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Abstract 

In the paper we study the application of 
various supervised machine learning 
techniques to induce classification models 
for gene function assignment based on 
their expression profiles. We show that a 
simple naïve Bayesian classifier may 
perform comparably to a more complex 
method of support vector machines, which 
has recently gained much attention in the 
field. Through experimental analysis on 
various data sets we also show that 
classification tasks considered may be hard 
and, despite abundance of publicly 
available gene expression data sets, we 
could not derive reliable predictors for 
some of gene functions modelled. 

1 Introduction 
In the post-genomic era, functional genomics is the 
discipline that attempts to assign function to all the 
genes in a genome. For function assignment, much 
of recent research in bioinformatics has focused on 
the analysis of DNA microarray data. A typical 
microarray assay provides data on the expression of 
a large number of genes under multiple conditions 
or at different time-points of some biological 
experiment. The data can be represented as a matrix 
in which rows correspond to genes, columns 
correspond to conditions or time-points and entries 
represent level of gene expression relative to that of 
a reference, e.g. wild-type organism under standard 
conditions. 

At present, the most common technique for 
microarray data analysis is clustering,1, 2 which is 

used to find groups of genes with similar 
expression profiles. When clustering is used for 
functional analysis, the prevailing idea is that genes 
with correlated expressions are functionally 
associated. Assignment of function to individual 
genes is done by applying the prevailing function of 
the genes in the shared cluster to the 
uncharacterized genes. Clustering is an 
unsupervised method and does not take into 
account any information on the functional labels of 
genes, which may well be available for a subset of 
genes. In this respect, supervised learning methods 
may be used to devise gene function prediction 
models. They may perform favourably to 
clustering,3 as they do not rely on a particular 
distance matrix, may propose probabilities for 
functional memberships, and may also handle cases 
where genes belong to several functional groups. 
Also, evaluation mechanisms for supervised models 
based on random sampling are well established, and 
can be used to clearly asses their predictive value. 

Within functional genomics, supervised 
methods may therefore be used to induce prediction 
models from functionally annotated microarray 
data sets. Induced models can then predict 
functions for genes that have not been functionally 
annotated, or may even detect genes with erroneous 
annotation. Several authors demonstrated the utility 
of supervised learning methods in the prediction of 
gene function. For instance, Brown et al.4 compared 
several techniques and concluded that support 
vector machines performed best in building gene 
function prediction models for yeast. Hvidsten at 
al.3 used rule-base induction approaches to perform 
a similar task. With the abundance of microarray 
data and available gene function annotations for 
several organisms, the utility of supervised methods 



has though at best been sparse and we believe there 
is still a range of open issues to be studied. Those 
addressed in this paper include: 

1. Brown et al.4 clearly demonstrate that support 
vector machines (SVM) outperform a range of 
other machine learning methods. We 
hypothesize that, with some parameter tuning, 
other methods may perform as well and may 
additionally better reveal how particular input 
attributes are related to a functional class. For 
instance, a naïve Bayes method we use in our 
study may compute the conditional probability 
of outcome given the value of an attribute 
(see, for instance, Figure 1). 

2. When there is a range of microarray data sets 
for the same genes but coming from an 
independent biological experiment there is a 
question whether this should be treated as a 
combined data set (as in Brown et. al.4) or 
used separately (choose the most informative 
data set for specific function, or combine 
separately derived classifiers in an ensemble). 

3. Microarray data are often comprised of gene 
expression levels at distinct time points. To 
which extent can feature construction based 
on temporal analysis of expression profiles 

augment the existing data sets and thus 
enhance the performance of classifiers? 

 

2 Data Sets 
We used two sources of data for gene expression in 
S. Cerevisiae (yeast). The first data set (for 
convenience labelled as Brown et al.) includes 2467 
genes annotated with one of six functional classes, 
which were derived from previously published 
clustering of the same data set.1 Described through 
79 attributes, gene expression measurements were 
taken at various time points during the diauxic 
shift, the mitotic cell division cycle, sporulation, 
and temperature and reducing shocks. Three other 
data sets were obtained from particular publications 
on yeast (http://www.transcriptome.ens. fr/ymgv/). 
From these, we selected eight studies (Causton_-
stress, Cho_mitotic, Chu_sporulation, DeRisi_-
metabolic, Gasch_stress, Hardwick_rapamycin, 
Spellman_cellcycle, Zhu_forkheads) each including 
several time series data sets. Overall, the selected 
34 time series have an average 8.7 time points, 
yielding a total of 296 time points for all the 6957 
genes. No particular normalization/filtering 

 

 
Figure 1. A histogram showing the number of genes in cell cycle and mitotic cell cycle given the value of gene 
expression in experiment where stationary phase cells where analyzed in different time point after 2 days of growth. 
Estimated conditional probability of the gene belonging to the cell cycle functional group (vs. mitotic cell cycle 
functional group) computed through loess estimation is also shown (smooth curve in the middle of the graph, scale on 
the right). 



methods besides those already applied in original 
data sets were used. Time series data sets were then 
merged into a single data set. 

Annotation data from the Gene Ontology 
Project (GO, www.geneontology.org/) were used to 
functionally annotate the genes. The participating 
geneticist (UP) selected three pairs of biological 
processes for which a prediction model would be 
potentially useful and non-trivial. The selected 
processes are: “cell cycle” (258 genes) vs. “mitotic 
cell cycle” (290 genes), “regulation of trans-
cription” (277 genes) vs. “transcription” (264), and 
“response to osmotic stress” (54 genes) vs. 
“response to stress” (171 genes). The final three 
data sets contained the expression data only for the 
genes belonging to the selected biological 
processes. Note that the three problems are of the 
kind process vs. sub-process, for example: 
functional group ‘mitotic cell cycle’ in GO is only a 
part of the functional group ‘cell cycle.’ In case a 
gene in GO was annotated to both processes, the 
more specific (in our example ‘mitotic cell cycle’) 
was kept. 

3 Methods 
We report on the use of two different methods, 
support vector machines (SVM) and naïve Bayesian 
classifier.5 For SVM, we have used a second-order 
polynomial kernel. Other parameters were set to 
match those from the study of Brown et al.4 as 
closely as possible. Naïve Bayesian classifier, a 
much simpler classifier that assumes conditional 
independence of attributes given the class value, 
computes the probability of the outcome as a 
product of conditional class probabilities given the 
values of each attribute. 

To assess these conditional probabilities used 
in naïve Bayesian Classifier, we have either used 
attribute discretization and an m-probability 
estimate6 that extends the relative frequency 
formula and may better deal with noise (dBayes), or 
assessed probabilities directly through loess-based 
approximation (Figure 1). For discretization we 
have used an entropy and minimal description 
length-based algorithm by Fayyad and Irani.7 For 
each attribute independently, their method finds the 
appropriate cut-off points such that the class (gene 
label) entropy within each resulting interval is 
minimized while balancing this with introducing as 
few cut-off points as possible. Such adaptive search 

for discretization intervals may have advantage 
over less robust methods (like using a constant 
number of cut-off points at predefined values of 
attributes), and may not have problems with 
skewed distributions. Using m-probability estimate 
helps in situations with small number of cases by 
adjusting conditional probabilities as estimated 
from the data through relative frequency towards 
unconditional (prior) probability determined from a 
complete data set. The approach can be of 
particular value when data is noisy. The value of 
the parameter m was tuned through internal 5-fold 
cross validation over a range of candidate values.  

For some attributes, entropy-based discreti-
zation may not find any suitable cut-off point, thus 
reducing a continuously-valued attribute to a 
constant and as such removing it from the data set. 
This implicit attribute subset selection method was 
paired with explicit one for naïve Bayesian 
classifiers where smooth probability estimates were 
used as coming from loess-based approximation. 
The particular attribute subset selection method we 
have used was based on ReliefF measure of 
attribute relevancy,8 where attributes with 
relevancy below or equal to zero were removed 
(bayesFSS). 

Our data sets are composed of data from 
different experiments, i.e. consisting of a set of data 
(attribute) subsets. We hence tried to induce models 
from each of these subsets and combine them with 
product rule (multiplication of class probabilities 
assessed by individual models – bayesEns and 
dBayesEns). Also, a Temporal Abstraction 
clustering method9 was applied to generate an 
additional attribute for each time series. The 
additional attribute is a label for a particular 
temporal pattern found in gene expression profiles. 
A learning set was used to find a set of candidate 
temporal patterns, which were then used to provide 
additional attributes to examples in the test set. 

For comparison and as a baseline, a majority 
classifier (majority) is included in experiments. It 
classifies genes to the most frequent functional 
class from the training data set. Obviously, any 
useful prediction model should significantly 
outperform a majority classifier. 

The testing schema for the learning algorithms 
was that of 10-fold cross validation. There, data 
were split to ten subsets of approximately equal 
size and class distribution. Iteratively, one subset 
was left for testing of the models that were induced 



from the remaining nine subsets. Statistics 
(classification accuracy) were averaged across ten 
iterations. Since the particular version of support 
vector machine (libsvm, http://www.csie.ntu.edu. 
tw/~cjlin/libsvm/) is unable to model class 
probabilities, we here report only on classification 
accuracy. 

4 Preliminary Experimental 
Results 

Table 1 shows classification accuracies from cross 
validation study. Average classification accuracy 
(CA) and the method’s rank across 10 evaluation 
experiments are shown. SVM performs best 
only (!) on the Brown et al. data set, and is 
outperformed by variants of naïve Bayes in three 
other domains.  Results, though, are somehow 
acceptable for Transcription and Cell cycle, 
whereas for Stress the modelling failed. 

We were interested to know the contribution of 
a particular data subset to the accuracy prediction 
within the same domain. To study the role of 
individual data subsets, cross validation was 
performed on each subset separately. Modelling 
with SVM and dBayes was used. Results (Table 2, 
Brown et al. and Cell cycle data) clearly point out 
that selection of a particular experiment set may 
well influence the performance, and that SVM (in 
particular) gains in appropriate selection. Notice 
also that while SVM performed best on a particular 
data set, dBayes induced more top-ranked models 
overall. The same was observed on the Transcrip-
tion data set, while on Stress all methods failed on 
all data sets. 

Somewhat unexpectedly, constructive induc-
tion through Temporal Abstraction did not improve 
the results (particular results are not reported in 
Tables). We cannot explain the reason for this 
observation and further work is needed to analyze 
this. 

 
 
 

Table 1. Performance evaluation (CA, classification accuracy) on various data sets. 
Data Sets 

Brown et al. Cell cycle Transcription Stress 
Learner CA Rank CA Rank CA Rank CA Rank 
SVM 0.970 ± 0.003 1.00 0.529 ± 0.007 5.15 0.575 ± 0.017 4.90 0.747 ± 0.013 3.70 
bayesEns 0.955 ± 0.003 2.65 0.631 ± 0.014 1.55 0.704 ± 0.018 2.25 0.760 ± 0.006 3.15 
bayesFSS 0.953 ± 0.004 2.85 0.619 ± 0.014 2.10 0.702 ± 0.018 2.30 0.697 ± 0.020 4.70 
dBayes 0.946 ± 0.002 3.50 0.595 ± 0.018 3.25 0.695 ± 0.018 2.60 0.760 ± 0.006 3.15 
dBayesEns 0.931 ± 0.003 5.00 0.576 ± 0.013 3.60 0.697 ± 0.022 3.00 0.760 ± 0.006 3.15 
majority 0.907 ± 0.000 6.00 0.529 ± 0.001 5.35 0.512 ± 0.003 5.95 0.760 ± 0.006 3.15 

 
 
 

Table 2. Best models on specific attribute subsets from Brown et al. data (left) and Cell cycle data (right) 
Learner Subset CA Rank 
SVM spo 0.941 ± 0.002 1.30 
dBayes spo  0.938 ± 0.002 1.90 
dBayes heat 0.923 ± 0.003 4.85 
dBayes cdc 0.919 ± 0.003 6.75 
dBayes diau 0.918 ± 0.005 6.65 
dBayes ddt 0.913 ± 0.006 9.90 
dBayes alpha 0.911 ± 0.005 9.80 
dBayes elu 0.909 ± 0.003 9.70 
majority  0.907 ± 0.000 12.15 

Learner Subset CA Rank 
SVM Causton_stress_NaCl 0.615 ± 0.023 24.9 
dBayes   Spellman_cellcycle cdc28 0.608 ± 0.017 20.9 
dBayes   Gasch_stress 29Csorb33Cnosorb 0.604 ± 0.022 31.15 
SVM Spellman_cellcycle cdc28 0.602 ± 0.011 20.15 
SVM Gasch_stress Nitrogen 0.595 ± 0.017 27.05 
…    
majority  0.529 ± 0.001 64.6  

 



5 Discussion and Future work 
The experimental results show a mixed success of 
building gene function prediction models from 
microarray data. But even with some positive 
results, one should exercise caution. Our models 
performed best on a yeast data set first used for 
supervised learning by Brown et al.4 But notice that 
class labels for this data set came from clustering, 
so model prediction on this domain is actually an 
attempt to rediscover the distance function used for 
clustering. As these are in general not too complex 
functions (e.g. Euclidian distance), it is somehow 
expected for machine learning to perform 
reasonably well. Recently, Hvidsten et al.3 have 
reported on a machine learning study where gene 
labels, like for the other three data sets, where 
obtained from Gene Ontology (GO). They use a 
single smaller data set, but obtain much better 
results than those reported in this paper. The reason 
may lay in particular selection of a classification 
problem, e.g., in particular functional labels of 
genes selected for modelling. Hvidsten and 
collaborators used functional labels from higher 
levels of GO. These functions are more general 
than those modelled in this paper, and also bear less 
similarity. It seems that biological problems 
addressed in our experiments are harder: for 
instance, genes in transcription and regulation of 
transcription may be highly co-regulated). Also, the 
choice of particular data set (biological experiment) 
is crucial, and as expected, different data sets 
should be considered for prediction of distinct gene 
functions. 

The GO annotation of the yeast genome is 
probably the best there is for any eukaryotic 
genome, but it is not perfect.  In addition, the 
‘function’ annotation of genes is not always 
sufficient for accurate categorization and the other 
two annotations, ‘process’ and ‘subcellular 
localization’ are necessary for complete annotation.  
Therefore, the GO annotation data set cannot be 
considered as unambiguous.  Similarly, microarray 
data are notoriously noisy so the classification that 
is based on them must be imperfect.  It is quite 
possible that some of the failures reported here can 
be explained as the result of these ambiguities.  We 
predict that similar attempts to correlate expression 
and function in other, less well annotated genomes 
are likely to have a higher failure rate. 

A few comments are in order regarding 
machine learning as well. (1) Naïve Bayesian 
classifiers when combined with an optimization 
method that finds an appropriate function (m-
estimate) for probability assessment seems to be 
doing just as well as support vector machines, 
while being computationally significantly less 
demanding. (2) Since performance on some data 
sets were rather poor, ensemble learning did not 
help. (3) Constructive induction by means of 
extracting temporal patterns (surprisingly) did not 
help. (4) Notice that while the data is coming from 
different sources with different experimental 
conditions, this should not affect the performance 
of particular classification methods used. Naïve 
Bayesian classifier, for instance, treats each 
attribute independently; attribute-specific conditi-
onal probabilities it uses are derived without using 
the data on other attributes.  

 The results reported here are preliminary: we 
have found several problems, and were surprised by 
the rather weak performance of some advanced 
machine learning methods. To find what exactly 
caused these problems and what can be done to 
alleviate them we need to further analyze these 
domains. In this, we are now relying on a combina-
tion of machine learning and visualization tools. 
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