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Abstract 

This paper describes a new technique for clus-
tering short  time series coming from gene ex-
pression data.The technique is based on the la-
beling of the time series through temporal trend 
abstractions and a consequent aggregation of 
the series on the basis of their labels.Results on 
simulated and on yeast data are shown. The 
technique appears robust and efficient and their 
results easy to be interpreted. 

1. Introduction 

The rationale and motivation for applying clustering tech-
niques in bioinformatics research has been recently stud-
ied [1]. Within this area, an issue of raising interest is 
related to the classification and clustering of time series 
of gene expression data. The methods which have been 
proposed in the literature can be classified in two broad 
categories: discriminative or similarity-based approaches 
[1] and generative or model-based approaches [2]. Rather 
interestingly, in both cases the a posteriori analysis of the 
clustering results are often based on both a qualitative 
assessment of the similarity of the clustered time series, 
together with speculations on the functional relationships 
between the clustered genes. In the case of short time 
series, an alternative choice could be to resort to template 
matching classification techniques, such that the gene 
expression profiles may be associated (classified) to the 
closest temporal profile [3]. Template matching, however, 
requires that templates are hypothesized or exhaustively 
generated on the basis of the available data set. For this 
reason, we resorted to a new technique which dynami-
cally generates temporal templates corresponding to gene 
expression clusters. Such technique is based on temporal 
abstractions [4]. 
 

2. Method 

The method we propose is based on the description of the 
time course of a variable through a set of consecutive 
trend temporal abstractions. In this way a numerical 
variable (i.e. gene expression) is represented through a set 
of qualitative labels like Increasing, Steady, and 
Decreasing. 

The mechanism for Temporal Abstraction (TA) detection 
is based on a modification of an algorithm for piecewise 
linear curve approximation applied in image filtering [5]. 
The algorithm works as follows:  

The first step of the algorithm finds a piecewise linear 
approximation for each initial time series, in order to con-
sider only significant slope changes in the gene expres-
sion. This is performed through two sub-steps: first, 
within the initial set of points a subset of change points, 
called dominant points, is found and, second, a least 
square fitting is performed between dominant points to 
find a final approximating curve. In order to choose the 
set of dominant points, we start at the first point of the 
curve and consider each successive point, and then 
compute chord length C and arc length S. For instance, 
for the example in Figure 1, we can compute the chord 
length C as the distance between the points collected at t1 
and t3, while S is the sum of the distances between points 
collected at t1, t2 and t3. Once S and C are computed, we 
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certain threshold, we declare the previous point as domi-
nant; otherwise the algorithm goes on by considering the 
next point. The same method may be applied a second 
time on the set of dominant points found, in order to fur-
ther eliminate some of the points retained in the first step. 
To find the final approximating curve, we consider cou-
ples of neighbouring dominant points and we compute a 
least squares first order approximation to the points on the 
original curve between the dominant points. In this way 
we obtain a piecewise linear curve as an approximation of 
the original one. In Figure 1a it is possible to see the 



dominant points, denoted by a circle, detected by the al-
gorithm. 
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Figure 1. (a) A time series of 6 points. The distance between 
chord (C) and the arc (S) is used to detect change in slopes. The 
points for which a change is found are denoted as dominant 
points (circles). (b) Once the piecewise linear approximation is 
found the trend abstraction is easily derived through the step 
detection and interval aggregation. 
 

As a second step, we consider the slope of each piece of 
the resulting curve and we test its statistical significance. 
We then associate to each piece a Steady TA if its slope is 
zero or non significant, to an Increasing TA if its slope is 
>0 and with a Decreasing Temporal Abstraction if the 
slope is <0. In this way we are able to label each curve 
with the sequence of labels of its pieces. We then check 
the labels of each time interval in order to aggregate con-
secutive equal elements: if two or more of adjacent ele-
ments present the same value, we collapse them in a sin-
gle element. In the example of Figure 1 b, the set [In-
creasing Increasing Steady Decreasing Decreasing] will 

become [Increasing Steady Decreasing]. We can denote 
this set as the abstract pattern. 

The third step is to put together temporal series into clus-
ters or classes. A new class is created every time the ab-
stract pattern of the gene differs from that of the ones that 
have already been classified; in this way, genes with the 
same abstract pattern are put together in one class. 

Let us note that the method proposed can be considered 
as a template-based matching strategy, in which the tem-
plates are not pre-defined, but they are dynamically built 
on the basis of the abstract features of the gene expression 
profiles. Rather interestingly, the above described method 
is very efficient from a computational viewpoint, since, 
once the abstract pattern is extracted, the classification is 
readily performed. Moreover, the clusters are self-
explanatory, since they are always denoted by their set of 
temporal abstractions. 
The algorithm described above has been validated 
through a simulated study in which temporal profiles 
randomly extracted from a set of five templates (each one 
consisting of 5 points) and corrupted by noise have been 
blindly re-classified using our approach. The 
misclassification rate for the simulated data is shown in 
Table 1, in presence of a fixed threshold for the value Th 
of equation (1). The data are normalized between 0 and 1. 
Notice that the algorithm works very well when the level 
of noise is low, while presents problems in discriminating 
complex patterns when the level of noise increases. 
Rather interestingly the algorithm is still able to 
discriminate between increasing and decreasing trends 
even if the values may span for the 40% of the original 
signal. If the noise level is known in advance, the overall 
performance may be improved by tuning the threshold 
parameter. 

 
Misclassification Rate (%) Noise 

(std. 
dev) 

Increasing Decreasing Decreasing 
Increasing 

Increasing 
Decreasing 

Steady 
Increasing 

0 0 0 0 0 0 
±0.01 0 0 0 0 16 
±0.05 2 0 36 22 46 
±0.1 32 20 68 66 54 

±0.25 84 86 94 100 78 

Table 1. Results on simulated data 
 
The algorithm has been used to classify the data coming 
from several different gene expression studies on yeast 
which are publicly available at 
http://www.transcriptome.ens.fr/ymgv/. Our final goal is 
to derive a predictive model for the function of unknown 
genes on the basis of the information coming from multi-
ple experiments. Figure 2 shows some results obtained on 
the yeast expression data from a study on stress response 
[6]. Notice that the TA-based clustering finds meaningful 



aggregations, providing the user a clear explanation of the 
clustering results. 
 

 

 

 
 
Figure 2. Three Temporal patterns extracted from the yeast data 
reported in [6]. The results are meaningful and easy to be inter-
preted. 
 

3. Discussion and future work 

The method presented in this paper allows to perform 
clustering of short time series. It works well in presence 
of few points, by extracting the abstract behaviour and 
classifying the series on the basis of the behaviour itself. 
In order to properly apply the algorithm and to further 
improve its performance, it is necessary to analyse its 

limitations. The abstract patterns may aggregate time se-
ries with strong dislocations; for example a series of the 
kind [Increasing Decreasing Decreasing Decreasing] has 
the same abstract pattern of the series [Increasing Increas-
ing  Increasing Decreasing]. This may become unaccept-
able as the series becomes longer. To this end, we are 
currently working on an algorithm for the extraction of a 
taxonomy of abstract patterns, in which the classes are 
further subdivided into subclasses; the subclasses are 
made taking into account the information on the synchro-
nous occurrence of Temporal Abstractions. The Temporal 
Abstraction mechanism is strongly dependent on the 
choice of the threshold parameter Th. In order to derive a 
general strategy to define such parameter, we have ex-
tracted an experimental rule for defining Th as a function 
of the noise on the data after normalization.  

A final comment must be made on the potential exploita-
tion of the algorithm within a supervised learning strategy 
for assessing gene functions on the basis of their temporal 
information. Given the clustering strategy described 
above, the idea is to understand if one or more of the ab-
stract behaviours are able to discriminate between the 
functional roles of the genes. To this end we are evaluat-
ing the results obtained on functionally annotated genes, 
and are considering to combine classifications coming 
from the multiple experiments. 
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