
Momentum – an Active Time-Oriented Database for Intelligent Abstraction,
Exploration and Analysis of Clinical Data

Alex Spokoiny and Yuval Shahar

Department of Information Systems Engineering, Ben Gurion University, Beer Sheva 84105, Israel
{spokoiny, yshahar}@bgumail.bgu.ac.il

Abstract. The temporal-reasoning task focuses on intelli-
gent analysis of time-oriented data, while the temporal-
maintenance task focuses on effective storage, query, and re-
trieval of these data. Both are highly relevant for biomedical
applications such as monitoring, therapy, quality assessment,
and visualization and exploration of time-oriented data, which
cannot be expected to resolve each time both tasks, or to under-
stand the internal details of specialized modules that perform
them. Thus, it is imperative to supply a system, known as a
temporal mediator, which integrates these tasks. One potential
problem in existing temporal-mediation approaches is lack of
sufficient responsiveness when querying the database for com-
plex abstract concepts that are derived from the raw data, espe-
cially regarding a large patient group. We propose a new inte-
gration approach: The active time-oriented database. This
approach is a temporal extension of the active-database concept,
a merger of temporal reasoning and temporal maintenance
within a persistent database framework. The approach preserves
the efficiency of databases in handling data storage and retrieval
while enabling specification and performance of complex tem-
poral reasoning using an incremental-computation approach.
The new approach provides persistence and truth-maintenance
of the resultant abstractions. We implemented the active time-
oriented database approach within the Momentum system.
Initial experiments with the Momentum system are encouraging,
and an evaluation is underway to assess its validity.

1 Introduction: Temporal Reasoning and
Temporal Maintenance in Medicine

Representation, querying, and analysis of time-oriented
clinical data are crucial tasks for both care providers and
automated decision-support systems; both types of users
need to extract certain information from one or more
patient records to support diagnosis, therapy, monitoring,
quality assessment, or clinical research. For example,
during treatment by an experimental oncology protocol, a
complex temporal query might be, “locate all patients
who have had, within the past 9 months, more than two
episodes of grade II or higher bone marrow toxicity (as
defined by the protocol), each lasting at least 2 weeks.”
(Figure 1.)

Handling the time dimension typically requires per-
formance of two distinct tasks: temporal reasoning (TR)
and temporal data maintenance (TM). TR supports
inference regarding time-oriented data, such as when
monitoring patients, diagnosing disorders, planning and
applying therapy. A major aspect of TR is temporal

abstraction: creating high-level temporally extended
concepts from raw time-stamped data. TM deals with
storage and retrieval of data that have heterogeneous
temporal dimensions. Decision-support applications that
involve time-oriented medical data require performance
of both tasks. Thus, it is highly desirable to have a single
module that performs both tasks, with a well-defined
interface.

Effective querying of abstract, temporally extended
concepts, in particular within large sets of patients, is a
major potential problem of current TR and TM integra-
tion efforts, often referred to as temporal mediation. To
overcome these deficiencies, we propose a new approach,
an active time-oriented database. The active time-
oriented database approach is a temporal extension of the
active database concept (see below), and might be con-
sidered as merging the TR and TM tasks within a persis-
tent database framework. The approach preserves the
efficiency of databases in handling data storage and re-
trieval, while supporting specification and performance of
complex temporal reasoning (in particular, temporal ab-
straction) using an incremental computation approach.
The approach we suggest provides persistence and truth-
maintenance of the resultant temporal abstractions. We
demonstrate the new approach in the Momentum sys-
tem1, which we have implemented as part of an architec-
ture for active temporal-abstraction mediation.

2. Background: Temporal Abstraction,
Temporal Mediation, and Active Databases

To clarify the ideas leading to the Momentum system, it is
best to start by a brief presentation of the temporal-
abstraction, temporal-mediation, and active database
concepts.

2.1 Temporal Abstraction

A crucial part of temporal reasoning is creating high-level
temporally extended concepts from raw time-stamped
data. This task is often called temporal abstraction
(TA) (see Figure 1).

1 Momentum: A force that increases the rate of development of

a process

.

•

0 400200 100 50
•

∆ ∆
1000

2000

∆()∆ ∆ ∆

100K
150K
()

•
• •

• • • •
∆ ∆ ∆
•

• •
∆ ∆ ∆ ∆∆ ∆ •

••

Granu-
locyte
counts

• • •
∆ ∆ ∆ ∆

•

Time (days)

Platelet
counts

PAZ protocol

B[0] B[1] B[2] B[3] B[0] B[0]

BMT

Potential CGVHD

Figure 1. Abstraction of time-oriented data in the bone-marrow
transplantation domain. Raw data are plotted over time at the
bottom. External events and the abstract concepts computed
from the data are plotted as intervals above the data. =
an external event (medical intervention); • = platelet counts; ∆ =
granulocyte counts; = a context interval; = a de-
rived abstract concept interval; BMT = bone-marrow trans-
plantation (an external event); PAZ = a protocol for treating
chronic graft-versus-host disease (CGVHD), a complication of
BMT; B[n] = bone-marrow–toxicity grade n, an abstract con-
cept of platelet and granulocyte counts.

The knowledge-based temporal-abstraction
(KBTA) problem-solving method [Shahar, 1997] was
originally proposed specifically to solve the TA task. The
KBTA method was designed with clear semantics for
both the problem-solving method and its domain-specific
knowledge requirements. The KBTA input includes a set
of time-stamped parameters (e.g., blood-glucose values),
external events (e.g., insulin injections), and, optionally,
one or more user abstraction goals (e.g., therapy of pa-
tients who have insulin-dependent diabetes). All three
input types can induce temporally extended contexts that
can change the interpretation of one or more parameters
[Shahar, 1998]. The KBTA output includes a set of in-
terval-based, context-specific abstract concepts of several
types: state (e.g., High), gradient (e.g., Decreasing), rate
(e.g., Slow), and pattern (e.g., Multi-organ-toxicity). The
KBTA method uses five TA mechanisms (e.g., context-
formation) for five different inference tasks, which re-
quire four domain-specific TA knowledge types for any
particular domain: (1) structural knowledge (e.g.,
ABSTRACTED-INTO relations); (2) classification
knowledge (e.g., definition of a parameter range as High);
(3) temporal-semantic knowledge (e.g., episodes of ane-
mia can be aggregated into a longer single episode, since
they are concatenable, but consecutive pregnancies can-
not); (4) temporal-dynamic knowledge (e.g., persistence
of a proposition over time when data is unavailable [Sha-
har, 1999]). Figure. 1 shows an example of input for the
TA task, and the resulting output, in the case of a patient
who is being treated by a clinical protocol for treatment
of chronic graft-versus-host disease (GVHD), a complica-
tion of bone-marrow transplantation. The KBTA method
was implemented within the RÉSUMÉ system [Shahar
and Musen, 1996], which was tested in several different

clinical domains, such as protocol-based care of patients
who have AIDS or who have undergone bone-marrow
transplantation; monitoring of children who have poten-
tial growth problems or of patients who have insulin-
dependent diabetes, as well as in engineering domains
such as traffic management [Shahar and Molina, 1998].

A part of the KBTA method was implemented in the
RASTA system [O’Connor et al., 2001]. In addition, the
RASTA system provided a distributed algorithm to speed
up the execution of the TA task. Neither the RÉSUMÉ
system nor the RASTA system allowed external querying
or dynamic exploration of the high-level time-oriented
abstract concepts generated by the TA process, as an
inherent part of the system. Thus, temporal-database
mediators were introduced to provide a more complete
solution. (Indeed, the Momentum system is a part of a
more general TA mediation architecture).

2.2 Temporal Mediation

A general approach to the TR and TM integration, called
a temporal-database mediator, was suggested in an early
architecture, the Tzolkin system [Nguyen et al., 1999]
and in the more recent work describing the Chronus-II
temporal database mediator [O’Connor et al., 2002]. This
approach encapsulates the TR and the TM capabilities in
a reusable software component that can answer raw or
abstract, time-oriented queries. Such a system is called a
mediator because it serves as an intermediate layer of
processing between client applications and databases
[Wiederhold, 1992]. As a result, the mediator is tied to
neither a particular application, nor to a particular database
[Wiederhold and Genesereth, 1997]. Furthermore, the tem-
poral reasoning method encapsulates the task-specific TA
reasoning algorithm that uses the domain-specific knowledge
(thus, Tzolkin is really a temporal-abstraction mediator).
The Tzolkin system consisted of the RÉSUMÉ temporal-
reasoning module and the Chronus temporal-
maintenance module. RÉSUMÉ generated all abstrac-
tions mentioned in the query and wrote them into a tem-
porary database; then, the Chronus module applied the
temporal constraints of the query to the temporary data-
base (which now included also the desired abstractions),
to generate the complete answer. A similar relationship
exists, respectively, between the RASTA and Chronus-II
systems in the Chronus-II temporal database mediator.

The mediator approach to temporal-data management
is relatively novel, and thus raises new problems. One
such problem is the difficulty in evaluating the general
time complexity of a system that uses two very different
computational methods, one of which is executed within
working memory, and the other embedded within a data-
base; the basic computational operation is difficult to
define. Execution of complex temporal queries raises the
important issues of the defeasibility (nonmonotonicity) of
the computed temporal abstract concepts, and mainte-

nance of the validity of the conclusions over time. The
RÉSUMÉ system used a truth-maintenance system
(TMS) that allows specific temporal abstractions to be
withdrawn from working memory when new, contradic-
tory data arrive (e.g., the result of a laboratory test that
was taken 2 weeks ago). However, the TMS did not
extend to the external database. To avoid the non-
monotonicity problem, Tzolkin computes (de-novo) all
abstractions based on the content of the database at the
moment that the query is evaluated, a strategy that can
obviously lead to significant response-time problems in
the case of queries referring to complex temporal pat-
terns, large longitudinal patient records, or a large set of
patients. Furthermore the persistence of the computed
abstract concepts cannot be managed between queries.
Consequently, without a TMS at the database level, opti-
mization techniques such as performance of batch compu-
tations are useful only when used with a data set that is
guaranteed to be consistent over time (an unlikely situa-
tion in clinical databases). The Chronus-II mediator faces
the same kind of problems. The query languages of the
mediators also raise the issue of temporal knowledge
maintenance and reuse. Temporal constraints in the
Tzolkin and Chronus-II mediators can be defined only by
using their querying languages, TSQL and TSQL2, re-
spectively. This means that there is no way to share and
reuse temporal-pattern knowledge among different tem-
poral queries. This restriction makes concise query ex-
pression difficult. For example, many typical clinical
temporal queries have to be written as two or more sub-
queries, which makes the query less concise and certainly
less readable. In the Momentum system, we provide a
solution to all the presented problems, while preserving
the strengths inherent in the TA mediation approach.

2.3 Active Databases

Active databases (ADBs) extend “passive” databases by
enabling the specification of reactive behavior as part of
the database [ACT-NET, 1996; Widom and Ceri, 1996].
Event-condition-action rules (ECA-rules) in ADBs
consist of events, conditions and resulting actions. The
meaning of an ECA rule is: “when an event occurs, check
the condition and if it holds, execute the action”. Once a
set of rules has been defined, the active database system
monitors the relevant events. Whenever it detects the
occurrence of a relevant event, it notifies the component
responsible for rule execution. Subsequently, all relevant
rules are triggered and executed. Rule execution incorpo-
rates condition evaluation and action execution. First, the
condition is evaluated; if it is satisfied, the ADB executes
the action. An ADB provides a rule definition language
(RDL) as a means of specifying ECA-rules. Thus, an
ADB supports rule specification, event detection, and rule
execution.

We based the Momentum system on an active time-
oriented database approach, which is a temporal exten-
sion of the active database concept. The presented ap-
proach preserves the efficiency of databases in handling
data storage and retrieval, while adding the power of
expressing and performing complex temporal reasoning
using, as will be shown, an incremental-computation
approach.

3. The Temporal-Abstraction Mediation
Process

Before describing the Momentum system in detail, we
present the context in which the system operates.

We define a temporal-abstraction mediation (TAM)
process as a sequence of high-level tasks required to
eventually generate temporal abstractions and to answer
temporal queries. The process involves all phases, from
data and knowledge input, through processing input raw
data and delivering it in a form of knowledge-based ab-
stract concepts to the TA mediation client applications
(e.g., patient monitoring, application of clinical guide-
lines, assessing of the quality of guideline application,
visualization and exploration of clinical data, etc.).

The TAM process (Figure 2) includes three phases:
temporal knowledge and data acquisition, abstract-
concept generation (including truth and persistence main-
tenance), and the abstract-concept access. The proposed
process deliberately separates the data and knowledge
acquisition and abstract concept generation from the ab-
stract concept access. First, all the available abstract
concepts are generated; only then they can be accessed.
The queries do not need to generate abstract concepts on
the fly, and thus they can be quickly answered even for
complex queries and large sets of patients. Although all
abstract concepts are generated before the data access
(querying) starts, the process allows ad-hoc abstract con-
cepts definition during the data access phase. In this case,
the ad-hoc defined abstract concepts are generated during
the query processing. This allows some level of flexibil-
ity for those client applications which cannot or do not
desire to define in advance all abstract concepts in the
knowledge base.

To support the TAM process, we have developed the
temporal-abstraction mediation architecture.

3.1 The Temporal Abstraction Mediation Architecture

The temporal-abstraction mediation architecture (Figure
3) has two major aspects that are sufficiently different to
warrant independent consideration. We labeled these two

parts as the back room and the front room2. The back
room supports the first two phases of the temporal ab-
straction mediation lifecycle–from the data and knowl-
edge acquisition to the high-level abstract-concepts gen-
eration, truth and persistence maintenance, while the front
room supports the third phase–the abstract-concepts ac-
cess.

Ad-hoc Defined
Concepts Querying

Initial Knowledge ETL

Initial Data ETL

Data & Knowledge Acquisition

Delta-based
Data Update

ETL

Delta-based
Knowledge

Update
ETL

High-level Abstract
Concepts Generation,

Truth Maintenance
and Persistence

Maintenance

Abstract Concepts
Generation

and Maintenance

Abstract Concepts
Access

Temporal Abstraction Mediation Process

Definition of
Knowledge Base &

Data Souces

Predefined
(Knowledge Based)
Concepts Querying

Figure 2. The temporal abstraction mediation process. The
process is a sequence of high-level tasks required to generate
temporal abstractions and answer temporal-abstraction queries.
The process includes three phases: temporal knowledge and data
acquisition, abstract-concept generation, truth and persistence
maintenance, and access of the resultant abstract concepts. During
the first phase, an extract, transform, and load (ETL) process is
performed on the knowledge base and operational data sources:
the sources are defined, the knowledge and data are extracted,
transformed (for example, in accordance with a controlled medical
dictionary) and loaded for the subsequent temporal abstract
concepts generation.
We distinguish initial knowledge/data ETL from incremental
knowledge/data updates (delta updates). During the second phase,
the new knowledge-defined high-level abstract concepts are
generated and the truth is maintained for the previously generated
abstract concepts for each ETL (initial or delta-based). During
this phase the persistence is also maintained for the generated
abstract concepts. During the third phase, the generated abstract
concepts can be accessed. Abstract concepts can be predefined in
the underling knowledge base, or defined ad-hoc during the
abstract-concepts access phase.

The presentation server is the “glue” which brings the
two rooms together, hiding the complexities of the high-
level abstract-concepts generation and enabling the deci-
sion support data to flow virtually seamlessly to the users
community in form of the high-level abstract concepts
generated from the data sources, according to the knowl-
edge defined in the knowledge bases. The presentation
server in fact integrates the TR tasks (abstract concept
generation, truth and persistence maintenance) with the

TM tasks (data and knowledge load, and the query ser-
vices).

The Momentum system implements the presentation
server of the architecture presented in Figure 3.

The Back Room The Front Room

Data & Knowledge
 Acquisition Services

Query
Services

- Extract
- Transform

- Browsing
- Querying
- Exploration
- Reporting

Primitive Data:
Persistence

Management

Assessing of
the Quality of

Guidline
Application

Presentation Server

Visualization
and

Exploration of
Clinical Data

Application of
Therapeutic
Guidlines

Patient
Monitoring

High-level Abstract
Concepts: Generation,

Persistence Maintenance,
Truth Maintenance

Source Systems
EMR,

Laboratory Data
etc.

Knowledge Bases
BMT, etc.

Knowledge
Acquisition

Data
Acquisition

 - Load

Figure 3. The temporal abstraction mediator architecture. The
architecture includes two parts: the back room and the front
room. The back room is the part of the architecture that is
responsible for data and knowledge acquisition (using the
knowledge and data acquisition services), high-level abstract
concepts generation, truth and persistence maintenance. Data
and knowledge moves from the source systems and the knowl-
edge bases to the acquisition areas using the applications pro-
vided as part of the data and knowledge acquisition services
layer. This flow is driven by the definitions of the sources and
targets and the transformation details (for example medical
dictionaries mapping). The front room is the part responsible
for delivering the generated abstract concepts to the user com-
munity: clinicians and computer based decision support systems
(using the query-services layer). Both rooms share the presen-
tation server, which loads the primitive data and knowledge in
the case of the back room, generates abstract concepts, provides
truth and persistence maintenance to the abstract concepts, and,
in the case of the front room, presents the generated abstract
concepts to the query services in a fashion that facilitates an-
swering the user-issued temporal queries.

4. The Momentum System

Systems integrating both the TR and the TM tasks have
requirements that span from efficient data-manipulation,
typical of databases, to inference capabilities, typical of
TA systems. Active databases may be considered as a
bridge between these two kinds of systems: they have
both the efficiency of databases in handling data storage
and retrieval and the power of expressing complex infer-
ence mechanisms.

The Momentum system extends the approach of active
databases to active time-oriented databases, by treating
the temporal dimension in a unique fashion. In analogy
to ECA-rules and rule execution of active databases, we
provide Momentum with the domain knowledge required
by the KBTA method and with the TA mechanisms. We
also provide a knowledge definition language (KDL),
which, in analogy to RDL, allows us to specify domain
knowledge according to the KBTA ontology, and a tem-
poral abstraction query and instruction language

2 The back and front room notations originated in the data ware-

house engineering community [Kimball and Ross, 2002].

(TAQILA). TAQILA supports the tasks of both raw-
data specification and querying, abstract concepts query-
ing, explanation of derived concepts, and dynamic sensi-
tivity analysis of the derived concepts.

M

TAQILA Result Set

KDL Rules
Processing

Persistence Management

Primitive Data Elements
Processing

Retrieval

Querying

Querying

Exploration

Momentum Instance

Priminitve Data
Elements

Generated
Contexts

Abstract Concepts:
STATE, GRADIENT, RATE, TEMPORAL PATTERNS

Knowledge
Elements

Momentum Repository

Basic Abstractions

Temporal Patterns

Contexts Generation

Temporal Abstraction

Active Knowledge Elements and Run-time Data Structures

KDL Rules

instructions

Truth Maintenance

4.1. The Momentum Architecture

The Momentum architecture (Figure 4.)is modular, and is
independent of any domain or application. The Momen-
tum system includes, for each knowledge-base/data-
source configuration, an instance of a dynamic-
processing environment–the run-time environment, and
an instance of a dynamic repository–the storage. The
dynamic-processing environment is where the abstract-
concept generation and querying take place. The dy-
namic repository provides persistence to the loaded
knowledge, the loaded raw data, and the generated ab-
stract concepts, which are stored along with their genera-
tion details (i.e., logical justifications such as abstracted-
from and abstracted-into links). The dynamic-processing
environment uses the repository to manage its persistence.
Each knowledge base and data source, or a group of con-
formed data sources (sources containing different data
aspects of the same patients), define a unique dynamic
repository, which allows Momentum clients to work with
different data and knowledge sources according to the
temporal-abstraction mediation architecture.

Figure 4. The Momentum Architecture: The Momentum sys-
tem includes a dynamic processing environment–the run-time
environment (where the abstraction and querying take place),
and a dynamic repository (which provides persistent storage to
primitive data, knowledge, and generated abstract concepts).
The dynamic processing environment uses the repository to
manage its persistence. Each dynamic processing environment
consists of five modules: (1) KDL-rule- processing, (2) primi-
tive-data processing, (3) abstraction, (4) querying, and (5) per-
sistence management. Module (1) loads knowledge into the
system and generates active knowledge elements, which detect
the occurrence of relevant primitive or abstract concepts and
activate the abstraction process; module (2) loads the primitive
data into the run-time data structures; module (3) generates
abstract concepts and updates the run-time data structures;
module (4) enables retrieval and exploration (sensitivity analy-
sis, etc.) of the generated abstract concepts set; module (5)
manages persistence of the primitive and generated abstract
concepts, as well as of the active knowledge elements.

The Momentum system implements the presentation
server’s back room functionality by providing KDL rules
for knowledge definition and TAQILA raw-data specifi-
cation instructions for the data loaded from data sources.
The front room functionality is implemented by providing
TAQILA querying capabilities which allow retrieval and
exploration of both raw data and abstract concepts.

TAQILA also supports exploration querying such as
explain queries, which provide the data instances from
which an abstract concept instance was derived, and
what-if dynamic sensitivity-analysis queries, which sup-
port propagation of the implications of hypothetical
modifications to either data or knowledge. TAQILA
provides: (1) raw data instructions–for inserting (ADD),
updating (UPDATE), and removing (REMOVE) primi-
tive data elements; (2) retrieval (FIND) querying–for
querying raw and derived concepts; and (3) exploration
querying–for justification of the abstraction process
(EXPLAIN) and for dynamic sensitivity analysis
(WHAT-IF), which simulates the effect of modifying the
data or the knowledge, using the TMS. Retrieval and
exploration querying return sets of temporal intervals
satisfying the query constraints. The TAQILA queries
and instructions form an application interface (API) that
is typically manipulated by various client applications.

4.2 The Temporal Abstraction Query and Instruction
Language (TAQILA)

TAQILA is simple yet expressive general-purpose query
language. It enables data addition, asking runtime queries
regarding the generated (knowledge based) or ad-hoc
defined abstract concepts; its default arguments for such
concepts include: start time, end time, and value.

Figure 5. The abstract concept dependency tree of post-BMT
multi-organ toxicity, part of the oncology-domain knowledge
base. Directed arcs represent dependency relations. All con-
cepts require a Post-BMT Context generated by the BMT
event. Multi-organ toxicity is a temporal pattern which is de-
fined as one week overlapping of meyelotoxicity and renal
toxicity (GRADE_3 lasting for at least one week). Platelet, wbc
and creatinin are raw data elements which can be abstracted into
platelet_state, wbc_state and creatinie_state respectively. Mye-
lotoxicity is abstracted from either platelet_state or wbc_state
and is computed as a maximum of their values. Renal toxicity is
abstracted from creatinine state.

In the reminder of this section we present in detail the
data and knowledge flow that demonstrate how, given the
knowledge presented in Figure 5, Momentum handles
several different types of TAQILA data-addition instruc-
tions and data- and concept-retrieval and exploration
queries. The examples also present some of the TAQILA
syntax.

Table 1. Processing of a set of TAQILA instructions and que-
ryies, using the knowledge represented within the concept de-
pendency tree depicted in Figure 5 as an example.

TAQILA Momentum Processing

ADD (ID_1, BMT, , ‘Jan 3,2002’,
‘Jan 3,2002’)

ADD (ID_1, Creatinin, 2.5, ‘Jan
12,2002’, ‘Jan 12,2002’);

BMT event creates a Post-
BMT context. All abstract
concepts with Post-BMT as a
necessary context can now be
generated.

Momentum adds a creatinin
instance for the patient ID_1
with value 2.5 on Jan 12,
2002, to the repository and
generates creatinine_state
abstract concept on ‘Jan
12,2002’ with value HIGH
(using a pre-existing
creatinin_state definition).

ADD (ID_1, Platelet , 70,000,
‘Jan 12,2002’, ‘Jan 12,2002’);

Momentum adds a platelet
instance to the repository,
generates Platelet_state in-
stance on ‘Jan 12,2002’ with
value NORMAL, and Mye-
lotoxicity on the same day with
value GRADE_0.

ADD (ID_1, WBC , 2000, ‘Jan
12,2002’, ‘Jan 12,2002’);

Momentum adds a WBC in-
stance to the repository, gener-
ates WBC_state instance on
‘Jan 12,2002’ with value LOW;
the TMS then updates mye-
lotoxicity on that day to
GRADE_2

UPDATE WBC

WHERE CASE.id = ID_1

Momentum updates the WBC
instance; the TMS updates the

WHEN time = ‘Jan 12,2002’

SET value = 600;

value of the WBC_state in-
stance to VERY_LOW and the
value of the Myelotoxicity
instance to GRADE_3

ADD (…),

UPDATE (…),

REMOVE (…)

Momentum adds primitive
instances to the repository,
generates new abstract con-
cepts, and propagates updates
via the TMS.

FIND SECOND Myelotoxicity
WHEN
start-time < ‘Jan 12,2002’ AND
stop-time BEFORE NOW
RETURN CASE.id, value;

FIND Result:
PID CID VALUE
017 ID_1 GRADE_3
021 ID_2 GRADE_2

EXPLAIN 017

<Myelotoxicity>
abstracted from:
Wbc_state and Platelet_state
using StateMaxOr mapping
function.
Details:
005
Wbc_state(ID_1,VERY_LOW,
‘Jan 12,2002’ , ‘Jan 12,2002’)
007
Wbc_platelet(ID_1, NORMAL,
‘Jan 12,2002’ , ‘Jan 12,2002’)

For each case (e.g. each patient)
the query searches patients
whose myelotoxicity starts after
‘Jan12,1998’ and finishes
before NOW. For each found
instance the case id (e.g. patient
id) and the instance value are
returned.

The FIND query allows query-
ing of primitive and derived
concepts as well as ad-hoc
detection of temporal patters
(ad-hoc temporal pattern speci-
fication). The basic FIND
query consists of 4 clauses:
FIND, WHERE, WHEN and
RETURN. The FIND clause
constrains the resulting set on
the element type (e.g. Mye-
lotoxicity) and on ordinal
ordering (FIRST, SECOND,
THIRD, or LAST). The
WHERE clause specifies
constraints on the case attrib-
utes (e.g., CASE_ID) and non-
temporal instance attributes
(e.g., value). The WHEN clause
constrains the temporal attrib-
utes of the time intervals of the
data element-instances (start,
end time points, and duration).
Finally, the RETURN clause
specifies the desired projection
on the data-element attributes.

In this example, the result set
consists of three fields: PID –
derived instance id, CID – case
id and the value;

The EXPLAIN instruction
provides the concept instances
from which an abstract concept
instance was derived, within
the KDL rule that generated
them (i.e., both the data and the
knowledge).

FIND SECOND
Multi_organ_toxicity AS
{
OVERLAPS((GRAIN = WEEK,
Renal_toxicity(value=GRADE_3

 AND
 duration >= 2),

Myelotoxicity (value=GRADE_3
 AND
 duration >= 2),

(overlap >= 1))

This query demonstrates the
ability of TAQILA to define
the temporal pattern on the fly.
The query searches for in-
stances of multi-organ_toxicity
(a temporal pattern which is
defined as a one week overlap-
ping of myelotoxicity and
creatinine_state, both of which
have a value of GRADE_3 for
at least two weeks), which
starts before ‘Jan 12,2002’ and
finishes before now.
Momentum first retrieves all

}
WHEN
start-time < ‘Jan 12,2002’ AND
stop-time BEFORE NOW
RETURN CASE.id, EXISTS?;

renal_toxicity and myelotoxic-
ity instances, then generates all
available Multi_organ_toxicity,
and finally constrains the
generated instances according
to the WHEN clause. The query
returns the boolean indication
whether the temporal pattern
was found for a patient.

SET WHAT-IF ON

ADD (…), UPDATE (…),
REMOVE (…), FIND (..) …

SET WHATIF OFF

The WHAT-IF instruction
allows dynamic sensitivity
analysis of hypothetical modi-
fications of either data or
knowledge.
SET WHAT-IF ON starts the
what-if session. TAQILA
instructions can then be per-
formed. After the SET WHAT-
IF OFF instruction, the reposi-
tory returns to the initial pre-
session state.

4.3. The Momentum Dynamic-Processing Data
Structures and Algorithms

Due to lack of space, we will not present here the full
internal workings of Momentum. However, several points
are worth mentioning:

1. Momentum uses (a) several specialized time-oriented

structures in the database to represent the data, both
for the runtime evaluation environment and the re-
pository, and (b) specialized knowledge structures to
represent KDL rules.

2. The data structures are designed to optimize concept
generation, using computational mechanisms similar
to those of the KBTA method, but implemented quite
differently. For example, interpolation between simi-
lar concepts, using a context-sensitive interpolation
table [Shahar, 1999] is highly efficient; its worst case
complexity is O(N2), but typically (apart from a one-
time sorting operation) it is a linear process.

3. The data structures facilitate incremental modification
of the repository through a built-in TMS. An infer-
ence network maintains links among data, knowledge,
and derived concept instances.

4.4. Implementation Details

We implemented the Momentum system in Java Pro-
gramming Language. KDL and TAQILA as well as re-
sults sets are described as XMLs. For the data repository
we use a native XML database which is compliant to the
XML:DB specification and allows us to store unstruc-
tured data.

5. Discussion and Future Work

Momentum is an active time-oriented database for intelli-
gent abstraction, exploration and analysis of time-oriented
data, and, in particular clinical data. In this prototyping
phase of the system, although we are using real clinical
data and knowledge (mostly from chronic-disease do-
mains, such as oncology), no complete clinical validation
has been carried out yet. Nevertheless, the results of the
described work are significant mainly because they prove
that an active time-oriented database approach may be
effectively used for integration of temporal reasoning and
temporal maintenance.

Continuing the heritage of the Tzolkin system, Mo-
mentum is tied to neither a particular application nor a
particular database or knowledge base. Momentum is
thus independent of any particular domain and applica-
tion. The reuse of Momentum in a new application in-
volves modification of only the domain-specific knowl-
edge, does not require the application to understand the
details of the TR and TM tasks performed by Momentum,
other than the KDL and TAQILA APIs, and requires no
reprogramming.

Momentum tackles the responsiveness issue. A com-
plex temporal query execution process may be intractable
because the task of temporal reasoning is inherently com-
putationally expensive, especially when population que-
rying is involved (one of the main problems of the
Tzolkin and Chronus-II mediator architecture). To ad-
dress the problem, Momentum provides a new focus on
the persistence and reuse of previously derived abstract
concepts. Momentum dynamically generates and man-
ages the persistence of all relevant abstractions for a
given set of data previous to their use, and then enables
applications to perform querying and exploration, which
are very effective because all the possible abstractions
have already been generated and stored (somewhat simi-
lar to Tzolkin’s batch computation mode, but performed
dynamically and incrementally). However, not all types
of abstractions have to be predefined in the knowledge
and be computed before querying can be performed.
Temporal patterns can be defined in the querying phase
itself and computed on the fly. This allows flexibility that
resembles the Tzolkin TSQL and Chronus-II TSQL2.
Unlike the Tzolkin and Chronus-II mediators, however,
Momentum generates new abstract concepts only when
relevant primitive (raw) data is added to the system, with-
out re-computing previously generated abstractions (i.e.,
an incremental computational approach) while maintain-
ing truth in the already generated abstract concepts, using
dynamically formed logical links.

Unlike the Tzolkin and Chronus-II systems, the Mo-
mentum abstraction and querying modules share the same
run-time data structure and truth maintenance systems.
This unification solves the nonmonotonicity and basic
computational operation problems encountered by the
early temporal mediators.

Unlike Tzolkin’s TSQL and Chronus’ TSQL2, Mo-
mentum provides an expressive and simple general-
purpose TAQILA, which is not SQL-based. TAQILA
querying is being done on the generated abstract con-
cepts’ time intervals, where the default arguments are:
start time, end time, and value. This simplifies the query
syntax, and complex temporal queries can be very concise
and readable, yet equally expressive. Unlike the early
mediators, TAQILA also allows exploration querying
such as explain which provides the data instances from
which an abstract concept instance was derived, and
what-if dynamic sensitivity analysis queries, which allows
tracking of the hypothetical modifications of either data
or knowledge.

Finally, Momentum provides specification of TAQILA
instructions and KDL knowledge instances through well-
defined APIs. The clean APIs allow Momentum to be
used as part of a larger architecture. An example is this
supporting a temporal-abstraction mediation process, in
which the data and the knowledge is asserted and abstract
concepts are generated in advance; another example is a
Tzolkin–like architecture, in which the data and the
knowledge are asserted (possibly retrieved from an exter-
nal process) on the fly. One of the potentially highly in-
teresting experiments would be substituting Momentum
and its persistent storage system instead of the pure tran-
sient-memory temporal-abstraction component of the
IDAN temporal-mediation architecture [Boaz and Shahar,
2003].

In the short term, we plan to perform clinical valida-
tion of the Momentum system on one or more large clini-
cal databases. We also plan to further improve the per-
formance by making the abstraction algorithms parallel
and distributed. Multiple applications exist, such as sup-
porting guideline-based care within the DEGEL architec-
ture [Shahar et al., 2003a] and dynamic visual exploration
of time-oriented clinical data within the KNAVE-II archi-
tecture [Shahar et al., 2003b].

7. Acknowledgments

This research was supported in part by NIH award No.
LM-06806. We thank Martin O’Connor for useful discus-
sions regarding the Chronus-II and RASTA systems, and
David Boaz for illuminating discussions of temporal
mediation.

References

ACT-NET (1996). The Active Database Management System
Manifesto: A Rulebase of ADBMS features. ACM SIGMOD
Record, 25(3):20--49, September.
Boaz, D., and Shahar, Y. (2003). Idan: A Distributed Temporal-
Abstraction Mediator for Medical Databases. Proceedings of

the 9th Conference on Artificial Intelligence in Medicine—
Europe (AIME) ‘03, Protaras, Cyprus
Kimball R, and Ross M. (2002). The Data Warehouse Toolkit:
The Complete Guide to Dimensional Modeling (2nd Edition).
John Wiley & Sons.
Nguyen JH, Shahar Y, Tu SW, Das A, and Musen MA. (1999).
Integration of Temporal Reasoning and Temporal-Data Mainte-
nance into a Reusable Database Mediator to Answer Abstract,
Time-Oriented Queries: The Tzolkin System. Journal of Intel-
ligent Information Systems 13 (1/2), 121-145
O’Connor M.J., Grosso W.E., Tu S.W., and Musen M.A..
(2001). RASTA: A Distributed Temporal Abstraction System to
Facilitate Knowledge-Driven Monitoring of Clinical Databases.
Proceedings of MEDINFO-2001, the Tenth World Congress on
Medical Informatics, pp. 508-512, London, UK
O'Connor M. J., Tu S. W., Musen M. A.. (2002). The Chronus
II Temporal Database Mediator. Proceedings of the American
Medical Informatics Association (AMIA) 2002 Annual Fall
Symposium, San Antonio, TX.
Shahar Y, Musen MA. (1996) Knowledge-based temporal ab-
straction in clinical domains. Artificial Intelligence in Medicine
8, 267-298
Shahar, Y. (1997). A framework for knowledge-based temporal
abstraction. Artificial Intelligence 90 (1–2), 79–133
Shahar, Y. (1998). Dynamic temporal interpretation contexts
for temporal abstraction. Annals of Mathematics and Artificial
Intelligence 22 (1-2) 159-192.
 Shahar, Y., and Molina, M. (1998). Knowledge-based spatio-
temporal linear abstraction. Pattern Analysis and Applications 1
(2) 91-104
Shahar, Y. (1999). Knowledge-based temporal interpolation.
Journal of Experimental and Theoretical Artificial Intelligence
11, 123-144
Shahar Y, Young O., Shalom E., Mayaffit A., Moskovitch R.,
Hessing A., and Galperin M. (2003a). DEGEL: A hybrid, mul-
tiple-ontology framework for specification and retrieval of
clinical guidelines. Proceedings of the 9th Conference on Artifi-
cial Intelligence in Medicine—Europe (AIME) ‘03, Protaras,
Cyprus
Shahar Y, Boaz D., Tahan G., Galperin M., Goren-Bar D.,
Kaizer H., Basso L.V., Martins S.B., and Goldstein, M.K.
(2003b). Interactive Visualization and Exploration of Time-
oriented Clinical Data Using a Distributed Temporal-
Abstraction Architecture. Proceedings of the 2003 AMIA An-
nual Fall Symposium, Washington, DC
Widom J, Ceri S. (1996). Active Database Systems: Triggers
and Rules for Advanced Database Processing. Morgan Kauf-
mann, San Mateo, CA.
Wiederhold, G. (1992). Mediators in the architecture of future
information systems. IEEE Computer, 25:38–50.
Wiederhold, G. and Genesereth, M. (1997). The Conceptual
Basis of Mediation Services. IEEE Expert, 12(5), 38–47

