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Abstract.  The temporal-reasoning task focuses on intelli-
gent analysis of time-oriented data, while the temporal-
maintenance task focuses on effective storage, query, and re-
trieval of these data.  Both are highly relevant for biomedical 
applications such as monitoring, therapy, quality assessment, 
and visualization and exploration of time-oriented data, which 
cannot be expected to resolve each time both tasks, or to under-
stand the internal details of specialized modules that perform 
them.  Thus, it is imperative to supply a system, known as a 
temporal mediator, which integrates these tasks.  One potential 
problem in existing temporal-mediation approaches is lack of 
sufficient responsiveness when querying the database for com-
plex abstract concepts that are derived from the raw data, espe-
cially regarding a large patient group.  We propose a new inte-
gration approach: The active time-oriented database.  This 
approach is a temporal extension of the active-database concept, 
a merger of temporal reasoning and temporal maintenance 
within a persistent database framework.  The approach preserves 
the efficiency of databases in handling data storage and retrieval 
while enabling specification and performance of complex tem-
poral reasoning using an incremental-computation approach.  
The new approach provides persistence and truth-maintenance 
of the resultant abstractions.  We implemented the active time-
oriented database approach within the Momentum system.  
Initial experiments with the Momentum system are encouraging, 
and an evaluation is underway to assess its validity. 

1   Introduction: Temporal Reasoning and 
Temporal Maintenance in Medicine  

Representation, querying, and analysis of time-oriented 
clinical data are crucial tasks for both care providers and 
automated decision-support systems; both types of users 
need to extract certain information from one or more 
patient records to support diagnosis, therapy, monitoring, 
quality assessment, or clinical research.  For example, 
during treatment by an experimental oncology protocol, a 
complex temporal query might be, “locate all patients 
who have had, within the past 9 months, more than two 
episodes of grade II or higher bone marrow toxicity (as 
defined by the protocol), each lasting at least 2 weeks.” 
(Figure 1.) 

Handling the time dimension typically requires per-
formance of two distinct tasks: temporal reasoning (TR) 
and temporal data maintenance (TM).  TR supports 
inference regarding time-oriented data, such as when 
monitoring patients, diagnosing disorders, planning and 
applying therapy.  A major aspect of TR is temporal 

abstraction: creating high-level temporally extended 
concepts from raw time-stamped data.  TM deals with 
storage and retrieval of data that have heterogeneous 
temporal dimensions.  Decision-support applications that 
involve time-oriented medical data require performance 
of both tasks.  Thus, it is highly desirable to have a single 
module that performs both tasks, with a well-defined 
interface.  

Effective querying of abstract, temporally extended 
concepts, in particular within large sets of patients, is a 
major potential problem of current TR and TM integra-
tion efforts, often referred to as temporal mediation.  To 
overcome these deficiencies, we propose a new approach, 
an active time-oriented database.  The active time-
oriented database approach is a temporal extension of the 
active database concept (see below), and might be con-
sidered as merging the TR and TM tasks within a persis-
tent database framework.  The approach preserves the 
efficiency of databases in handling data storage and re-
trieval, while supporting specification and performance of 
complex temporal reasoning (in particular, temporal ab-
straction) using an incremental computation approach.  
The approach we suggest provides persistence and truth-
maintenance of the resultant temporal abstractions.  We 
demonstrate the new approach in the Momentum sys-
tem1, which we have implemented as part of an architec-
ture for active temporal-abstraction mediation.  

2. Background: Temporal Abstraction, 
Temporal Mediation, and Active Databases 

To clarify the ideas leading to the Momentum system, it is 
best to start by a brief presentation of the temporal-
abstraction, temporal-mediation, and active database 
concepts. 

2.1 Temporal Abstraction 

A crucial part of temporal reasoning is creating high-level 
temporally extended concepts from raw time-stamped 
data.  This task is often called temporal abstraction 
(TA) (see Figure 1).  

                                                           
1 Momentum:  A force that increases the rate of development of 

a process 
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Figure 1.  Abstraction of time-oriented data in the bone-marrow 
transplantation domain.  Raw data are plotted over time at the 
bottom.  External events and the abstract concepts computed 
from the data are plotted as intervals above the data.   = 
an external event (medical intervention); • = platelet counts; ∆ = 
granulocyte counts;  = a context interval;  = a de-
rived abstract concept interval;     BMT = bone-marrow trans-
plantation (an external event); PAZ = a protocol for treating 
chronic graft-versus-host disease (CGVHD), a complication of 
BMT; B[n] = bone-marrow–toxicity grade n, an abstract con-
cept of platelet and granulocyte counts. 

The knowledge-based temporal-abstraction 
(KBTA) problem-solving method [Shahar, 1997] was 
originally proposed specifically to solve the TA task.  The 
KBTA method was designed with clear semantics for 
both the problem-solving method and its domain-specific 
knowledge requirements.  The KBTA input includes a set 
of time-stamped parameters (e.g., blood-glucose values), 
external events (e.g., insulin injections), and, optionally, 
one or more user abstraction goals (e.g., therapy of pa-
tients who have insulin-dependent diabetes).  All three 
input types can induce temporally extended contexts that 
can change the interpretation of one or more parameters 
[Shahar, 1998].  The KBTA output includes a set of in-
terval-based, context-specific abstract concepts of several 
types: state (e.g., High), gradient (e.g., Decreasing), rate 
(e.g., Slow), and pattern (e.g., Multi-organ-toxicity).  The 
KBTA method uses five TA mechanisms (e.g., context-
formation) for five different inference tasks, which re-
quire four domain-specific TA knowledge types for any 
particular domain: (1) structural knowledge (e.g., 
ABSTRACTED-INTO relations); (2) classification 
knowledge (e.g., definition of a parameter range as High);  
(3) temporal-semantic knowledge (e.g., episodes of ane-
mia can be aggregated into a longer single episode, since 
they are concatenable, but consecutive pregnancies can-
not); (4) temporal-dynamic knowledge (e.g., persistence 
of a proposition over time when data is unavailable [Sha-
har, 1999]).  Figure. 1 shows an example of input for the 
TA task, and the resulting output, in the case of a patient 
who is being treated by a clinical protocol for treatment 
of chronic graft-versus-host disease (GVHD), a complica-
tion of bone-marrow transplantation.  The KBTA method 
was implemented within the RÉSUMÉ system [Shahar 
and Musen, 1996], which was tested in several different 

clinical domains, such as protocol-based care of patients 
who have AIDS or who have undergone bone-marrow 
transplantation; monitoring of children who have poten-
tial growth problems or of patients who have insulin-
dependent diabetes, as well as in engineering domains 
such as traffic management [Shahar and Molina, 1998].   

A part of the KBTA method was implemented in the 
RASTA system [O’Connor et al., 2001].  In addition, the 
RASTA system provided a distributed algorithm to speed 
up the execution of the TA task.  Neither the RÉSUMÉ 
system nor the RASTA system allowed external querying 
or dynamic exploration of the high-level time-oriented 
abstract concepts generated by the TA process, as an 
inherent part of the system.  Thus, temporal-database 
mediators were introduced to provide a more complete 
solution.  (Indeed, the Momentum system is a part of a 
more general TA mediation architecture). 

2.2 Temporal Mediation 

A general approach to the TR and TM integration, called 
a temporal-database mediator, was suggested in an early 
architecture, the Tzolkin system [Nguyen et al., 1999] 
and in the more recent work describing the Chronus-II 
temporal database mediator [O’Connor et al., 2002].  This 
approach encapsulates the TR and the TM capabilities in 
a reusable software component that can answer raw or 
abstract, time-oriented queries.  Such a system is called a 
mediator because it serves as an intermediate layer of 
processing between client applications and databases 
[Wiederhold, 1992].  As a result, the mediator is tied to 
neither a particular application, nor to a particular database 
[Wiederhold and Genesereth, 1997].  Furthermore, the tem-
poral reasoning method encapsulates the task-specific TA 
reasoning algorithm that uses the domain-specific knowledge 
(thus, Tzolkin is really a temporal-abstraction mediator).  
The Tzolkin system consisted of the RÉSUMÉ temporal-
reasoning module and the Chronus temporal-
maintenance module.  RÉSUMÉ generated all abstrac-
tions mentioned in the query and wrote them into a tem-
porary database; then, the Chronus module applied the 
temporal constraints of the query to the temporary data-
base (which now included also the desired abstractions), 
to generate the complete answer. A similar relationship 
exists, respectively, between the RASTA and Chronus-II 
systems in the Chronus-II temporal database mediator. 

The mediator approach to temporal-data management 
is relatively novel, and thus raises new problems. One 
such problem is the difficulty in evaluating the general 
time complexity of a system that uses two very different 
computational methods, one of which is executed within 
working memory, and the other embedded within a data-
base; the basic computational operation is difficult to 
define. Execution of complex temporal queries raises the 
important issues of the defeasibility (nonmonotonicity) of 
the computed temporal abstract concepts, and mainte-



nance of the validity of the conclusions over time. The 
RÉSUMÉ system used a truth-maintenance system 
(TMS) that allows specific temporal abstractions to be 
withdrawn from working memory when new, contradic-
tory data arrive (e.g., the result of a laboratory test that 
was taken 2 weeks ago).  However, the TMS did not 
extend to the external database.  To avoid the non-
monotonicity problem, Tzolkin computes (de-novo) all 
abstractions based on the content of the database at the 
moment that the query is evaluated, a strategy that can 
obviously lead to significant response-time problems in 
the case of queries referring to complex temporal pat-
terns, large longitudinal patient records, or a large set of 
patients.  Furthermore the persistence of the computed 
abstract concepts cannot be managed between queries.  
Consequently, without a TMS at the database level, opti-
mization techniques such as performance of batch compu-
tations are useful only when used with a data set that is 
guaranteed to be consistent over time (an unlikely situa-
tion in clinical databases).  The Chronus-II mediator faces 
the same kind of problems.  The query languages of the 
mediators also raise the issue of temporal knowledge 
maintenance and reuse.  Temporal constraints in the 
Tzolkin and Chronus-II mediators can be defined only by 
using their querying languages, TSQL and TSQL2, re-
spectively.  This means that there is no way to share and 
reuse temporal-pattern knowledge among different tem-
poral queries.  This restriction makes concise query ex-
pression difficult.  For example, many typical clinical 
temporal queries have to be written as two or more sub-
queries, which makes the query less concise and certainly 
less readable.  In the Momentum system, we provide a 
solution to all the presented problems, while preserving 
the strengths inherent in the TA mediation approach. 

2.3 Active Databases 

Active databases (ADBs) extend “passive” databases by 
enabling the specification of reactive behavior as part of 
the database [ACT-NET, 1996; Widom and Ceri, 1996].  
Event-condition-action rules (ECA-rules) in ADBs 
consist of events, conditions and resulting actions.  The 
meaning of an ECA rule is: “when an event occurs, check 
the condition and if it holds, execute the action”.  Once a 
set of rules has been defined, the active database system 
monitors the relevant events.  Whenever it detects the 
occurrence of a relevant event, it notifies the component 
responsible for rule execution.  Subsequently, all relevant 
rules are triggered and executed.  Rule execution incorpo-
rates condition evaluation and action execution.  First, the 
condition is evaluated; if it is satisfied, the ADB executes 
the action.  An ADB provides a rule definition language 
(RDL) as a means of specifying ECA-rules.  Thus, an 
ADB supports rule specification, event detection, and rule 
execution. 

We based the Momentum system on an active time-
oriented database approach, which is a temporal exten-
sion of the active database concept.  The presented ap-
proach preserves the efficiency of databases in handling 
data storage and retrieval, while adding the power of 
expressing and performing complex temporal reasoning 
using, as will be shown, an incremental-computation 
approach. 

3. The Temporal-Abstraction Mediation 
Process 

Before describing the Momentum system in detail, we 
present the context in which the system operates. 

We define a temporal-abstraction mediation (TAM) 
process as a sequence of high-level tasks required to 
eventually generate temporal abstractions and to answer 
temporal queries.  The process involves all phases, from 
data and knowledge input, through processing input raw 
data and delivering it in a form of knowledge-based ab-
stract concepts to the TA mediation client applications 
(e.g., patient monitoring, application of clinical guide-
lines, assessing of the quality of guideline application, 
visualization and exploration of clinical data, etc.).  

The TAM process (Figure 2) includes three phases: 
temporal knowledge and data acquisition, abstract-
concept generation (including truth and persistence main-
tenance), and the abstract-concept access.  The proposed 
process deliberately separates the data and knowledge 
acquisition and abstract concept generation from the ab-
stract concept access.  First, all the available abstract 
concepts are generated; only then they can be accessed.  
The queries do not need to generate abstract concepts on 
the fly, and thus they can be quickly answered even for 
complex queries and large sets of patients.  Although all 
abstract concepts are generated before the data access 
(querying) starts, the process allows ad-hoc abstract con-
cepts definition during the data access phase.  In this case, 
the ad-hoc defined abstract concepts are generated during 
the query processing.  This allows some level of flexibil-
ity for those client applications which cannot or do not 
desire to define in advance all abstract concepts in the 
knowledge base. 

To support the TAM process, we have developed the 
temporal-abstraction mediation architecture. 

3.1 The Temporal Abstraction Mediation Architecture 

The temporal-abstraction mediation architecture (Figure 
3) has two major aspects that are sufficiently different to 
warrant independent consideration.  We labeled these two 



parts as the back room and the front room2. The back 
room supports the first two phases of the temporal ab-
straction mediation lifecycle–from the data and knowl-
edge acquisition to the high-level abstract-concepts gen-
eration, truth and persistence maintenance, while the front 
room supports the third phase–the abstract-concepts ac-
cess. 
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Figure 2.  The temporal abstraction mediation process.  The 
process is a sequence of high-level tasks required to generate 
temporal abstractions and answer temporal-abstraction queries.  
The process includes three phases: temporal knowledge and data 
acquisition, abstract-concept generation, truth and persistence 
maintenance, and access of the resultant abstract concepts. During 
the first phase, an extract, transform, and load (ETL) process is 
performed on the knowledge base and operational data sources: 
the sources are defined, the knowledge and data are extracted, 
transformed (for example, in accordance with a controlled medical 
dictionary) and loaded for the subsequent temporal abstract 
concepts generation.   
We distinguish initial knowledge/data ETL from incremental 
knowledge/data updates (delta updates).  During the second phase, 
the new knowledge-defined high-level abstract concepts are 
generated and the truth is maintained for the previously generated 
abstract concepts for each ETL (initial or delta-based).  During 
this phase the persistence is also maintained for the generated 
abstract concepts.  During the third phase, the generated abstract 
concepts can be accessed.  Abstract concepts can be predefined in 
the underling knowledge base, or defined ad-hoc during the 
abstract-concepts access phase. 

The presentation server is the “glue” which brings the 
two rooms together, hiding the complexities of the high-
level abstract-concepts generation and enabling the deci-
sion support data to flow virtually seamlessly to the users 
community in form of the high-level abstract concepts 
generated from the data sources, according to the knowl-
edge defined in the knowledge bases.  The presentation 
server in fact integrates the TR tasks (abstract concept 
generation, truth and persistence maintenance) with the 

TM tasks (data and knowledge load, and the query ser-
vices).  

The Momentum system implements the presentation 
server of the architecture presented in Figure 3.  
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Figure 3.  The temporal abstraction mediator architecture.  The 
architecture includes two parts: the back room and the front 
room.  The back room is the part of the architecture that is 
responsible for data and knowledge acquisition (using the 
knowledge and data acquisition services), high-level abstract 
concepts generation, truth and persistence maintenance.  Data 
and knowledge moves from the source systems and the knowl-
edge bases to the acquisition areas using the applications pro-
vided as part of the data and knowledge acquisition services 
layer.  This flow is driven by the definitions of the sources and 
targets and the transformation details (for example medical 
dictionaries mapping).  The front room is the part responsible 
for delivering the generated abstract concepts to the user com-
munity: clinicians and computer based decision support systems 
(using the query-services layer).  Both rooms share the presen-
tation server, which loads the primitive data and knowledge in 
the case of the back room, generates abstract concepts, provides 
truth and persistence maintenance to the abstract concepts, and, 
in the case of the front room, presents the generated abstract 
concepts to the query services in a fashion that facilitates an-
swering the user-issued temporal queries. 

4. The Momentum System 

Systems integrating both the TR and the TM tasks have 
requirements that span from efficient data-manipulation, 
typical of databases, to inference capabilities, typical of 
TA systems.  Active databases may be considered as a 
bridge between these two kinds of systems: they have 
both the efficiency of databases in handling data storage 
and retrieval and the power of expressing complex infer-
ence mechanisms.  

 

The Momentum system extends the approach of active 
databases to active time-oriented databases, by treating 
the temporal dimension in a unique fashion.  In analogy 
to ECA-rules and rule execution of active databases, we 
provide Momentum with the domain knowledge required 
by the KBTA method and with the TA mechanisms.  We 
also provide a knowledge definition language (KDL), 
which, in analogy to RDL, allows us to specify domain 
knowledge according to the KBTA ontology, and a tem-
poral abstraction query and instruction language 

                                                           
2 The back and front room notations originated in the data ware-

house engineering community [Kimball and Ross, 2002]. 



(TAQILA).  TAQILA supports the tasks of both raw-
data specification and querying, abstract concepts query-
ing, explanation of derived concepts, and dynamic sensi-
tivity analysis of the derived concepts.  
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4.1. The Momentum Architecture 

The Momentum architecture (Figure 4.)is modular, and is 
independent of any domain or application.  The Momen-
tum system includes, for each knowledge-base/data-
source configuration, an instance of a dynamic-
processing environment–the run-time environment, and 
an instance of a dynamic repository–the storage.  The 
dynamic-processing environment is where the abstract-
concept generation and querying take place.  The dy-
namic repository provides persistence to the loaded 
knowledge, the loaded raw data, and the generated ab-
stract concepts, which are stored along with their genera-
tion details (i.e., logical justifications such as abstracted-
from and abstracted-into links).  The dynamic-processing 
environment uses the repository to manage its persistence.  
Each knowledge base and data source, or a group of con-
formed data sources (sources containing different data 
aspects of the same patients), define a unique dynamic 
repository, which allows Momentum clients to work with 
different data and knowledge sources according to the 
temporal-abstraction mediation architecture. 

Figure 4.  The Momentum Architecture: The Momentum sys-
tem includes a dynamic processing environment–the run-time 
environment (where the abstraction and querying take place), 
and a dynamic repository (which provides persistent storage to 
primitive data, knowledge, and generated abstract concepts).  
The dynamic processing environment uses the repository to 
manage its persistence.  Each dynamic processing environment 
consists of five modules: (1) KDL-rule- processing, (2) primi-
tive-data processing, (3) abstraction, (4) querying, and (5) per-
sistence management.  Module (1) loads knowledge into the 
system and generates active knowledge elements, which detect 
the occurrence of relevant primitive or abstract concepts and 
activate the abstraction process; module (2) loads the primitive 
data into the run-time data structures; module (3) generates 
abstract concepts and updates the run-time data structures; 
module (4) enables retrieval and exploration (sensitivity analy-
sis, etc.) of the generated abstract concepts set; module (5) 
manages persistence of the primitive and generated abstract 
concepts, as well as of the active knowledge elements. 

The Momentum system implements the presentation 
server’s back room functionality by providing KDL rules 
for knowledge definition and TAQILA raw-data specifi-
cation instructions for the data loaded from data sources.  
The front room functionality is implemented by providing 
TAQILA querying capabilities which allow retrieval and 
exploration of both raw data and abstract concepts. 

TAQILA also supports exploration querying such as 
explain queries, which provide the data instances from 
which an abstract concept instance was derived, and 
what-if dynamic sensitivity-analysis queries, which sup-
port propagation of the implications of hypothetical 
modifications to either data or knowledge. TAQILA 
provides: (1) raw data instructions–for inserting (ADD), 
updating (UPDATE), and removing (REMOVE) primi-
tive data elements; (2) retrieval (FIND) querying–for 
querying raw and derived concepts; and (3) exploration 
querying–for justification of the abstraction process 
(EXPLAIN) and for dynamic sensitivity analysis 
(WHAT-IF), which simulates the effect of modifying the 
data or the knowledge, using the TMS. Retrieval and 
exploration querying return sets of temporal intervals 
satisfying the query constraints. The TAQILA queries 
and instructions form an application interface (API) that 
is typically manipulated by various client applications.  

4.2  The Temporal Abstraction Query and Instruction 
Language (TAQILA) 

TAQILA is simple yet expressive general-purpose query 
language. It enables data addition, asking runtime queries 
regarding the generated (knowledge based) or ad-hoc 
defined abstract concepts; its default arguments for such 
concepts include: start time, end time, and value. 

 



 

Figure 5.  The abstract concept dependency tree of post-BMT 
multi-organ toxicity, part of the oncology-domain knowledge 
base.  Directed arcs represent dependency relations. All con-
cepts require a Post-BMT Context generated by the BMT 
event.  Multi-organ toxicity is a temporal pattern which is de-
fined as one week overlapping of meyelotoxicity and renal 
toxicity (GRADE_3 lasting for at least one week). Platelet, wbc 
and creatinin are raw data elements which can be abstracted into 
platelet_state, wbc_state and creatinie_state respectively. Mye-
lotoxicity is abstracted from either platelet_state or wbc_state 
and is computed as a maximum of their values. Renal toxicity is 
abstracted from creatinine state. 

In the reminder of this section we present in detail the 
data and knowledge flow that demonstrate how, given the 
knowledge presented in Figure 5, Momentum handles 
several different types of TAQILA data-addition instruc-
tions and data- and concept-retrieval and exploration 
queries. The examples also present some of the TAQILA 
syntax. 

Table 1.  Processing of a set of TAQILA instructions and que-
ryies, using the knowledge represented within the concept de-
pendency tree depicted in Figure 5 as an example. 

TAQILA  Momentum Processing 

ADD (ID_1, BMT, , ‘Jan 3,2002’, 
‘Jan 3,2002’) 

ADD (ID_1, Creatinin, 2.5, ‘Jan 
12,2002’, ‘Jan 12,2002’); 

 

BMT event creates a Post-
BMT context. All abstract 
concepts with Post-BMT as a 
necessary context can now be 
generated.  

Momentum adds a creatinin 
instance for the patient ID_1 
with value 2.5 on Jan 12, 
2002, to the repository and 
generates creatinine_state 
abstract concept on ‘Jan 
12,2002’ with value HIGH 
(using a pre-existing 
creatinin_state definition). 

ADD (ID_1, Platelet , 70,000, 
‘Jan 12,2002’, ‘Jan 12,2002’); 

Momentum adds a platelet 
instance to the repository, 
generates Platelet_state in-
stance on ‘Jan 12,2002’ with 
value NORMAL, and Mye-
lotoxicity on the same day with 
value GRADE_0.  

ADD (ID_1, WBC , 2000, ‘Jan 
12,2002’, ‘Jan 12,2002’); 

Momentum adds a WBC in-
stance to the repository, gener-
ates WBC_state instance on 
‘Jan 12,2002’ with value LOW; 
the TMS then updates mye-
lotoxicity on that day to 
GRADE_2  

UPDATE WBC  

WHERE CASE.id = ID_1 

Momentum updates the WBC 
instance; the TMS updates the 

WHEN time = ‘Jan 12,2002’  

SET value = 600; 

value of the WBC_state in-
stance to VERY_LOW and the 
value of the Myelotoxicity 
instance to GRADE_3 

ADD (…),  

UPDATE (…),  

REMOVE (…) 

Momentum adds primitive 
instances to the repository, 
generates new abstract con-
cepts, and propagates updates 
via the TMS. 

 
FIND SECOND Myelotoxicity  
WHEN 
start-time < ‘Jan 12,2002’ AND  
stop-time BEFORE NOW 
RETURN CASE.id, value; 
 
FIND Result: 
PID CID VALUE 
017 ID_1 GRADE_3 
021 ID_2 GRADE_2 

 
EXPLAIN 017  
 
<Myelotoxicity> 
abstracted from: 
Wbc_state and Platelet_state  
using StateMaxOr mapping 
function.  
Details:  
005 
Wbc_state(ID_1,VERY_LOW, 
‘Jan 12,2002’ , ‘Jan 12,2002’ ) 
007  
Wbc_platelet(ID_1, NORMAL,  
‘Jan 12,2002’ , ‘Jan 12,2002’) 

For each case (e.g. each patient) 
the query searches patients 
whose myelotoxicity starts after 
‘Jan12,1998’ and finishes 
before NOW.  For each found 
instance the case id (e.g. patient 
id) and the instance value are 
returned.  

The FIND query allows query-
ing of primitive and derived 
concepts as well as ad-hoc 
detection of temporal patters 
(ad-hoc temporal pattern speci-
fication). The basic FIND 
query consists of 4 clauses: 
FIND, WHERE, WHEN and 
RETURN. The FIND clause 
constrains the resulting set on 
the element type (e.g. Mye-
lotoxicity) and on ordinal 
ordering (FIRST, SECOND, 
THIRD, or LAST).  The 
WHERE clause specifies 
constraints on the case attrib-
utes (e.g., CASE_ID) and non-
temporal instance attributes 
(e.g., value). The WHEN clause 
constrains the temporal attrib-
utes of the time intervals of the 
data element-instances (start, 
end time points, and duration).  
Finally, the RETURN clause 
specifies the desired projection 
on the data-element attributes. 

In this example, the result set 
consists of three fields: PID – 
derived instance id, CID – case 
id and the value;  

The EXPLAIN instruction 
provides the concept instances 
from which an abstract concept 
instance was derived, within 
the KDL rule that generated 
them (i.e., both the data and the 
knowledge). 

 
FIND SECOND 
Multi_organ_toxicity AS  
{ 
OVERLAPS((GRAIN = WEEK,  
Renal_toxicity(value=GRADE_3 

                    AND  
                   duration >= 2),       

Myelotoxicity (value=GRADE_3  
        AND  
                   duration >= 2), 

(overlap >= 1)) 

This query demonstrates the 
ability of TAQILA to define 
the temporal pattern on the fly.  
The query searches for in-
stances of multi-organ_toxicity 
(a temporal pattern which is 
defined as a one week overlap-
ping of myelotoxicity and 
creatinine_state, both of which 
have a value of GRADE_3 for 
at least two weeks), which 
starts before ‘Jan 12,2002’ and 
finishes before now.   
Momentum first retrieves all 



} 
WHEN   
start-time < ‘Jan 12,2002’ AND 
stop-time BEFORE NOW 
RETURN CASE.id, EXISTS?; 

renal_toxicity and myelotoxic-
ity instances, then generates all 
available Multi_organ_toxicity, 
and finally constrains the 
generated instances according 
to the WHEN clause. The query 
returns the boolean indication 
whether the temporal pattern 
was found for a patient.  

SET WHAT-IF ON 

 
ADD (…), UPDATE (…), 
REMOVE (…), FIND (..) … 
 
SET WHATIF OFF 

The WHAT-IF instruction 
allows dynamic sensitivity 
analysis of hypothetical modi-
fications of either data or 
knowledge. 
SET WHAT-IF ON starts the 
what-if session. TAQILA 
instructions can then be per-
formed.  After the SET WHAT-
IF OFF instruction, the reposi-
tory returns to the initial pre-
session state.  

4.3. The Momentum Dynamic-Processing Data 
Structures and Algorithms 

Due to lack of space, we will not present here the full 
internal workings of Momentum. However, several points 
are worth mentioning: 

 
1. Momentum uses (a) several specialized time-oriented 

structures in the database to represent the data, both 
for the runtime evaluation environment and the re-
pository, and (b) specialized knowledge structures to 
represent KDL rules. 

2. The data structures are designed to optimize concept 
generation, using computational mechanisms similar 
to those of the KBTA method, but implemented quite 
differently. For example, interpolation between simi-
lar concepts, using a context-sensitive interpolation 
table [Shahar, 1999] is highly efficient; its worst case 
complexity is O(N2), but typically (apart from a one-
time sorting operation) it is a linear process. 

3. The data structures facilitate incremental modification 
of the repository through a built-in TMS.  An infer-
ence network maintains links among data, knowledge, 
and derived concept instances. 

4.4. Implementation Details 

We implemented the Momentum system in Java Pro-
gramming Language. KDL and TAQILA as well as re-
sults sets are described as XMLs. For the data repository 
we use a native XML database which is compliant to the 
XML:DB specification and allows us to store unstruc-
tured data.  

5.  Discussion and Future Work 

Momentum is an active time-oriented database for intelli-
gent abstraction, exploration and analysis of time-oriented 
data, and, in particular clinical data.  In this prototyping 
phase of the system, although we are using real clinical 
data and knowledge (mostly from chronic-disease do-
mains, such as oncology), no complete clinical validation 
has been carried out yet.  Nevertheless, the results of the 
described work are significant mainly because they prove 
that an active time-oriented database approach may be 
effectively used for integration of temporal reasoning and 
temporal maintenance.   

Continuing the heritage of the Tzolkin system, Mo-
mentum is tied to neither a particular application nor a 
particular database or knowledge base.  Momentum is 
thus independent of any particular domain and applica-
tion.  The reuse of Momentum in a new application in-
volves modification of only the domain-specific knowl-
edge, does not require the application to understand the 
details of the TR and TM tasks performed by Momentum, 
other than the KDL and TAQILA APIs, and requires no 
reprogramming. 

Momentum tackles the responsiveness issue.  A com-
plex temporal query execution process may be intractable 
because the task of temporal reasoning is inherently com-
putationally expensive, especially when population que-
rying is involved (one of the main problems of the 
Tzolkin and Chronus-II mediator architecture).  To ad-
dress the problem, Momentum provides a new focus on 
the persistence and reuse of previously derived abstract 
concepts.  Momentum dynamically generates and man-
ages the persistence of all relevant abstractions for a 
given set of data previous to their use, and then enables 
applications to perform querying and exploration, which 
are very effective because all the possible abstractions 
have already been generated and stored (somewhat simi-
lar to Tzolkin’s batch computation mode, but performed 
dynamically and incrementally).  However, not all types 
of abstractions have to be predefined in the knowledge 
and be computed before querying can be performed.  
Temporal patterns can be defined in the querying phase 
itself and computed on the fly.  This allows flexibility that 
resembles the Tzolkin TSQL and Chronus-II TSQL2.  
Unlike the Tzolkin and Chronus-II mediators, however, 
Momentum generates new abstract concepts only when 
relevant primitive (raw) data is added to the system, with-
out re-computing previously generated abstractions (i.e., 
an incremental computational approach) while maintain-
ing truth in the already generated abstract concepts, using 
dynamically formed logical links.   

Unlike the Tzolkin and Chronus-II systems, the Mo-
mentum abstraction and querying modules share the same 
run-time data structure and truth maintenance systems.  
This unification solves the nonmonotonicity and basic 
computational operation problems encountered by the 
early temporal mediators.  



Unlike Tzolkin’s TSQL and Chronus’ TSQL2, Mo-
mentum provides an expressive and simple general-
purpose TAQILA, which is not SQL-based.  TAQILA 
querying is being done on the generated abstract con-
cepts’ time intervals, where the default arguments are: 
start time, end time, and value.  This simplifies the query 
syntax, and complex temporal queries can be very concise 
and readable, yet equally expressive. Unlike the early 
mediators, TAQILA also allows exploration querying 
such as explain which provides the data instances from 
which an abstract concept instance was derived, and 
what-if dynamic sensitivity analysis queries, which allows 
tracking of the hypothetical modifications of either data 
or knowledge. 

Finally, Momentum provides specification of TAQILA 
instructions and KDL knowledge instances through well-
defined APIs.  The clean APIs allow Momentum to be 
used as part of a larger architecture. An example is this 
supporting a temporal-abstraction mediation process, in 
which the data and the knowledge is asserted and abstract 
concepts are generated in advance; another example is a 
Tzolkin–like architecture, in which the data and the 
knowledge are asserted (possibly retrieved from an exter-
nal process) on the fly. One of the potentially highly in-
teresting experiments would be substituting Momentum 
and its persistent storage system instead of the pure tran-
sient-memory temporal-abstraction component of the 
IDAN temporal-mediation architecture [Boaz and Shahar, 
2003]. 

In the short term, we plan to perform clinical valida-
tion of the Momentum system on one or more large clini-
cal databases.  We also plan to further improve the per-
formance by making the abstraction algorithms parallel 
and distributed.  Multiple applications exist, such as sup-
porting guideline-based care within the DEGEL architec-
ture [Shahar et al., 2003a] and dynamic visual exploration 
of time-oriented clinical data within the KNAVE-II archi-
tecture [Shahar et al., 2003b]. 
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