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Abstract

Recently, there has been an explosion in
the amount of data being stored on pa-
tients who suffer from visual deterioration
including field test data, retinal image data
and patient demographic data. In this pa-
per we document some preliminary work in
what will be a large-scale investigation of vi-
sual field deterioration in conditions such as
glaucoma. We explore the use of Bayesian
network models to classify and forecast VF
data as well as predict the conversion of
VFs from non-glaucomatous to glaucoma-
tous. Bayesian networks can easily be in-
terpreted by non-statisticians and queried in
order to discover interesting characteristics
of visual field deterioration in different con-
ditions such as glaucoma. Initial results are
promising for both the classification and fore-
casting of visual field tests but leave room for
improvement. Analysis of the models reveals
the potential of using such models for knowl-
edge discovery within ophthalmic databases.

1 Introduction

The Visual Field (VF) test assesses the sensitivity of
the retina to light. It is typically measured by au-
tomated perimetry, a technique in which the subject
views a dim background as brighter spots of light are
shone onto the background at various locations in a
regular grid pattern. The brightness at which the sub-
ject sees the spots of light is related to the retinal sen-
sitivity. There are many diseases and conditions that
affect the VF, the most common being neurological
disease and glaucoma. Early detection of glaucoma as
well as other conditions and diseases that cause visual
impairment are invaluable as early intervention can
slow VF deterioration.

There has been much research on modelling visual
field data starting with the exploration of the distribu-
tion of point-by-point light sensitivity, at a single point
in time, in normal (Katz and Sommer 1986, Heijl et
al. 1987) and glaucomatous populations (Weber and

Rau 1992). However, much remains unknown about
the behaviour of the visual field test, such as the light
sensitivity relationship between adjacent and distant
visual field test points, the relationship between light
sensitivity and other ocular parameters (such as op-
tic nerve appearance and intraocular pressure level),
and how stable and deteriorating visual fields behave
over time. Historically, various approaches have been
made to identify deterioration within a visual field se-
ries. These include clinical judgement (expert opin-
ion), and the use of classification systems (Lee et al.
2002), trend analysis (Heijl et al. 1990, Fitzke et al.
1996) and event analysis (Heijl et al. 1990). Gold-
baum et al. document a comprehensive comparison
of machine learning classifier systems for the classifi-
cation of glaucomatous visual fields (Goldbaum et al.
2002). This does not include any Bayesian methods
of classification, which have recently shown excellent
properties (Langley and Sage 1994). Ibanez and Simo
have investigated spatio-temporal statistical models
with the aim of forecasting visual field deterioration
(Ibanez and Simo 2003) but to date have only looked
at visual fields of normal eyes. We know of little re-
search in using probabilistic models to understand VF
data. Previously, a state space model has been used to
classify glaucomatous patients (Andersen and Jeppe-
sen 1998) and Bayesian statistics have been proposed
to record VF data (Bengtsson et al. 1997).

In this paper we look at Bayesian network methods
for combining both the classification and the forecast-
ing of visual field data. The models can easily be in-
terpreted by non-statisticians and queried in order to
discover interesting characteristics of visual field de-
terioration in different conditions such as glaucoma.
Visual field data has both temporal and spatial char-
acteristics. For this reason, we make use of spatial
operators that we developed for efficiently learning
Bayesian networks from spatio-temporal data such as
visual field data (Tucker et al. 2003). The results doc-
umented in this paper are very promising: the classi-
fication and forecasting all achieved reasonable cross
validation errors (approximately 75 percent correctly
classified), though there is still room for improvement
through the use of more data and model refinement.



In addition, Bayesian networks allow us to analyse the
discovered network structures in order to try to under-
stand characteristics of visual field deterioration. In
this paper, the networks have demonstrated the clas-
sic ’nasal step’ field defect which is known to be an
early sign of glaucoma.

2 Background

Bayesian Networks (BNs) are probabilistic models
that can be used to combine expert knowledge and
data. They also facilitate the discovery of complex
relationships in large datasets. A BN consists of a di-
rected acyclic graph, made up of links between nodes
that represent variables in the domain. The links are
directed from a parent node to a child node, and with
each node there is an associated set of conditional
probability distributions. Learning the structure of a
BN from data (Cooper 1992) is a non-trivial problem
due to the large number of candidate network struc-
tures and as a result there has been substantial re-
search in developing efficient algorithms within the op-
timisation communities. The Dynamic Bayesian Net-
work (DBN) is an extension of the BN that can model
time series (Friedman 1998).

Previously we have developed algorithms for effi-
ciently learning DBN structures (Tucker et al. 2001).
We have also investigated learning DBNs from VF
Data in order to explore the VF relationships discov-
ered within the DBN structure. Due to the spatial as
well as the temporal nature of VF data we developed
spatial operators to efficiently learn DBN structures.
Full documentation of the algorithm and operators
can be found in (Tucker et al. 2003). In this paper we
focus on forecasting VF data, classifying VF data as
glaucomatous or non-glaucomatous and predicting the
classifications of VF data in order to try and preempt
when a VF is about to convert to glaucomatous.

3 Experiments and Results

The dataset used in this paper involves 24 patients
with 623 measurements in all, concerning only the
right eye of patients who are converters (from normal
to early glaucomatous). Two points in the VF corre-
spond to the blind spot and should not contain any
useful data. We have included these points to check
for spurious relationships. See Figure 1 for an exam-
ple VF test. The data were discretised into four states
using a frequency-based method where bin sizes are
determined such that there are equal numbers of each
state per variable in the dataset. Discretisation was
performed on a point-wise basis. The data are slightly
imbalanced - approximately 60 percent of the tests are
classified as normal whilst 40 percent are classified as
glaucomatous.

This paper covers three different sets of experi-
ments:
1. The classification of glaucomatous VF.
2. The forecasting of VF data.

Figure 1: A Typical VF Test. Note the Large Dark
Patch which Represents deterioration and the Small
Dark Patch on the Horizontal Axis which Represents
the Blindspot

3. The predicting of glaucomatous VF conversion.

In the first set of experiments the state of a previ-
ously unseen VF must be classified as either glauco-
matous or non-glaucomatous, given the state of the
VF. This involves learning several classes of Bayesian
classifier and applying leave one out cross validation in
order to score the forecast quality without overfitting.
We look at learning BNs and DBNs using the algo-
rithm in Tucker et al. 2003. We also look at other
Bayesian classification methods including the naive
Bayes’ classifier (Langley and Sage 1994) and the Tree
Augmented Network (TAN) classifier (Friedman 1997)
both of which impose a structure over the variables.
The naive Bayes Classifier assumes all features are in-
dependent and consists of a network where the class
node is the parent of every feature node. TAN on the
other hand relaxes this assumption and so involves
learning a tree structure over the variables. Table 1
shows the Cross Validation (CV) error for each sys-
tem as well as the sensitivity of the classifications (the
percentage of correctly classified glaucomatous fields)
and the specificity (the percentage correctly identified
non-glaucomatous fields). It also shows the results
for predicting future classifications with a DBN which
we will discuss later. First of all we look at the dif-

Table 1: Results for Classification and Predicting
Conversion

Method Sens. Spec. Error
Naive Classifier 0.60 0.81 0.28
TAN Classifier 0.60 0.79 0.28
BN Classifier 0.63 0.80 0.27

DBN Classifier 0.65 0.79 0.26
DBN Converter

Prediciton
0.65 0.81 0.25

ferent Bayesian classifier methods for modelling the



clinician’s decision of whether a VF is glaucomatous
or not. In Table 1 it can be seen that the Naive Bayes
classifier does well with respect to error and specificity
but less well with respect to sensitivity. This appears
to be common across all methods. Surprisingly, the
TAN, BN and DBN methods do slightly worse than
Naive Bayes with respect to specificity (though this
difference is minimal). However, BN and DBN im-
prove on sensitivity and error. The best method across
all classifiers for error and sensitivity is the DBN clas-
sifier. This is most likely due to its ability to model
changes in VF points over time, though the differ-
ence between classifier results is very small. It should
be worth noting that the definition of conversion is
quite strict (Heijl et al. 2003) possibly resulting in
earlier fields displaying glaucomatous features that do
not yet reach the threshold of the conversion criteria.
This will be investigated in further research.

The second set of experiments involves learning
DBNs in order to forecast the future states of a VF.
Networks are scored according to various pieces of ex-
pert knowledge from clinicians including the expected
development of retinal nerve fibre bundle defects. In
addition the forecasts are scored using leave one out
cross validation. A typical discovered DBN structure
for forecasting VF data is illustrated in Figure 2. No-
tice that the links show in general a spatial arrange-
ment with most link’s parents and children being close
to one another. Notice also that there are no links as-
sociated with the blind spot as should be expected.

Figure 2: A Typical Dynamic Bayesian Network struc-
ture Used for Forecasting VF Data. Note the Lack of
Links at the Blind Spot

The quality of the discovered DBN structures used
to forecast future states of the VF data is illustrated in
Table 2 below, which shows two measures of final net-
work quality based upon clinical knowledge of the eye.
Points on the VF should be related if they sit on the
same Nerve Fibre Bundle (NFB). Figure 3 shows the
expected NFB layout (demarcated by lines) according
to (Garway-Heath et al. 2000). Indeed the discovered
networks contained 78 percent of links within the same
bundle.

Another expected characteristic of the VF is that

Table 2: Mean Quality of DBNs learnt from VF Data
Links in Same Bundle 78.3
Mean ON Distance 19.2

Mean Forecast Error 0.28

points that are closely related should have a simi-
lar angular distance from the Optic Nerve (ON). The
mean ON distance between parents and children of
links in the DBN was found to be 19 degrees. This is
relatively low, bearing in mind that the maximum dis-
tance between the angle of two points to the ON is 180
degrees. Using the discovered DBN to forecast future
VF values using leave one out cross validation gener-
ated a 28 percent error. This error is not extremely
low but is an encouraging first attempt to forecast
using a DBN model with no expert knowledge what-
soever. We intend to look at ways at improving this
forecast through the use of more information such as
retinal images as well as incorporating expert prior
knowledge, to which the DBN is extremely suited.

The third set of experiments involve trying to pre-
dict the classification of the next unseen time point
of VF data in order to pre-empt the glaucomatous di-
agnosis. Again, leave one out cross validation is used
to score these experiments. Table 1 shows the CV re-
sults for learning DBNs for predicting VF conversion.
The specificity was good at 80 percent but sensitivity
not so good at 65 percent. We intend to improve this
prediction in various ways including using more data
such as intraocular pressure.

A useful characteristic of Bayesian networks is that
we can easily interpret the structure and parameters
of the models. Figure 3 shows the percentage of times
a VF point was discovered as a parent node (during
cross validation) for predicting whether a VF converts
in the next time point. It is interesting to notice that a
cluster of VF points appears along the horizontal axis.
It appears that these points were the most predictive
for VF conversion to glaucomatous and are also those
involved in the classic ’nasal step’ field defect, which
is known to be an early sign of glaucoma (Hart and
Becker 1982). Another individual point also appears
to be useful in forecasting conversion (marked in bold
in Figure 3). This point is only 10 degrees away (ON
distance) from the nasal points, so might be an ex-
pected finding if the nasal step is an early sign.

4 Conclusions and Future Work

In this paper we have begun what will be a large inves-
tigation into the modelling of patient visual field data
in order to understand better different visual field con-
ditions and diseases such as glaucoma. We have used
probabilistic models to model the clinician’s classifica-
tion decision of whether a visual field is glaucomatous
or not with some success. We have also used temporal
models to forecast future visual field states based on
previous visual field data, as well as made an attempt



Figure 3: Nerve Fibre Bundle Layout and The Pro-
portion of Networks Learnt Containing a Link to the
Classification Node. In Other Words, the Most Influ-
ential Points for Forecasting VF Classification. Note
the Shaded Region Representing the Blind Spot

in forecasting the conversion of healthy visual fields to
glaucomatous. It has been informative to investigate
which visual field points have proved the most predic-
tive for glaucomatous conversion. This may inspire
future visual field test strategies where more weight,
or testing time, can be given to these more informative
regions of the visual field.

We intend to focus on improving the classification
and forecasts by including more visual field data from
both eyes as well as demographic information, intra-
ocular pressure and retinal image information. For
example, we may be averaging over several different
classes of glaucoma, which can be separated out along
demographic lines. In addition, we may look at using
continuous forms of Bayesian networks (Geiger and
Heckerman 1994). Another issue we must investigate
is possible bias due to the criteria used to define con-
version. We may make use of retinal image data to
redefine conversion.
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