which is quantified in terms of approximations of the
BER. In the literature, additional measures of separa-
bility have been described [10; 11], such as information
value (or entropy) and the related Gini index. These
measures are not directly related to the BER. For a
more complete investigation of methods to quantify sep-
arability of outcome classes, these methods should also
be taken into account.

In the application described, the behaviour of the
Bhattacharyya and Chernoff bounds is disappointing.
This is probably due to the fact that when increasing
the threshold, the estimations for outcome long LOS
or death were based on a low number of cases by which
the estimated covariance matrices are probably instable.
This problem may partly be solved by making paramet-
ric assumptions about the covariance matrices.

The study is limited by the fact that we did not per-
form extensive analyses for feature selection, taking a
possible shift of features related to higher threshold val-
ues into account; except for regression trees, one set of
selected features was used for calculation of the mea-
sures for all dichotomized outcomes. However, each
dichotomization threshold induces a new classification
problem that possibly has its own optimal set of fea-
tures.

In the future, we intend to continue the investigation
using additional methods (e.g., entropy) and more types
of methods to build predictive models. To confirm the
described findings, we will perform method validation
based an independent test set. Furthermore, we will
investigate the influence of feature selection on the sep-
arability of the outcome classes.
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