
Asbru’s Execution Engine:
Utilizing Guidelines for Artificial Ventilation of Newborn Infants

Christian Fuchsberger and Silvia Miksch
Institute of Software Technology and Interactive Systems

Vienna University of Technology
Favoritenstraße 9-11/188, A-1040 Vienna, Austria

email: {christian, silvia}@asgaard.tuwien.ac.at

Abstract

In real-world environments of neonatal in-
tensive care units (NICUs), a major chal-
lenge in using clinical guidelines and proto-
cols in a computer readable form is to provide
(i) a clear, precise representation to handle
the complex forms of uncertainty and time-
critical situations which are common in the
ICU domain and (ii) an execution engine to
be able to tackle such a representation.
This paper presents an execution unit tai-
lored to a particular guideline-representation
language called Asbru. Asbru is able to cap-
ture the required features to proceed with
guideline-based care within NICUs. We have
evaluated our execution engine by modelling
the artificial ventilation of newborn infants
in Asbru and by applying our execution en-
gine to real patient data and Asbru plans.

1 Introduction

In the last couple of years a huge amount of clinical
guidelines and protocols were published to improve
and to standardize medical treatment planning. How-
ever, the clinical treatment plans in Neonatal Intensive
Care Units (NICUs) available are limited. Due to the
information overload resulting from the modern tech-
nical equipment the medical staff can hardly deduce
optimal procedures for concrete treatment. The elec-
tronic data processing could help to access the knowl-
edge pool, but in this domain where only completely
reliable results count and more over every mistake can
lead to catastrophic results, the scepticism regarding
computer aided systems is very high.

To overcome such an attitude of doubt, computer-
supported systems were developed which assure that
the human (the medical staff) is executing the actions
(”open-loop” methodology) instead of automatic con-
trol of the devices (”closed-loop” methodology). Nev-
ertheless, the critical part is the modelling of the med-
ical knowledge (in the form of clinical guidelines and

protocols) and the execution of such medical knowl-
edge.

To structure and ease the modelling part, vari-
ous guideline and protocol-representations languages
were introduced [11]. One representative is the Asbru
language [9; 13], which is a time-oriented, intention-
based, skeletal plan-representation language that is
used in the Asgaard Project [8; 14] to represent clinical
guidelines and protocols.

To support the execution of clinical guidelines
and protocols an execution engine is needed accord-
ing to the complexity or power of the guideline-
representation language. In the last couple of years a
few execution engines were introduced [11; 15]. How-
ever, to capture the complexity of clinical guidelines
a powerful engine is needed. Our principle assump-
tion is that a very powerful plan-representation lan-
guage as Asbru is needed to represent clinical guide-
lines. We have developed an execution engine, which
is able to handle a specific class of guidelines writ-
ten in Asbru. This class of Asbru plans are ori-
ented to the specific needs and demands in NICUs.
The execution is monitored and controlled by a set
of modules called Asbru Run-Time Modules (As-
bruRTM) which give advice to medical staff based
on the procedures laid down in such Asbru plans [9;
13].

In the first section, we will illustrate related work
in the problem area. The second section will clar-
ify which kind of plan representation we have used,
namely Asbru. The core of the paper is the following
three sections, first, the architecture of the execution
engine, second the concrete implementation of mod-
ules involved and third, how these modules are utilized
for the controlled ventilation of newborns.

2 Related Work

Guideline- and Protocol-based care was improved due
to the computer-support knowledge acquisition, mod-
elling and execution. In the last couple of years var-
ious formal and semi-formal representations of medi-
cal guidelines and protocols were introduced to ease
the structuring and modelling parts [11]. These rep-
resentations range from workflow representation ap-

proaches like Guide [12], over scenario-based ones, like
PRODIGY [7] to sophisticated and complex represen-
tations like GLIF [10] or ProForma [3].

The major challenge in representing clinical proto-
cols in a computer readable form is to both provide
a clear, precise representation with defined semantics
and to handle the complex forms of uncertainty and
time-critical situations which are common in the ICU
domain. Often these representations provide a clearly
defined framework but the frames are filled with free
text. Such a protocol can therefore, only be inter-
preted by a human and not by a computer. Also ex-
ecution or verification can only be performed by hu-
mans who have to interpret each part of free text and
decide its precise meaning - an unreliable and often
not reproducible process. There are numerous nota-
tions of logic which provide clear formal semantics.
However, the task of modelling a protocol in such
an annotation is simply impossible to achieve. In
particular, intertwined processes which develop over
time and which involve uncertainty are hard to model
in formal logic from scratch. In contrast, the plan-
representation language Asbru (compare Section 3)
developed within the Asgaard project has clear de-
fined semantics and complex language constructs to
represent uncertain and incomplete knowledge. It is
therefore, suitable to capture a protocol in a formally
defined way while maintaining maximum readability
and user/developer friendliness.

An execution engine, which is able to handle the
complexity of Asbru plans, is very complicated due to
the powerful features of Asbru. An interpreter for As-
bru was developed by Tibor Bosse [2]. It consists of
two modules. One of them is a parser written in prolog
which maps the XML Asbru plan to clips facts. The
other is the main program using the generated facts to
simulate the execution of the Asbru plan. The inter-
preter supports only a subset of Asbru (called Asbru
Light). A further disadvantage of the interpreter is
the missing of real time handling and adequate imple-
mentation of time constrains.

In the next section we will clarify which features of
Asbru are tackled by the proposed execution engine
called AsbruRTM (Asbru Rund-Time-Mudule).

3 Plan-Representation Language

We will give a very short introduction to Asbru and il-
lustrate the subset, which is covered in Asbru Light+.

3.1 A Short Introduction to Asbru
Asbru [9; 13] is a time-oriented, intention-based, skele-
tal plan-representation language that is used in the
Asgaard Project1 to represent clinical guidelines and

1In Norse mythology, Asgaard was the home of the
gods. It was located in the heavens and was accessible
only over the rainbow bridge, called Asbru (or Bifrost)
(For more information about the Asgaard project see
http://www.asgaard.tuwien.ac.at).

protocols. Asbru can be used to express clinical pro-
tocols as skeletal plans [5] that can be instantiated
for every patient (for an example see Fig. 8). It was
designed specific to the set of plan-management tasks
[8]. Asbru enables the designer to represent both the
prescribed actions of a skeletal plan and the knowledge
roles required by the various problem-solving methods
performing the intertwined supporting subtasks. The
major features of Asbru are that
• prescribed actions and states can be continuous;
• intentions, conditions, and world states are tem-

poral patterns
• uncertainty in both temporal scopes and param-

eters can be flexibly expressed by bounding inter-
vals;

• plans might be executed in sequence, all plans or
some plans in parallel, all plans or some plans in
a particular order or unordered, or periodically;

• particular conditions are defined to monitor the
plans’ execution; and

• explicit intentions and preferences can be stated
for each plan separately.

In Asbru, the following parts of a plan can be spec-
ified: preferences, intentions, conditions, effects, and
plan body (actions).
Preferences. Preferences constrain the applicability
of a plan (e.g., select-criteria: exact-fit, roughly-fit)
and express the kind of behaviour of the plan (e.g.,
kind of strategy: aggressive or normal).
Intentions. Intentions are high-level goals that
should be achieved by a plan, or maintained or avoided
during its execution. This information is very impor-
tant not only for selecting the right plan, but also for
critiquing treatment plans as part of the ever ongo-
ing process of improving the treatment. This makes
intentions one of the key parts of Asbru.
Conditions. Conditions need to hold in order for
a plan to be started, suspended, reactivated, aborted,
or completed. Two different kinds of conditions
(called preconditions) exist, that must be true in or-
der for a plan to be started: filter-preconditions can-
not be achieved through treatment (e.g., subject is fe-
male), setup-preconditions can. After a plan has been
started, it can be suspended (interrupted) until either
the restart-condition is true (whereupon it is contin-
ued at the point where it was suspended) or it has to
be aborted. If a plan is aborted, it has failed to reach
its goals. If a plan completes, it has reached its goals,
and the next plan in the sequence is to be executed.
Effects. Effects describe the relationship between
plan arguments and measurable parameters by means
of mathematical functions. A probability of occur-
rence is also given.
Plan Body (Actions). The plan body contains
plans or actions that are to be performed if the pre-
conditions hold. A plan is composed of other plans,
which must be performed according to the plan’s type:

in sequence, in any order, in parallel, unordered, or pe-
riodically (as long as a condition holds, a maximum
number of times, and with a minimum interval be-
tween retries).

A plan is decomposed into sub-plans until a non-
decomposable plan — called an action or a user-
performed plan — is found. All the sub-plans consist
of the same components as the plan, namely: pref-
erences, intentions, conditions, effects, and the plan
body itself.

Plans are executed (i.e., their parameters moni-
tored, conditions checked and reacted to) by an ex-
ecution unit. User-performed plans are displayed to
the user so that he or she can react and then tell the
machine if and when the action is finished and if it
was successful.
Time Annotations. An important part in specify-
ing the complex temporal aspects of plans are Time
Annotations. A Time Annotation specifies four points
in time relative to a reference point (which can be a
specific or abstract point in time, or a state transition
of a plan): The earliest starting shift (ESS), latest
starting shift (LSS), earliest finishing shift (EFS) and
latest finishing shift (LFS). Two durations can also be
defined: The minimum duration (MinDu) and maxi-
mum duration (MaxDu). Together, these data specify
the temporal constraints within which an action must
take place, or a condition must be fulfilled for a con-
dition to trigger (compare Figure 1).

Figure 1: Asbru’s Time Annotations

3.2 Asbru Light+
The starting point for the selection of Asbru Light+
was the definition of Asbru Light by Tibor Bosse [2],
which was used in the ProtoCure project2. However,
the usage of this subset showed that this subset has a
lot of limitation to be applicable to the dynamically
changing and time-critical domain of intensive care
units (compare Section 2). Therefore, we extended
Asbru Light to Asbru Light+ which embodies all nec-
essary parts to handle controlled ventilation of new-
borns. Asbru Light+ covers the handling of temporal
uncertainty and real time constraints as well as the

2For more information about the ProtoCure project see
http://www.protocure.org.

following Asbru parts: intentions, conditions, and the
plan body including the various plan layouts.

4 Architecture of the Asbru
Execution Engine

In this section we present the three core modules for
Asbru execution engine: data abstraction, environ-
ment monitoring and execution.

4.1 Data-Abstraction Unit
The Data-Abstraction Unit is the connecting part
between the hospital information system, the sensor
data, the user input and the Monitoring Unit. Fur-
ther the unit carries out three useful tasks: it validates
the obtained data, it calculates derived values and it
transforms quantitative values into qualitative ones.

4.2 Environment Monitoring Unit
The Environment Monitoring Unit bridges the gap be-
tween the Data-Abstraction and the Execution Units.
It gets a list of available parameter propositions form
the Data-Abstraction Unit and adds them to a list
of observed parameter propositions (OPP’s). Dur-
ing the plan execution the execution unit specifies
a list of temporal patterns which are key to future
state transitions of instantiated plans. These pat-
terns are denoted monitored parameter propositions
(MPP). Whenever an OPP matches a MPP, the exe-
cution unit is notified.

4.3 Execution Unit
The Execution Unit handles the state transitions of
the plans. It instantiates plans from the plan library
and governs their life-cycle according to the state of
the world as reported by the monitoring unit.

The data abstraction is specified in the domain-
section of the plans. Each of the abstraction steps
is defined in one parameter definition. Thus, the data
abstraction and the plan execution are both config-
ured in a single file.

5 AsbruRTM: The Asbru-Run-Time
Module

The AsbruRTM (Asbru-Run-Time Module) is an ex-
ecution engine which is able to execute clinical proto-
cols and guidelines written in Asbru plans. It consists
of three core modules: the data abstraction, environ-
ment monitoring and execution unit (see Figure 2).
Additionally, on the one hand, AsbruRTM has access
to the various clinical protocols and guidelines stored
in the plan library, on the other hand, a straightfor-
ward user interface was implemented for testing pur-
poses. In the following section we describe the princi-
ples of AsbruRTM.

The AsbruRTM is written in Java according to the
need of high platform independence, object-oriented
design, and freely available XML components for pars-
ing and mapping. Extern user interfaces written in

AsbruRTM

User Interface

Patient
Data Execution

Unit
Monitoring

Unit

Data
Abstraction

Unitask

Medical
Staff

Plan Library

Figure 2: AsbruRTM’s Framework

other programming languages than Java can though
be served by a CORBA connection object.

5.1 Asbru Classes

Asbru is available in XML format [13] and we needed
a straightforward transformation of these XML repre-
sentation in Java classes. Therefore, we used the tool
Castor [4] to generate the classes (approximately 3000
classes). Castor is an open source data binding frame-
work for Java. It generates a Java object model out
of an XML Schema.

5.2 Parallel Processing

AsbruRTM’s primary requirement is parallel process-
ing as all three core modules must simultaneously ful-
fil their tasks. Hence the data-abstraction unit has to
evaluate continuously the values received by the sen-
sors. In progression it informs the monitoring unit
which continuously checks, whether an OPP maps a
MPP. While meantimes the execution needs to go on.
Figure 3 shows the parallel processing of a plan frag-
ment from Table 1.

Execution
Unit

ventilation
plan

Complete Condition

parameter proposition B

 parameter proposition A

initial
plan

controlled
ventilation

plan

Time

Figure 3: AsbruRTM’s Parallel Processing. Horizon-
tal lines stand for threads. Thread labels indicate their
actual task. Branches represent the start of a new
thread.

5.3 Execution logic

Asbru plans contain all needed information regarding
the initialisation and execution of medical guidelines.
Therefore, the main logic is provided by the Asbru
classes generated by Castor. TABLE 1 displays this
fact.

Plan Fragment

1 [...]

2 <plans>

3 <plan-group>

4 <plan name="ventilation_plan">

5 <conditions>

6 <complete-condition>

7 <constraint-combination type="and">

8 <parameter-proposition parameter-name="FiO2">

9 <value-description type="less-or-equal">

10 <numerical-constant value="40"/>

11 [...]

12 <plan-body>

13 <subplans type="sequentially">

14 [...]

15 <plan-activation>

16 <plan-schema name="initial_plan"/>

17 [...]

Actions of AsbruRTM

Line 4: The primary plan (here the ”‘ventilation plan”’) is
started by the execution unit

Line 6: The ”‘Complete Conditon”’ is started in its own thread

Line 7-8: It is created a thread-group for the ”‘parameter
propositions”’ threads.

Line 8-10: The thread of this ”‘parameter proposition”’ is fin-
ished when FiO2 is less 40 or the application is aborted.

Line 13: The following plans are started sequential, hence
there are not created additionally threads for their executing.

Line 16: The ”‘initial plan”’ is started.

Table 1: Execution of a Plan Fragment

5.4 Running a Test Case
In this section we explain the use of AsbruRTM.
AsbruRTM is started in three steps:

1. CORBA: The name service for CORBA is
started.

2. User interface: The example user interface,
programmed in Borland Delphi [1], is started (see
Figure 4.

Figure 4: AsbruRTM’s User Interface

3. AsbruRTM: AsbruRTM is started with the de-
sired plan as command line parameter. Then the
plan is parsed and validated. Accordingly the
corresponding Java objects are created from the
XML plan. If this task is successful done the do-
main is initialised and the proper plan execution
starts. Figure 5 shows the status-output of As-
bruRTM.

Figure 5: AsbruRTM’s Status Output

6 Case Study in NICU

6.1 The Medical Scenario
The primary goal of artificial ventilation is to support
breathing until the patient’s respiratory efforts are suf-
ficient. Ventilation may be required during immediate
care of the newborn who has the respiratory distress
syndrome (I-RDS).
In this paper we focus on the controlled ventilation.
The intention of the controlled ventilation is to main-
tain a normal level of the blood values (namely tcSaO2

and PtcCO2) and thus provide the best possible gas
exchange by minimal or no lung injury [6]. In Table
2 are listen all needed parameters for the controlled
ventilation.

Parameter In/Out Description
tcSaO2 In arterial oxygen saturation

PtcCO2 In transcutaneous CO2 pressure

PEEP Out positive end-expiratory pressure

PIP Out positive inspiratory pressure

FIO2 Out fraction of inspired oxygen

f Out ventilation frequency

Table 2: Parameters Controlled Ventilation

6.2 Controlled Ventilation in Asbru
The application was tested through a case study.
Therefore, an Asbru Light+ plan for the controlled

ventilation of newborns was developed (see Figure 8).
The evaluation was made ”offline”, but with the real
patient data of newborns. Figure 7 shows the devel-
opment of the parameters and the appropriate thera-
peutic recommendations:

• Init: First the medical staff enters status and
weight of the patient (see Figure 6), then As-
bruRTM sets the variables on init values accord-
ing to Table 3.

Figure 6: Evaluation: Initialisation

Status O2 PIP f PEEP
healty 1 10 40 3

slight ill 30-40 15 40 3-4
ill 40-60 20 40-60 5

severe ill 100 20-25 60 5

Table 3: Initial values Controlled Ventilation

• Stabilisation of tcSaO2: The arterial oxygen
saturation is too low, FiO2 is increased every 5
seconds. After 5 minutes the oxygen saturation
reaches the target area (see Table 4) and thus
FiO2 must not be increased more. After 8:40
minutes the saturation exceeds the target area
and therefore FiO2 must be diminished.

Parameter min max
tcSaO2 90 92
PtcCO2 40 60

Table 4: Target values Controlled Ventilation

• Stabilisation of PtcCO2: The transcutaneous
carbon dioxide pressure is too high (see Table
4), hence the ventilation frequency is adapted ac-
cording to formula 1.

ftarget = factual ∗ pCO2actual

pCO2target
(1)

• PEEP and PIP: They are hold at level as they
are changed not until second instance (when FiO2

and f cannot stabilise it by there own).

7 Conclusion

We have presented the needs and demands of
guideline- and protocol-based care in NICUs and
which kinds of functionality are requested. This il-
lustration resulted in the presentation of the powerful
and NICU tailored intention-based and time-oriented
plan-representation language Asbru. According to As-
bru, we have developed an execution engine called As-
bruRTM.

Asbru places particular emphasis on an expressive
representation of time-oriented actions and states in
combination with the underlying intentions. It sup-
ports the use of different granularities and reference
points to represent multiple time lines. Asbru’s rep-
resentation includes annotations for the duration of
actions, their success or failure, and allows time an-
notation of events, actions/plans, and states with un-
certainty in their occurrence. Asbru allows the def-
inition of optional plans as well as mutual exclusive
alternatives. It provides a set of temporal relations
between sub-plans which exceeds parallel, sequential,
any order, and cyclical execution. Such a complex
plan-specification language is needed to capture all
requirements of a dynamically changing environment,
such as in NICUs.

In this paper, we described Asbru’s execution ca-
pabilities in dynamically changing environments. As-
bru’s hierarchical structure and knowledge roles facil-
itate the acquisition and maintenance of knowledge
from domain experts. The monitoring module pre-
sented ensures proper synchronization of plan execu-
tion with a changing environment. This multi-step

[...]

<parameter-group title="raw data blood gas online">

<parameter-def name="tcSaO2" type="parts">

<raw-data-def mode="automatic" unit="%" channel-name="tcSaO2"/>

<sampling-frequency>

<numerical-constant value="10"/>

</sampling-frequency>

</parameter-def>

[...]

</parameter-group>

[...]

<if-then-else>

<simple-condition>

<comparison type="equal">

<left-hand-side>

<parameter-ref name="patient-state"/>

</left-hand-side>

<right-hand-side>

<qualitative-constant value="healthy"/>

</right-hand-side>

</comparison>

</simple-condition>

<then-branch>

<variable-assignment variable="FiO2">

<numerical-constant value="1"/>

</variable-assignment>

<variable-assignment variable="PIP">

<numerical-constant value="10"/>

</variable-assignment>

[...]

</then-branch>

</if-then-else>

[...]

<plan name="controlled_ventilation_plan">

<plan-body>

<subplans type="parallel">

<wait-for>

<static-plan-pointer plan-name=""/>

</wait-for>

<plan-activation>

<plan-schema name="handle_PCO2_plan"/>

</plan-activation>

<plan-activation>

<plan-schema name="handle_tcSaO2_low_plan"/>

</plan-activation>

</subplans>

</plan-body>

</plan>

[...]

Figure 8: Asbru Plan: Controlled Ventilation of New-
borns

approach allows smooth reaction to unexpected situa-
tions ranging from slight parameter deviations to total
mission failure.

In the next steps, we will extend Asbru’s execu-
tion engine to tackle the whole Asbru language and
perform a more in-depth evaluation of the Asbru’s ex-
ecution engine.

8 Acknowledgments

This Asgaard Project is supported by ”Fonds zur
Förderung der wissenschaftlichen Forschung” (Aus-
trian Science Fund), grant P15467-INF.

References
[1] Borland Software Corporation. Borland Delphi.

http://www.borland.com/delphi/index.html.
[2] T. Bosse. An interpreter for clinical guidelines in

asbru. Master’s thesis, Vrije Universiteit Amster-
dam, 2001.

[3] J. Bury, J. Fox, and D. Sutton. The PROforma
guideline specification language: Progress and
prospects. In B. Heller, M. L”offler, M. Musen,

Figure 7: AsbruRTM’s Case Study

and M. Stefanelli, editors, Proceedings of the First
European Workshop on Computer-Based Support
for Clinical Guidelines and Protocols (EGWLP)
2000, volume 83:Studies in Health Technology
and Informatics, pages 12–29. IOS Press, Ams-
terdam, 2000.

[4] ExoLab Group. Castor. http://castor.exolab.org.
[5] P. E. Friedland and Y. Iwasaki. The concept and

implementaion of skeletal plans. Journal of Au-
tomated Reasoning, 1(2):161–208, 1985.

[6] Goldsmith and Karotkin. Assisted Ventilation of
the Neonates. Saunders, Philadelphia, 3 edition,
1993.

[7] P. Johnson, S. Tu, N. Booth, B. Sugden, and
I. Purves. Using scenarios in chronic disease man-
agement guidelines for primary care. In Proced-
dings AMIA Annual Fall Symposium, pages 389–
393, 2000.

[8] S. Miksch. Plan management in the medical do-
main. AI Communications, 12(4):209–235, 1999.

[9] S. Miksch, Y. Shahar, W. Horn, C. Popow,
F. Paky, and P. Johnson. Time-oriented skele-
tal plans: Support to design and execution.
In Fourth European Conference on Planning
(ECP’97). Springer, September 24–26 1997.

[10] M. Peleg, A. Boxwala, O. Ogunyemi, and et al.
Glif3: The evolution of a guideline representa-
tion format. In Proceddings AMIA Annual Fall
Symposium, pages 645–649, 2000.

[11] M. Peleg, S. Tu, J. Bury, P. Ciccarese, J. Fox,
R. Greenes, R. Hall, P. Johnson, N. Jones,
A. Kumar, S. Miksch, S. Quaglini, A. Sey-
fang, E. Shortliffe, and Stefanelli. Comparing
computer-interpretable guideline models: A case-
study approach. The Journal of the Ameri-
can Medical Informatics Association (JAMIA),
10(1):52–68, 2003.

[12] S. Quaglini, M. Stefanelli, G. Lanzola, V. Ca-
porusso, and S. Panzarasa. Flexible guideline-
based patient careflow systems. Artificial Intelli-
gence in Medicine, 22:65–80, 2001.

[13] A. Seyfang, R. Kosara, and S. Miksch. Asbru 7.3
Reference Manual. Technical Report Asgaard-
TR-2002-1, Vienna University of Technology, In-
stitut of Software Technology & Interactive Sys-
tems, Vienna, Austria, 2002.

[14] Y. Shahar, S. Miksch, and P. Johnson. The as-
gaard project: A task-specific framework for the
application and critiquing of time-oriented clini-
cal guidelines. Artificial Intelligence in Medicine,
14:29–51, 1998.

[15] S. W. Tu and M. A. Musen. From guideline mod-
eling to guideline execution: Defining guideline-
based decision-support services. In AMIA An-
nual Symposium, pages 863–867, Los Angeles,
CA, 2000.

