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Abstract

When analyzing gene expression levels for
the classification of genes or phenotypes, it
is of interest to simultaneously find marker
genes that are differentially expressed in par-
ticular samples. SOM biclustering consists
of coupled self-organizing maps (SOM) ap-
plied simultaneously on the row profiles and
the columns profiles of a discrete data ta-
ble. Here we introduce a natural extension of
the method, and we demonstrate the appli-
cability of SOM biclustering to and its added
value for the analysis of microarray data. We
have tested the method on T-cell acute lym-
phoblastic leukemia molecular data to con-
currently cluster coregulated genes and sam-
ples whose gene expression profiles are cor-
related.

Key words: SOM, self-organizing map; Biclustering;
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1 Introduction

Since the seminal paper of Eisen et al. [11] who pro-
posed hierarchical clustering of genes as a means to
identify patterns in the high-dimensional microarray
data, unsupervised clustering has become a common
tool used in the analysis of gene expression profiles.
Gene expression data are often presented in matrices
of expression levels of genes in different samples. One
of the usual goals of clustering is to group genes ac-
cording to their expression (Brown et al. 2000) or to
group samples based on the expression of a number
of genes (Alizadeh et al. ([1]; Golub et al.[15] ) or
both (Alon et al.[2]). In general, genes and samples
are clustered completely independently.

On the grounds that only a small subset of the
genes participate in any cellular process of interest,
which takes place only in a subset of the samples, and
that by focusing on small subsets one can lower the
noise induced by the other objects, Getz, Levine and
Domany [14] proposed simultaneous clustering of the
genes and the samples. Cheng and Church [6] intro-
duced the concept of coherence of a subset of genes

and a subset of conditions to define biclustering. The
idea of simultaneous clustering of rows and columns
of a matrix can be traced back to Hartigan [16].

In this work we introduce a natural extension of Ko-
rresp (Cottrell and Letrémy [8]), a method for biclus-
tering based on coupled self-organizing maps (SOM)
and correspondence analysis (CA), which was devel-
oped for applications in economy in order to analyze
the relation between two categorical variables. We
demonstrate its high value for the analysis of T cell
acute lymphoblastic leukemia.

2 Coupled SOMs by way of

correspondence analysis

The Kohonen Algorithm

The self-organizing map (SOM) introduced by Koho-
nen [17] can be viewed as a spatially smoothed ver-
sion of k-means clustering in which the prototypes
mk, k = 1, . . . ,K form a rectangular grid in a two-
dimensional manifold of the feature space R

q. The
algorithm attempts to exert deformations on the man-
ifold so that the prototypes approximate the data
points as well as possible. At convergence, the ob-
servations are mapped onto the two-dimensional grid.

In the original on-line algorithm, observations are
processed one at a time in a (uniform) random order.
For each observation x the closest prototype mk is
found in Euclidean distance in R

q. Then all neighbors
mj of mk on the grid are moved toward x via

mj ←mj + α(x−mj). (1)

The constant α as well as the radius of the neighbor-
hood in the topological space of integer coordinates of
the prototypes are allowed to decrease with time. Note
that large neighborhood radius and learning factor in
early iterations play the same role as the temperature
in simulated annealing. Like multidimensional scaling
the Kohonen algorithm tends to preserve proximities
between observations.

In microarray data analysis, the SOM-based model
was one of the first machine learning techniques suc-
cessfully used to illustrate the molecular classification
of cancer (Golub et al. [15] or the organization of



samples into biologically relevant clusters that suggest
novel hypotheses (Tamayo et al. [19]).

Biclustering with coupled SOMs

For a contingency table which expresses the associ-
ation between two categorical variables Cottrell and
Letrémy [8] proposed an algorithm named Korresp,
presumably short of Kohonen and correspondence, to
get a clustering of both rows and columns by coupled
SOMs. They used the approach taken in correspon-
dence analysis which favors the symmetry of rows and
columns. Following a similar extension of correspon-
dence analysis, here we apply the Korresp algorithm
to nonnegative data of gene expression in microarray.
We first briefly recall some backgrounds in correspon-
dence analysis.

Correspondence analysis (CA) CA is a statisti-
cal method for contingency table (Benzécri [3]) which
has been applied recently to gene expression data (Fel-
lenberg et al. [12] and Culhane et al. [9]). The aim
is to embed both rows (genes) and columns (samples)
of the expression matrix in the same space whose first
two or three coordinates contain the main part of the
information in the hope to expound the proximities
among genes and samples.

Consider a table E = (eij) of nonnegative gene
expression data for p genes (rows) and q samples
(columns). If e·· denotes the grand total

∑
ij eij and

F = E/e·· then CA is defined from the singular value
decomposition of the scaled table

D−1/2
r FD−1/2

c =
k∗∑

k=1

ukλkv
T
k

where k∗ ≤ min(p, q), Dr = diag(r) and Dc =
diag(c) are diagonal matrices of the row sums
r = (f·1, f·2, . . . , f·p)

T and the column sums c =
(f1·, f2·, . . . , fq·) and fi· =

∑q
j=1

fij , and f·j =∑p
i=1

fij .
The singular vectors (principal components)

are D
−1/2
r uk and D

−1/2
c vk, and CA gives the 2-

dimensional representation of the rows objects by

their principal coordinates (D
−1/2
r u2λ2,

D
−1/2
r u3λ3), and the column objects by

(D
−1/2
c v2λ2, D

−1/2
c v3λ3), the first singular value

being the trivial one. For simultaneous representation
of the row profiles D−1

r F and the column profiles
FD−1

c we overlay the plots in a joint display.

The Korresp algorithm. As noted previously
rows and columns are allowed to play symmetrical
roles in correspondence analysis. Since SOM works
on observations, usually rows in a data table, it is use-
ful to construct an augmented matrix from the orig-
inal data by adjoining transposed columns to rows
in the following way. We define the row profiles

ri = (
fij

fi·
), and the χ2 distance between two row pro-

files χ2
ii′ =

∑
j

1

f·j
(

fij

fi·
−

fi′j

fi′·
)2. Similarly we define

the column profiles cj = (
fij

f·j
) and the χ2 distance

between two column profiles.
For each row ri, there is an index j with largest

fij . Call cj|i the corresponding column. It is the
most probable column given that row if the data were
contingency counts. In the general case of nonnegative
data it is the most salient column given row i, and
in our case the sample for which the given gene i is
the most expressed. We adjoin to ri the transposed
vector cT

j|i. Symmetrically for each column cj there

is the most probable/salient row ri|j with which we
form (ri|j , c

T
j ). The Korresp algorithm operates on

the augmented matrix of dimension (p + q) × (q + p)
with two blocks of rows

(ri, c
T
j|i), for i = 1, . . . , p (2)

(ri|j , c
T
j ), for i = p + 1, . . . , p + q

Given a grid of K prototypes in R
p+q, denoted by

mk, k = 1, ...,K, chosen at random initially, each it-
eration alternates between the upper block and the
lower block to randomly draw within it an example to
be approximated by a prototype.

• Step 1: Upper block

– Randomly draw an example (ri, c
T
j|i)

– Determine the closest prototype in the sense
of the χ2 distance computed on the first q
components.

– For all neighbors on the grid update accord-
ing to (1)

• Step 2: Lower block

– Repeat the same as above for (ri|j , c
T
j ) but

now using the χ2 distance on the last p com-
ponents.

At convergence, samples and genes are clustered
in Voronöı classes, i.e. biclusters, which highlight
their proximities. The programs were implemented
in SAS-IML by Patrick Letrémy [18] at the Labo-
ratoire Samos-Matisse. The learning parameter is
α = 1 − ε0·K

K+c0·t
, where ε0 and c0 are small constants

and K the number of prototypes. The neighborhood
radius decreases piecewise linearly to zero.

3 Biclustering of T-ALL data

In a study on T-cell acute lymphoblastic leukemia (T-
ALL) Ferrando et al. [13] identified previously un-
recognized molecular subtypes and showed that ac-
tivation of the HOX11 oncogene confers a signifi-
cantly better prognosis as compared to expression
of TAL1 and LYL1 oncogenes in terms of patients’
survival. The data consisted of 39 T-ALL samples
that have been analyzed using both DNA microar-
ray and RT-PCR (reverse transcription polymerase
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Figure 1: Average linkage hierarchical cluster of 39
T-ALL samples with distance 1-ρ (n stands for nc)

chain reaction) methods. The oligonucleotide mi-
croarrays (Affymetrix, HU6800) with 7129 probe sets
were used to analyze the global patterns of gene ex-
pression. Among the 39 samples, RT-PCR detected
27 with aberrant expression of one of the three onco-
genes HOX11, LYL1 or TAL1, i.e., the ”pure” cases
identified as h, l or t-cases, 2 expressing both LYL1
and TAL1, i.e., the mixed cases identified as tl-cases,
and 10 without detectable expression of these onco-
genes identified as nc-cases. Using display of nearest-
neighbor groups of genes Ferrando et al. showed good
overall agreement between gene expression values ob-
tained by the two methods.

Hierarchical clustering To identify the genes
whose expression patterns best distinguished among
the h, t, l, and nc cases, Ferrando et al. performed per-
mutation tests of the maximum t-statistic and obtain
72 genes (p-value <0.30) which they used to build a
hierarchical tree for the samples. They did not provide
precisions about the algorithm nor the cutoff value in
the tree depth that distinguished the 3 major classes
labelled H (HOX11+ type), T (TAL1+ type), and L
(LYL1+ type). With the average linkage agglomer-
ative clustering algorithm and the 1-ρ dissimilarity,
where ρ is the Pearson correlation, we were able to
obtain a tree similar to Ferrando et al.’s and the 3
major classes at depth .33. Setting the cutoff at .28
allows to identify 2 subclasses M and HL, the latter
one being a novel tumor class related to the activation
of the oncogene HOX11L2, as discussed by Ferrando
et al.’s (Figure 1). The two identified subclasses con-
tain 3 samples each.

SOM Biclustering Since the number of samples is
small we chose a small 3×3 grid and we mapped the

L
tl1 tl2
l1 l2            l3           l4            l5

D17793 D50915 D87460 D88270
HG3521-HT3715     HG987-HT987
M13241      M14745 M22638 M27749       
M33552 M91438 S53911 S77763
S82470 U28014 U51240 U67963
U78027 X02596 X52192 X61118
X72889 Z68228

H
h2 h3            h4 h5

                  h6      h7          h8
nc3        nc9

M13194 M28825 M28826 S38742
U30521 U33822 U70323 Y00815

                                                                           

T
t1 t2 t3 t4
t5 t6 t8 t9
t10 t11 t12 t13

nc10

D43968 K02777 L25931 L76200
M12959 M16336 M80244 U09770
U13991 U89922 X60992 X62466
Y00796 Y11215

t7
nc8
nc1 nc2           nc5       nc7

D86479 J03077 J04823 J05243
M69181 M92287 S78187 U23852
X59871 X62534 X62535 X76223

1

     7

     3

9

Table 1. The four main SOM biclusters 1, 3, 7, and
9. The three first ones reproduce the three RT-PCR
groups with almost no variations. In each bicluster
are listed the samples and the genes that are close to
each other for the χ2 distance.

same 72 genes and all the 39 samples on this grid with
the hope of getting a reasonable number of samples in
each bicluster. We settled for 1000 iterations, and
used ε0 = 0.3 and c0 = 0.2 for the learning rate. The
results displayed in Figure 2 shows good consistency
with Ferrando et al.’s results, the RT-PCR classifica-
tion and the dendogram of Figure 1.

Figure 2a) displays the clustering of the samples
and the genes on the 3×3 map with the biclusters
numbered from 1 to 9, from top to bottom and left to
right. The four main biclusters which include almost
all the genes and all the samples are located at the four
corners of the map. With small variations, three of
these biclusters are the three major groups identified
by RT-PCR and the hierarchical clustering, namely
L, T and H which are molecularly distinct and have
specific associations with known proto-oncogenes as
discussed in Ferrando et al [13].

The bicluster 1 (top left, Figure 2a, see also Table
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Figure 2: SOM biclusters mapping of T-ALL data. a)
In each bicluster, numbered from 1 to 9 from top to
bottom and from left to right, are listed the samples
and the genes that are close to each other in the sense
of the χ2 distance, and clustered together by the cou-
pled SOMs. Samples are identified by their RT-PCR
classification. The HOX11L2 samples (nc3, nc4 and
nc8) and the MLL-ENL samples (l2, nc6, and nc10)
are marked-up b) In each bicluster laid out as in a),
gene expression levels are plotted against the index
numbers of all samples. Isolated samples are indicated
by vertical lines and stretches of samples are under-
lined. Each of the three stretches of samples of related
RT-PCR types show distinctive differential expression
of the genes that were assigned to their bicluster by
the dual SOM, namely bicluster 1 for the LYL1+ sam-
ples, bicluster 3 for the TAL1+ samples and bicluster
7 for the HOX11+ samples.
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Figure 3: Zooming in the plots of gene expression
in the two biclusters 1 (top) and 3 (bottom) which
correspond to the groups L (LYL1+ type) and T
(TAL1+ type). In the bicluster 1 the 24 genes listed
in Figure 2a top left are co-upregulated for the two
TAL1+LYL1+ samples tl1 and tl2, and the LYL1+
samples, except l2, the latter being also a MLL-ENL
case. The two isolated samples of this cluster are indi-
cated by 2 vertical lines, the stretch of LYL1+ samples
by the horizontal thick line. In the bicluster 3 the 14
genes listed in Figure 2a are co-upregulated for nc10
and all t cases except the two above tl1 and tl2 and
t7 of bicluster 9. The two sets of A-shaped maxima in
the upper plot occuring for tl1 and tl2 correspond ex-
actly to the two sets of V-shaped minima in the lower
plot occuring for the same samples. Conversely the
V-shaped minima for l2 in the bicluster 1 correspond
to the A-shaped maxima for l2 in the bicluster 3.

1) reproduces the tight group L of all LYL1+ samples
and the two TAL1+LYL1+ samples, and moreover it
includes 24 genes co-expressed for these samples. Note
that the sign + means overexpression of the oncogene.
The bicluster 7 includes all the HOX11+ samples ex-
cept h1, two samples that were non classified by RT-
PCR (nc3 and nc9) and 8 genes. The bicluster 3 con-
tains all TAL1+ samples but 2 (t14 and t7), nc10 and
18 genes.

The central bicluster 5 includes three genes but no
samples. The four intermediate biclusters 2, 4, 6, and
8 include one sample each and up to four genes. The
bicluster 2 contains one of the RT-PCR nonclassified
sample, nc6, and three genes. This sample is one of the



three MLL-ENL cases that revealed the MLL-ENL fu-
sion transcript by MLL-ENL RT-PCR and were found
in the M subbranch of the dendogram of Figure 1.
The two remaining such cases are clustered in the two
adjacent biclusters 1 and 3. The bicluster 4, adja-
cent to the bicluster 7 of HOX11+ samples and the
like, contains the sample nc4 that expressed the home-
obox gene HOX11L2 structurally related to HOX11.
The two other HOX11L2+ samples, nc3 and nc8 are
clustered in biclusters 4 and 9 both adjacent to or
clustered with some HOX11+ cases (nc8 close to h1,
and nc3 clustered with most of the h’s.) These three
HOX11L2+ samples were found at the HL subbranch
of the dendogram of Figure 1.

The bicluster 9 made of five nc samples, a TAL1+
sample (t7), and 12 genes is contiguous to both biclus-
ter 6 of t14 and bicluster 8 of h1. The sample t7 and
two of these nc samples were clustered in group H by
the dendogram of Figure 1, while the three remaining
nc were clustered in the earlier group T. This suggests
that genes in bicluster 9 may be involved in multiple
pathways if we allow two overlapping superbiclusters,
one for the HOX11+ samples and the like, and one for
the TAL1+ samples and the like as shown in Figure
4. The then novel subgroup HL still stays in bicluster
H, while subgroup M crosscuts L and T.

In Figure 2b) we represent for each bicluster laid
out in the same order as in the SOM map of Figure
1a the plots of gene expression versus the index num-
bers of all 39 samples. Samples were numbered as in
the original data provided by Ferrando et al [13], 1 to
8 for the h cases (HOX11+ samples and the like), 9 to
24 for the t cases (TAL1+ samples and the like) and
tl cases (TAL1+LYL1+ samples), 25 to 29 for the l
cases (LYL1+ samples), and 30 to 39 for the nc cases
(nonclassified by RT-PCR). Instead of restricting to
the samples within the bicluster, we plot the expres-
sion of the genes of that bicluster for all 39 samples in
order to visualize expression similarities.

Samples in the bicluster are signaled by vertical
lines if they were isolated or horizontal thick lines
if their indexes were approximately consecutive in
a stretch. The three stretches of ”pure” RT-PCR
samples show distinctive differential expression of the
genes that were assigned to their biclusters by the dual
SOMs, namely the bicluster 1 for the LYL1+ samples,
the bicluster 3 for the TAL1+ samples and the biclus-
ter 7 for the HOX11+ samples. Consider for example
the bicluster 3 (bottom left, Figure 2b) comprising 13
samples, i.e., nc10 and all TAL1+ samples except t7
and t14, and 14 genes as listed in Figure 2a). Zoom-
ing in this bicluster 3 in Figure 3, we observe that its
14 genes are co-upregulated for the 13 samples and
interestingly co-downregulated for the mixed samples
TAL1+LYL1+ (tl1 and tl2) of bicluster 1, and the
sample t7 of bicluster 9 as indicated by the three sets
of minima within the TAL1+ stretch of high peaks.
These three sets of V-shaped minima correspond pre-
cisely to the three sets of A-shaped maxima in bi-

cluster 1 and bicluster 9. (Recall that t7 has been
classified with HOX11+ samples by the dendogram
of Figure 1). In contrast, the central bicluster 5 is a
constant bicluster with steady high levels of its three
genes. The three intermediate biclusters 2, 6 and 8
show rather levelled intermediate co-expression of the
genes they contain. In the bicluster 4, the HOX11L2+
case nc4 displays somewhat more heterogeneous ex-
pression levels of the four genes that are co-expressed,
but with no large variability within each of the four
curves.

In summary the SOM biclustering of the T-ALL
data was able to yield groups of samples that are con-
sistent with RT-PCR classification and hierarchical
clustering. In addition it uncovers for each group of
samples a list of genes that show similar pattern of
expression.

Stability aspects of the SOM biclustering of T-
ALL data One of the stated interest of Ferrando et
al.’s [13] is to gain insight in the molecular character-
istics of the poorly understood cases nc’s. Therefore
it would be useful to see how removal of some of the
nc cases affects the SOM biclustering. Here we report
only the effects on the classification of the samples.

Table 2 displays the tracing of sample labels in the
case of removal of a) nc6 and nc10 (MLL-ENL) , b)
nc3, nc4 and nc8 (all HOX11L2+ samples), c) all nc’s
not in a or b, and d) all nc-samples, as compared to
the complete case e without removal. Clearly the most
stable bicluster is the tight bicluster 1 of all LYL1+
samples and the two TAL1+LYL1+ samples which is
also cluster L in the dendogram. The only mobile
sample of bicluster 1 is the only LYL1+ sample (l2)
in the MLL-ENL subgroup. This bicluster includes
the highest number of genes (24). For the identified
RT-PCR samples, the moves, when they occur, involve
only contiguous biclusters but no jumps. The bicluster
3 (mostly TAL1+, 14 genes) appears more stable than
bicluster 7 (mostly HOX11+, 8 genes) hinting that a
higher number of genes is associated with a tighter and
more stable bicluster. The nc cases seem to be more
mobile; in particular nc6 and nc10, the two MLL-ENL
cases, jump between non contiguous biclusters.

4 Discussion

SOM biclustering is an enhancement to the unsuper-
vised clustering by self-organizing map which enables
it to uncover clusters of objects that have similar pro-
files in a subset of features. Thanks to its formal sym-
metry SOM biclustering uncovers by the same token
subsets of the features exhibiting consistent patterns
over a subset of the objects. Cottrell and Letrémy [8]
drawing on the idea of symmetry used in correspon-
dance analysis proposed coupled SOMs method as a
data analytic tool for categorical data in economy, and
the Korresp algoritm to implement it.

Here we provide a concise formulation of the method
extended to positive data matrices X = [xij ] ∈ R

p×q.
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Figure 4: The three superbiclusters with possible mul-
tiple pathways for genes in the original bicluster 9
(bottom right)

In a novel application to microarray gene expression
data for studying T-cell acute lymphoblastic leukemia,
we demonstrate the power of SOM biclustering in un-
covering three groups of samples identifiable as molec-
ularly distinct subtypes of T-ALL with similar gene
profiles for three distinct subsets of genes. Not only
did the SOM biclustering produce groups of samples
in good accordance with those in hierarchical cluster-
ing, in addition for each such group it provided a list of
genes that are co-regulated upward or downward. We
looked into the stability of the method by removing
some samples that were not classified by RT-PCR to
observe that biclusters defined by larger lists of genes
seem more robust than those defined by smaller lists
of genes.

Other biclustering methods have been recently pro-
posed for the analysis of microarray data. SOM biclus-
tering differs by the symmetry underlying the method
which allows simultaneous visualization of clusters of
samples and clusters of genes that may be helpful in
suggesting hypotheses about gene pathways. To gain
insight about the validity and usefulness of the output
of the SOM biclustering we propose to test on different
microarray data of different sizes.
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nc2 a b,e

nc3 a,e c

nc4 a,e c

nc5 b a,e

nc6 b e c

nc7 a b,e

nc8 a c e

nc9 a,b,e

nc10 b,e c

Table 2: Looking at the stability of the SOM biclus-
tering. Some nc-samples (unidentified by RT-PCR)
are removed from the analysis of T-ALL data. The
analyses are denoted by a to d for the cases of removal
of a) nc6 and nc10 (MLL-ENL), b) nc3, nc4 and nc8
(all HOX11L2+ samples), c) all nc’s not in a or b, and
d) all nc-samples, as opposed to the complete case e
without removal. (i) Tracing all identified RT-PCR
samples in the 9 biclusters of the SOM biclustering.
(ii) Tracing all nc-samples in the 9 biclusters of the
SOM biclustering.
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Nı̂mes’94

[9] Culhane1, A.C. , Perrière, G., Considine E.C,
Cotter T.C. and Higgins D.G. (2002) Between-
group analysis of microarray data, Bioinformat-
ics 18, 1600-1608

[10] Dhillon, I.S. 2001. Co-Clustering Documents and
Words Using Bipartite Spectral Graph Partition-
ing. In Proceedings of the Seventh ACM SIGKDD
Conference, San Francisco.

[11] Eisen M. B., Spellman P. T., Brown P. O. and
Botstein, D. (1998). Cluster analysis and display
of genome-wide expression patterns. Proceedings
of the National Academy of Sciences USA 95,
14863-14868.

[12] Fellenberg K., Hauser N.C., Brors, B., Neutzner
A., Hoheisel J.D. and Vingron M. (2001) Corre-
spondence analysis applied to microarray data.
Proceedings of the National Academy of Sciences
USA, 98, 10781-10786.

[13] Ferrando A.A., Neuberg D.S., Staunton J., Loh
M.L., Huard C., Raimondi S.C., Behm F.G., Pui
C.H. Downing J.R., Gilliland D.G., Lander E.S.,
Golub T.R. and Look A.T. (2002)Gene expres-
sion signatures define novel oncogenic pathways
in T cell acute lymphoblastic leukemia Cancer
Cell 1 75-87

[14] Getz, G., E. Levine, and E. Domany. 2000. Cou-
pled two-way clustering analysis of gene microar-
ray data. Proceedings of the National Academy of
Sciences USA 97: 12079-12084.

[15] Golub, T.R., D.K. Slonim, P. Tamayo, C. Huard,
M. Gaasenbeek, J.P. Mesirov, H. Coller, M. Loh,
J.R. Downing, M. Caligiuri, C.D. Bloomfield, and
E.S. Lander. 1999. Molecular classification of can-
cer: Class discovery and class prediction by gene
expression monitoring. Science 286: 531-537.

[16] Hartigan, J.A. 1972. Direct clustering of a data
matrix. J. Amer. Statist. Assoc. 67: 123-129.

[17] Kohonen T (1997) Self-organizing maps, second
edition, Springer, Berlin
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