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Abstract

Diagnostic categories are used to assemble,
organize, and communicate knowledge from
practitioners and clinical research. Unfortu-
nately, the boundaries between these cate-
gories are seldomly clear-cut, and therefore
multiple, competing definitions of a given
disease often co-exist. It is important to as-
sess whether such competing definitions re-
late to illnesses that differ in severity: in that
case, the definitions cannot be used inter-
changeably. Differences in severity of illness
are usually determined by statistical com-
parison of clinical outcomes in different pa-
tient groups. In this case, such an approach
is hampered by the fact that many patients
may comply to multiple definitions. This pa-
per presents a statistical approach to com-
paring multiple definitions of the same dis-
ease with respect to binary clinical outcomes.
Three methods of comparison are described
and evaluated theoretically and empirically.
The approach was applied to different defi-
nitions of the disease of severe sepsis.
Keywords: statistical testing; disease clas-
sification; severe sepsis; clinical trials

1 Introduction

Disease categories are the conceptual loci of medical
knowledge in medicine. In clinical practice, the estab-
lishing of a patient’s diagnosis (i.e. the assignment of
a disease category) is the starting point for retriev-
ing relevant knowledge that will guide further clinical
procedures, and for gaining additional experience with
the disease in question. It is therefore essential that
the diagnostic categories are suited to assemble, orga-
nize, and communicate medical knowledge.

Diagnostic categories are often formed based on
commonalities between patients that are medically
crucial, such as the underlying etiology or pathophys-
iology. In many medical fields, however, the under-
standing of these aspects of the disease is insufficient
to serve as a base for categories, and diseases are (com-

pletely or in part) defined in terms of clinical signs and
symptoms. Another consequence is that for many dis-
eases, different definitions circulate and are used by
different doctors and in different hospitals. Similarly,
each clinical trial defines its own patient inclusion cri-
teria, although they all claim to study the same dis-
ease. Note however that many patients having the
disease will satisfy all definitions that are in use.

The observation that different definitions are in use,
has consequences both for clinical care and research.
Results from clinical studies cannot be extrapolated
and generalised straightforwardly, because the popu-
lation under investigation might differ markedly from
the population in clinical practice. Also the deve-
lopment of prognostic models is hindered if the data
available to develop the model is based on patients
who have been diagnosed with the same disease by
different definitions. Note that these differences are
only a problem if the patient groups are different with
respect to the medically important characteristics, such
as severity of illness.

To study whether there are medically relevant dif-
ferences between two definitions, we now propose the
following approach. First, we select a medical out-
come (e.g. death) that may serve as an approximate
measure for severity of illness in the disease in ques-
tion. Second, cases are sampled and observed at ran-
dom from the population of patients that satisfy ei-
ther or both definitions. And third, the two groups
of observed cases satisfying either definition are sta-
tistically compared with respect to the selected out-
come. If a significant difference in outcome between
both groups is found, then we conclude that the two
definitions relate to illnesses that differ in severity and
cannot be used interchangeably. However, because the
two groups are likely to be overlapping, standard sta-
tistical comparison methods are inapplicable as these
assume that the groups to be compared are disjoint.

In this paper we present three statistical methods
to analyse the difference in outcomes of overlapping
patient groups. We restrict to the situation where
severity of illness is measured by a binary outcome.
In Section 2, we discuss the three methods and eval-
uate them using simulations on artificially generated



data. Section 3 presents an application in the area of
severe sepsis, a typical example of a disease for which
different definitions are in use. The methods are ap-
plied to the dataset from the Dutch National Inten-
sive Care Evaluation [5] to compare six definitions of
this disease that have been used in clinical trials. We
summarise the main results and discuss our findings
in Section 4.

2 Statistical comparisons of
nondisjoint subsets

In this section, we discuss three statistical methods
to compare the characteristics of nondisjoint subsets
of observations. To simplify the presentation, we will
restrict to the case where two subsets are to be com-
pared (see [6] for a generalisation of the methods to the
situation where k competing definitions are involved,
k > 2). Furthermore, we assume that the comparison
proceeds on a binomial outcome variable; in our study,
the outcome of interest is death versus survival. We
want to establish whether the mortality differs signifi-
cantly between the subsets, using a given significance
level α, 0 < α ¿ 1.

Let S be a representative sample of i.i.d. observa-
tions from the population of interest. Let D1 ⊆ S and
D2 ⊆ S be the subsets of observations that satisfy the
two definitions in dataset S. For any subset of ob-
servations S′ ⊆ S, let Y (S′) be the associated binary
vector of measurements that is used to compare the
two definitions. Furthermore, let πi, i = 1, 2, be the
parameter of interest in the population that is charac-
terised by definition i, and let pi =

∑
Y (Di)/|Di| be

its estimate in dataset S. Our null hypothesis is that
π1 = π2, which is immediately accepted if p1 = p2, and
requires further investigation otherwise.

2.1 Parametric tests
The standard method to compare differences in bi-
nomial outcomes variables is to perform Pearson’s
χ2 test [1]. Let n = |D1 ∪ D2| be the to-
tal number of observations in both subsets and let
p̄ =

∑
Y (D1 ∪D2)/|D1 ∪D2| be the mean observed

outcome in the union of both subsets. Then,

G =
n− 1

n
· (p1 − p2)2

SE2
0

(1)

where

SE2
0 = p̄ · (1− p̄) · ( 1

|D1| +
1
|D2| ) (2)

has a χ2 distribution with one degree of freedom if
D1 ∩ D2 = ∅. If there is overlap between both sub-
sets though, then all observations in the intersection
|D1 ∩D2| are used in the calculations of both p1 and
p2, and they are used twice in the calculation of the
variance SE2

0. In such cases we cannot trust that G
really has a χ2(1) distribution.

A simple way to alleviate this problem is to ran-
domly split S into two parts, apply one definition to

one part and the other definition to the other and com-
pute p1 and p2. Now the estimates are based on in-
dependent observations and we are certain that G has
the appropriate distribution. However, this method
is suboptimal for two reasons. First, the standard
error will be much larger because the estimates are
based on smaller subsets of observations. Second, an
‘unfortunate’ random split may obscure the difference
between π1 and π2, and this further reduces the power
of this method. If the differences between both defini-
tions are subtle, or if the dataset is small, this method
probably is not appropriate.

2.2 Analytic solutions
A rather different approach avoids the χ2-test alto-
gether by estimating the variances of the binomial
parameters p1 and p2 from the data. We therefore
distinguish three groups of patients: (a) patients that
satisfy both definitions and are thus in |D1 ∩D2|; (b)
patients that satisfy only the first definition and are
thus in |D1\D2|; and (c) patients that satisfy only the
second definition and thus are in |D2\D1|. Let πa, πb,
πc be the associated population parameters, and let as
before pa, pb, and pc be their estimates in dataset S,
e.g. pa =

∑
Y (D1 ∩D2)/|D1 ∩D2|. Furthermore, let

ϕk be the prevalence of group k, k ∈ {a, b, c} and let
fk be its estimate. For instance, fb = |D1 \D2|/|S|.

We now write
p1 − p2 = pa · ϕa

ϕa + ϕb
+ pb · ϕb

ϕa + ϕb

−
(

pa · ϕa

ϕa + ϕc
+ pc · ϕc

ϕa + ϕc

)

= pa · wa + pb · wb + pc · wc, (3)

where wa = ϕa(ϕc−ϕb)
(ϕa+ϕb)(ϕa+ϕc)

, wb = ϕb

ϕa+ϕb
, and

wc = −ϕc

ϕa+ϕc
. If we assume that the ϕ’s are fixed and

known, we have that
var(p1 − p2) = pa(1− pa) · w2

a

+ pb(1− pb) · w2
b

+ pc(1− pc) · w2
c , (4)

and we can compute a 1− α confidence interval for
p1 − p2 using a normal distribution. If the confidence
interval does not contain 0, we reject the null hypo-
thesis.

The advantage of this approach is that it takes into
account the covariance of the estimates p1 and p2 that
is due to overlap in the two definitions. There are
however two problems with the approach. First, the
empirical distribution of p1 − p2 may not be normal,
especially when π1 or π2 is at extremities of the [0,1]-
interval. Second, the parameters ϕa, ϕb, ϕc are nei-
ther fixed nor known, and have to be estimated from
the data and ‘plugged’ into the above formulae. So,
the uncertainty in the estimates of these parameters
is not taken into account. The derivation of a correct
model is highly complicated because the estimates of
ϕa, ϕb, and ϕc are also dependent quantities; this issue
not pursued here.



2.3 Bootstrap sampling
Bootstrap sampling [2; 3] is a computationally inten-
sive technique to estimate the uncertainty in statis-
tical estimates. In our case, we generate a sequence
of artificial datasets S∗1 , S∗2 , . . . (called bootstrap sam-
ples) by drawing with replacement from dataset S;
each of the artificial datasets has the same size as the
original dataset S. From each bootstrap sample we
estimate the relevant parameters; let p∗i,1, p

∗
i,2, p

∗
i,3, . . .

be the sequence of estimated parameters associated
with definition i (i = 1, 2). Each p∗i,j can be regarded
as the realisation of a random variable P ∗i . It can
be shown that E(P ∗i ) = pi, and that P ∗i − pi has the
same distributional properties as Pi − πi [2]. The esti-
mated variance of P ∗i can therefore be used as a mea-
sure of uncertainty in our estimate of parameter πi

from dataset S. We use bootstrap sampling to inves-
tigate the properties of the statistic (P1 − P2)∗. To
this end, we compute the difference p∗1,j − p∗2,j from
each bootstrap sample S∗j , and then count whether
a 1− α fraction of the computed differences has the
same sign.

The bootstrap sampling approach is attractive be-
cause it can estimate the variance of p1−p2 even though
the dependence of these estimates was not explicitly
modelled. Also note that this approach avoids making
assumptions on the distribution of the bootstrap vari-
ables P ∗1 and P ∗2 . However, the theoretical properties
of bootstrap distributions might not be obtained in
practice if the sample size is small. So, for small sizes
of dataset S, the results of bootstrap sampling tests
should be regarded with caution.

2.4 Experimental validation
The characteristics of the methods have been stu-
died by means of application onto a series of artificial
datasets. We applied the following method to gene-
rate the datasets: ϕa, ϕb and ϕc were randomly drawn
from a uniform distribution on the [0,1]-interval with
the restriction that ϕa + ϕb + ϕc = 1. The parame-
ters πa, πb, and πc were also drawn from a uniform
distribution on the [0,1]-interval, with the restriction
that in 50% of the cases πa = πb = πc (to simulate
the situation where there is no difference in expected
outcome); in the other cases the π’s were generally
close to each other (average difference between π1 and
π2 was 0.04, see [6] for details). Based on these pa-
rameters a sample of 1000 observations was generated.
To determine whether the associated sample estimates
p1 and p2 were significantly different, we applied the
approaches described above. This procedure was im-
plemented in S-plus and repeated for 2000 times.

The results of this experiment are presented in Ta-
ble 1 by the sensitivity and specificity of the methods.
The table shows that all methods except the analytical
method are highly specific, and will therefore rarely re-
port an unwarranted significant difference. The sen-
sitivity values suggest that the bootstrap method is
more accurate than the methods based on χ2 testing;

Method Sensitivity Specificity
Pearson’s χ2

normal 0.35 0.96
after split 0.25 0.94

Analytic 0.07 0.52
Bootstrap 0.46 0.92

Table 1: Comparison of the methods based on the appli-
cation on artificial data (n = 2000, α = 0.05)

especially the results with performing this test after
splitting the dataset are disappointing. The results
of the analytic solution are unsatisfactory: both its
sensitivity and its specificity are low. It seems that
the theoretical deficiencies of this method come with
a high penalty in practice.

3 Application to severe sepsis in the
ICU

The methods described above have been applied in the
area of severe sepsis, which is a typical example of a
disease with different definitions. We have selected six
prominent sepsis trials from the last decade and de-
rived their in- and exclusion criteria from publications
and study protocols (see [7] for the trials included).
These criteria have been applied to the dataset of the
NICE (National Intensive Care Evaluation) founda-
tion [5], which currently contains 71,929 records de-
scribing the first 24 hours and outcome of ICU stay
of part of the Dutch ICU population. In this manner
we created 6 subsets of patients that would have been
eligible for these trials, one subset for each trial.

Our study focuses on the differences between these
subsets with regard to ICU mortality as a proxy for
severity of illness. Parsons χ2 test for multiple pro-
portions yielded a p-value ¿ 0.001 (χ2 ' 64.87 with
5 degrees of freedom), suggesting that the subsets do
not have an equal ICU mortality. We have used the
methods described in Section 2 to study the differences
in detail by comparing the individual subsets with all
other individual subsets. To compensate for the fact
that multiple comparisons are being made, the level
of significance, α = 0.05, has been adjusted in a con-
servative manner (see [6]), resulting in α′ ' 0.0034.
Table 2 shows the results of these comparisons.

In six out of the fifteen comparisons, the meth-
ods yielded the same result (marked in bold). From
this unanimity we conclude that the PROWESS
and CORTICUS definitions and the Kybersept and
Annane definitions do not lead to significantly differ-
ent ICU mortality. The ICU mortality obtained by
using the Norasept definition differs significantly from
all others, except the Annane trial. In five compar-
isons (marked by an asterisk), the verdict of the ‘χ2 af-
ter split’ method (‘not significant’) deviated from the
others. Taking into account the low sensitivity of this
method we found with the artificial data, we believe



Definition ICU Compared to
[7] mortality (%) Lenercept PROWESS CORTICUS Kybersept Annane
Lenercept 23.6 - - - - -
PROWESS 25.5 NS † - - - -
CORTICUS 26.4 NS † NS - - -
Kybersept 29.3 S* NS † NS † - -
Annane 30.6 S* S* S* NS -
Norasept 39.1 S S S S S*

Table 2: Differences in ICU mortality in patient groups based on definitions of prominent sepsis trials, S denotes
significant, NS denotes non-significant. Results in bold indicate where all methods agreed. * Only ‘χ2 after split’ votes
NS. † Only the analytic solution votes S.

that in these situations indeed a significant difference
does exist. In four comparisons (marked by a dagger)
only the analytic solution reported a significant differ-
ence. However, the artificial experiments have shown
this method to be unreliable, which makes us believe
that in these situations the ICU mortalities do not dif-
fer significantly. Note that the definitions have been
ordered by the ICU mortality in the subset. The ver-
dicts of the methods are in line with the expectations
based on the ICU mortality in the different subsets.

4 Discussion and conclusions

This paper presents methods to compare overlapping
patient groups which arise from different definitions of
a single disease. The methods have been applied to ar-
tificially generated data and to real, clinical data per-
taining to the disease of severe sepsis. We have shown
that significant differences in ICU mortality exist be-
tween patient groups based on different definitions for
severe sepsis.

Note that the differences we have assessed are signif-
icant from a statistical point of view. From a clinical
point of view, a small difference in mean outcome may
be uninteresting. In such cases another null hypothe-
sis (e.g. H0 : |π1 − π2| < 0.05) would be more appro-
priate; the properties of the methods presented here
for such alternative testing hypotheses will have to be
investigated in the future. Furthermore, clinicians and
medical researchers may prefer clustered comparisons
of definitions over pairwise comparisons. For example,
the cluster of patients that fulfill the criteria of trials
with a relatively low ICU mortality (i.e. the Lener-
cept, the CORTICUS or the PROWESS trial) may
be compared to the Kybersept and/or Annane trial,
which have a higher ICU mortality.

The results obtained in the artificial experiments de-
serve further investigation. Future experiments have
to show the possible influence of unfortunate sampling
on the results (which would explain why the analytic
solution does not perform too bad with the real data).
Furthermore, the methods can be refined and com-
bined in various, more sophisticated ways. For ex-
ample, under appropriate distributional assumptions

a parametric bootstrap method may outperform the
nonparametric bootstrap method that was employed
here. Perhaps the limitations of the analytic solution
may be overcome by combining it with bootstrapping.

Another limitation of the work presented is that we
have restricted ourselves to the comparison of binary
outcome variables. However, severity of illness is often
quantified in terms of non-binary measures; examples
are the time until a specific event occurs (e.g. survival
time) and the patient’s score on a heuristic, discrete
scale (e.g. APACHE-score [4]). We intend to extend
the methods currently described to such measures in
the near future.
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