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Abstract. Physicians and medical decision-support applica-
tions, such as for diagnosis, therapy, monitoring, quality as-
sessment, and clinical research, reason about patients in terms 
of abstract, clinically meaningful concepts, typically over sig-
nificant time periods.  Clinical databases, however, store only 
raw, time-stamped data.  Thus, there is a need to bridge this 
gap. We introduce the Temporal Abstraction Language (TAR) 
which enables specification of abstract relations involving raw 
data and abstract concepts, and supports query answering. We 
characterize TAR knowledge bases that guarantee finite answer 
sets and shortly explain why a complete bottom-up inference 
mechanism terminates. The TAR language was implemented as 
the inference component termed ALMA in the distributed me-
diation system IDAN, which integrates a set of clinical data-
bases and medical knowledge bases. Initial experiments with 
ALMA and IDAN on a large oncology-patients dataset are 
highly encouraging. 

1. Introduction: Temporal Abstraction and 
Deductive Databases 

Many clinical domains require measurement and capture 
of numerous data of multiple types, often on electronic 
media.  Making decisions in those domains requires rea-
soning about these data.  Most stored data include a time 
stamp in which the particular datum was valid.  Thus, it is 
desirable to automatically create abstractions of time-
oriented data, and to be able to answer queries about such 
abstractions.  These needs can be referred to as temporal-
abstraction services.  Providing these services would 
benefit both humans (e.g. physicians) and automated de-
cision-support tools (e.g., clinical-guideline application, 
quality assessment of medical care, eligibility determina-
tion, exploration and visualization of time-oriented clini-
cal data for patient-management and medical-research 
purposes, etc). 

The main contribution of this paper is the proposal of a 
general language for temporal abstraction, investigating 
the properties of knowledge bases specified in that lan-
guage, and presenting an implementation of a problem-
solving module that answers queries about a set of time-
oriented patient data. We define restrictions on such 

knowledge bases, in order to guaranty finiteness of answer 
sets. Under these restrictions, conventional bottom-up 
complete inference mechanisms terminate. The language 
is implemented as the inference component of the IDAN 
mediation architecture [1], and is used for visual explora-
tion of a large set of medical records of patients monitored 
for several years after a bone marrow transplantation pro-
cedure.  Initial results are highly encouraging. 

1.1. Background 

Many approaches had been proposed previously for 
providing temporal-abstraction services [2, 3, 4, 5, 6, 7]. 

One of the first in-depth ontologies for handling many 
aspects involved in the temporal-abstraction task is the 
knowledge-based temporal-abstraction (KBTA) ontology 
[8].  A problem solving method based on the KBTA on-
tology, the KBTA method, was implemented within the 
RÉSUMÉ system.  The input of the KBTA method in-
cludes a set of time-stamped facts: primitive (raw-data) 
parameters (e.g., blood-glucose values), external events 
(e.g., insulin injections, a chemotherapy protocol), and, 
optionally, the user’s abstraction goals (e.g., abstract the 
data in the context of “therapy of patients who have insu-
lin-dependent diabetes”).  The output includes a set of in-
terval-based, context-specific parameters at the same or at 
a higher level of abstraction and their respective values 
(e.g., "a period of 5 weeks of grade III bone-marrow tox-
icity in the context of therapy with AZT").  (Contexts are 
induced by the existence of parameters, events, or abstrac-
tion goals). 

The constraint-based pattern-specification language 
(CAPSUL) [9] is an extension of the KBTA ontology that 
describes its pattern-matching language.  CAPSUL en-
ables specification of linear patterns (a single occurrence 
of a set of phenomena, including other patterns, from 
which the pattern is composed, and constraints on that set) 
and periodic patterns (two or more repetitions of a phe-
nomenon, and the constraints on these repetitions). 

A useful framework for discussion and analysis of tem-
poral-abstraction inference rules is a deductive database.  



 

A deductive database is a general approach for answering 
queries that are formulated as rules [10, 11].  Extensional 
relations in deductive database are equivalent to regular 
relations. In addition, a deductive database extends regu-
lar databases with rules that specify intensional relations 
(intensional relations are close to database views with re-
cursion mechanism). Rules in a deductive database are 
more expressive than relational algebra, since they may 
be defined recursively.  Relations in a database driven 
knowledge base must be finite.  The finiteness property is 
called safety.  Significant amount of researches [10, 12, 
13] was devoted to the syntactic characterization of safety 
in deductive database, and to the study of complete com-
putation mechanisms.  Determining safety is undecidable 
for general deductive databases with function symbols.  
The study of safety concentrates on the characterization 
of classes of problems for which safety can be checked. 

Methods for processing queries in deductive databases 
are partitioned into two classes: top-down and bottom-up.  
Bottom-up strategies start from the base relations and 
keep assembling them to produce derived relations, until 
they generate the query answer set.  Top-down strategies 
start from a query, and keep reducing it by applying the 
rules to the derived predicates. 

A Datalog database is a deductive database where 
functions are not permitted [11].  The domain of a Data-
log database is finite, since the extensional predicates are 
finite (the number of tuples in the database relation is fi-
nite), and new terms can not be created (there are no 
function symbols).  Therefore, there are simple algo-
rithms for checking safety of Datalog rules, although they 
are not precise. 

1.2 Requirements from Temporal-Abstraction Query 
Services 

A necessary feature for temporal abstraction, other than 
the existence of the time dimension, is the existence of 
multiple abstraction levels in the domain, with mappings 
among them.  Abstractions typically are vertical, derived 
from the values of one or more facts occurring at the 
same time, or horizontal, derived from facts occurring at 
different times.  For example, “150 kgs” might be 
mapped to heavy, while two distinct “heavy” facts that 
held on Monday and Friday might be mapped into one 
“heavy” fact that holds during the interval from Monday 
to Friday. 

Our goal in this research is to formalize and generalize 
the semantics of temporal abstraction.  We present a tem-
poral abstraction mechanism that subsumes CAPSUL’s 
linear pattern, as well as other mechanisms types in the 
KBTA ontology and the RÉSUMÉ system. 

A temporal-abstraction service should supply the fol-
lowing requirements: 

1. Finite answer sets to user queries. 

2. Tractable and complete inference mechanism. 

3. The temporal dimension, such as the time-point, 
time-interval, and time-measure data-types, 
should be part of the language. 

4. The rules used to answer queries must enable 
evaluation of value-oriented and time-oriented 
functions.  For example, mapping the hemoglo-
bin value 10 gr/dl to moderately low requires a 
value-classification function; creating a preg-
nancy context during the nine months after con-
ception, as done by the KBTA methods context-
forming mechanism [14] requires, among others, 
a time-oriented function. 

5. The language should enable specification of recur-
sive rules.  For example, the KBTA method’s in-
terpolation mechanism [15], which concatenates 
two time intervals by bridging the gap between 
them, is recursive. 

6. The time is the unique concrete domain supported 
by the language. That is, the language should be 
independent of any particular application do-
main, e.g., financial, meteorological or medical 
domains. 

Note that relational algebra can not account for recur-
sive reasoning.  While Datalog does not allow functions 
and neither support the time dimension.  General deduc-
tive databases allow function symbols but have to cope 
with termination problems.  Thus, a specialized temporal-
abstraction language and a corresponding knowledge-base 
structure are needed. 

2. The Temporal-Abstraction Rules (TAR) 
Language 

A TAR knowledge-base consists of Rules and Facts, and 
can be viewed as a subset of deductive databases. The fol-
lowing examples show how medical patterns are mapped 
into TAR rules: 

Example 2.1: In patient with acute myocardial infarc-
tion (m.i.) the serum level of cardiac specific enzyme tro-
ponin increase 3 -12 hours after the onset of m.i., and re-
turn to base line over 5-14 days.  Values (ng/ml) bellow 
0.6 are normal, between 0.7 and 1.4 are indeterminate and 
above 1.5 are abnormal. The presence of this specific en-
zyme in serum permits accurate diagnosis of m.i.  This 
pattern can be written in the TAR language as the follow-
ing rule: 



 

myocardial_necrosis(D, I, V) ← troponin(D, I1, V1) | 
V1>0.6, ifn, vfn 

The consequence of the rule is myocardial_necrosis(D, I, 
V) (to the left of the arrow), and the rule condition is tro-
ponin(D, I1, V1) (to the right of the arrow). In addition, 
the rule has the constraint: V1>0.6, ifn, is a time function 
that returns an appropriate interval relative to the exami-
nation date. vfn is a value function that returns an appro-
priate value according to the test result. 

Example 2.2: Hemoglobin state is derived from he-
moglobin measures. The function hgbClass maps hemo-
globin values less than 9 into low, values between 9 and 
16 into normal, and above 16 into high.  Two close 
enough hemoglobin state facts can be concatenated into a 
single long fact. The function interpolate computes the 
new fact interval. This pattern can be written in the TAR 
language as the following pair of rules: 

hemoglobin_state(D, I, V) ← hemoglobin(D, I1, V1) 
ifn, hgbClass 

hemoglobin_state(D, I, V) ← hemoglobin_state(D, I1, 
V1), hemoglobin_state(D, I2, V2) | 
 close_enogh(I1,I2), interpolate, vfn 

Note, that the second rule is recursive. 

2.1. TAR Language Syntax 

The TAR language contains symbols of three types (for 
each there are constant and variable symbols; variables 
start with upper case letters): 1) individual symbols (e.g., 
john), 2) time-interval symbols (e.g., the day of 1/1/2000) 
and 3) value symbols (e.g., 2.3 cm, low, abnormal, and 
green). 

A fact is a TAR atomic formula specified using a 
predicate symbol with the signature individual × time-
interval × value.  For example, height(john, 1/1/1990-
1/1/1990, 152 cm).  That is,  atomic formulae have the 
structure p(d, i ,v), where p is a predicate symbol, d is a 
term of type individual, i is a term of type time-interval 
and v is a term of type value. A fact is a ground (without 
variables) atomic formula. 

The language contains also a set of external evaluable 
functions and constraints:  A time-function is a function 
symbol with the signature (time-interval∪value)n→time-
interval (i.e. the function accepts time-intervals and 
values, and returns a time-interval).  A value-function is a 
function symbol with the signature (time-
interval∪value)n→value.  A constraint is an external n-
ary predicate symbol that accepts time-intervals and 
values symbols as arguments, and evaluate to TRUE/ 

FALSE by calling an external constraints package (e.g., 
greater_than, during, monday etc). 

A TAR rule (to be defined from now on, simply as rule) 
is a statement of the form: 

h(D, I, V) ← b1(D, I1, V1),…,bn(D, In, Vn) | 
{c1,…,cm}, ifn, vfn 

where h(D, I, V), b1(D, I1, V1),…,bn(D, In, Vn) are atomic 
formulae (note that the same individual appears in all 
atomic formulae, and n≥1), c1,…,cm are constraints, ifn is a 
time-function symbol, and vfn is a value-function symbol.  
h(D, I, V) is the head atom of the rule, h is the head predi-
cate, each bi(D, Ii, Vi) is a base atom of the rule, bi is a 
base predicate in the rule, the conjunction of the bases is 
the body of the rule.  Variables that appear in the head are 
head variables, and variables that appear in the body are 
body variables, denoted B

r
. The Interval and Value head 

variables are distinct from all body variables. A rule in-
stance is a pair of substitutions (σh, σb), where σh is a sub-
stitution for the head variables, and σb a substitution for 
the body variables.  A ground rule instance is a rule in-
stance in which all body variables are ground. 

2.2. Semantics of TAR  

The Temporal Model:  We assume a time line that can 
be identified with the integers.  The model distinguishes 
among three temporal data-types. A time-point is identi-
fied with the integers, a time-measure that denotes sizes 
on the time-line and a time-interval that denotes a segment 
on the time line.  For example, 3 o’clock is time-point, 
two hours is a time measure, and it can be from 3 to 5 
o’clock or from 8 to 10 o’clock. A measure can be a posi-
tive, negative or zero. 

Language of Constraints:  In the TAR language facts 
can be constrained by temporal or value constraints.  
Temporal constraints are built-in, and value constraints 
depend on the application domain.  Constraints can be 
combined using logical connectives and possibly by car-
dinality based connectives like at-least-N. 

The language temporal built-in constraints are: Calen-
dar constraints over a single time-point. e.g., wednes-
day(P1) holds if P1 happened on Wednesday. Point- and 
Measure-constraints enables comparison of time-points 
and time-measures.  Following Allen time-interval algebra 
[16], we define interval-constraints as predicates equiva-
lent to the 13 basic binary relations between intervals. 

TAR language is domain independent. It can be applied 
on various value types, e.g., numbers, strings, images, 
structures etc.  For each value type, the user adds external 
value constraints that are invoked (evaluated) on query 



 

processing.  It is the user responsibility to apply the cor-
rect constraints on the appropriate value types. 

A TAR semantic structure is a pair J= (D, ⋅ J) of a do-
main D. The Domain is partitioned into three parts: Indi-
vidual, Time-Interval and Value. 

• Individual is a finite non-empty domain of indi-
viduals (in the medical domain patients are indi-
viduals), e.g., the person whose name is John. 

• Time-Interval is an infinite domain of time inter-
vals. An interval is a segment on a discrete time 
line, e.g., the segment of time from 1/1/2000 
00:00 to 04:00. 

• Value is a finite or infinite domain of values.  Dif-
ferent value domains are possible in different ap-
plication domains, e.g., 182 centimeters and high-
fever. 

The time-interval and value symbols in the language are 
identified with the entities in the Time-Interval and the 
various Value domains. That is, the collection of symbols 
is the semantic domain for these types. 

A time-function symbol denotes a function that ac-
cepts time-intervals and values, and returns an interval.  
Similarly, a value function symbol denotes a function 
with the same argument types that return a value.  A rela-
tion symbol denotes Individual × Time-Interval × Value. 
For example: the meaning of the relation height is a finite 
set of triplets: {(john, 1/1/1990-1/1/1990, 152 cm), 
(marry, 1/1/1990-1/1/1990, 160 cm), (john, 1/1/2000-
1/1/2000, 185 cm)…}.  Constraint symbols denote exter-
nal constraint predicates.  The constraints are partitioned 
into temporal constraints which are built-in, and value 
constraints which are evaluated using external, packages.  
A set of constraints must be evaluable for every ground 
instance of a rule. 

Temporal-Abstraction Property: Given the rule r=h(D, 
I, V) ← b1(D, I1, V1),…,bn(D, In, Vn) | {c1,…,cm}, ifn, vfn, 
and an interpretation J, we say that the rule is true in J, 
written J╞ r, if for every ground instance (σh, σb) of r, 
where σh is empty, the following holds: 

If: 

1. All body atoms are satisfied in J, i.e., J╞ 
(b1(D, I1, V1),…,bn(D, In, Vn) )σb 

2. All constraints evaluate to TRUE, i.e., 
(ci)σb=TRUE for every 1≤i≤m 

Then:  

1. The time variable, I, and the value variable, 
V, in the head are substituted to the values 
obtained by the time function, ifn, and value 
function, vfn, i.e., define σh’ to be {I=i, V=v} 

such that iJ=ifn(( B
r
σb)J) and 

vJ=vfn(( B
r
σb)J) 

2. The rule head holds in J, i.e., J╞ (h(D, I, V)σh’ 

This condition is called the Temporal-Abstraction 
Property of r with respect to interpretation J. 

An interpretation J is a model of a knowledge-base if 
every rule in it fulfills the temporal-abstraction property 
with respect to J.  An inference mechanism for TAR can 
be either query driven i.e., find whether the query holds, 
in every model of the knowledge base, or can compute the 
intensional relations.  We say that an inference mechanism 
is complete if it can compute the intensional relations. 

2.3. Well Defined Knowledge-Bases 

In a TAR knowledge base we are interested in having safe 
(finite) intensional relations that can be effectively com-
puted by a complete inference mechanism. Such a TAR 
knowledge base is termed well defined.  Clearly, the exis-
tence of a complete terminating inference mechanism im-
plies safety.  The common approach for computing inten-
sional relations is bottom-up evaluation of the rules [10, 
11].  In this approach one computes the knowledge-base 
least fixpoint (which is known to exists and be comput-
able).  Bottom-up evaluation repeatedly applies the rules 
to the facts, in order to create new facts; each application 
is called a round.  If a round provides no new facts, the 
least fixpoint is reached (finite in this case), and the algo-
rithm stops.  Termination is guarantied [12] if: each round 
is finite, and the number of rounds is finite. 

Claim 2.1: TAR rules guaranty finite rounds, i.e., in 
each round, a finite number of facts are added (note that in 
the general case, if a rule has an infinite number of in-
stances, this is not necessarily true). 

Proof: (shortened) The claim results form the fact that 
all base relations are finite, and the head variables are lim-
ited by the functions in the rule body.□ 

In order to guaranty termination we still have to make 
sure that the number of rounds in bottom-up evaluation is 
finite. For that purpose, we impose restrictions on the 
structure of knowledge bases. These restrictions consist of 
characterizations of two function types: converging and 
diverging and the definition of diverging dependency 
graph that is derived from the rules.  A similar restriction 
was used in [13] for guarantying finiteness of answers to 
queries over sequence databases. 

A Converging function is a function that does not pro-
duce new terms. e.g.: maximum, member and substring are 
converging functions.  For instance, maximum (2,4,1) is 4, 
a term that already exist in the knowledge base. On the 
other hand, a Diverging function might extend the domain. 



 

For instance, the + function with the parameters (1, 2) 
creates a new term 3, sequence concatenation is also a 
diverging function.  The diverging dependency graph of a 
TAR knowledge-base is a directed-graph, where nodes 
are labeled by the predicates.  There is a converging arc 
from b to h, labeled “c”, if there is a rule, r, with h as the 
head predicate, b as a base predicate and the time and 
value functions of r are converging; and there is a diverg-
ing arc from b to h, labeled “d”, if at least one of the rule 
functions is diverging.  A knowledge-base has a strati-
fied-diversion structure if it does not contain cycles with 
a diverging arc.  Fig. 1 shows an example for a knowl-
edge base that is not stratified diversion. 

 

r1: p2(V) ←p1(V1)| V= V1*2 

r2: p2(V) ←p3(V3), p5(V5)| max(2*V5, V3) 

r3: p3(V) ←p2(V2)| V= V2 

r4: p4(V) ←p2(V2)| V= V2 

r5: p4(V) ←p4(V4)| V= s(V4) 

Fig. 1. An example of a knowledge base and its diverging de-
pendency-graph (for the sake of simplicity, we omit the time 
variables, the constraints and the time function of the rules).  p1 
and p5 are finite, since they are extensional predicates. The 
value functions used in r1, r2, and r5 are diverging.  p2 and p3 
are finite because they are not participating in a cycle with a di-
verging arc.  p4 is not finite because it participates in a cycle 
with a diverging arc (p4→p4).  The knowledge base does not 
have a stratified-diversion structure, and hence it is not well de-
fined. 

Claim 2.2: A TAR knowledge base with a stratified-
diversion structure is well defined. 

Proof: (shortened) Each round that applies diverging 
functions produces new terms.  Therefore recursive ap-
plication includes only converging functions that do not 
add new terms, while non recursive applications might be 
applied only finite number of times diverging functions 
that might add new terms.  All in all, the amount of new 
terms in finite.□ 

2.6. The ALMA System and its Query Evaluation 
Strategy 

We have implemented a system that applies the semantics 
of a TAR knowledge base to any particular time-oriented 
database, called ALMA1.  ALMA processes TAR queries 
using a focused bottom-up strategy [10]. 

ALMA uses a set of optimizations, such as caching in-
termediate computation results, reordering of the rule 
body base predicates according to their number of tuples, 
evaluation of constraints as early as possible, in order to 
cut irrelevant branches, a special time-sorted data-
structure, and other task-specific means. 

ALMA is a component of IDAN distributed temporal-
abstraction mediation architecture.  IDAN includes a set 
of distributed data-sources, distributed knowledge-
sources, as well as ALMA and a controller that serves as 
the interface to client applications (see [17] for details).  
When IDAN Controller receives a query, it prepares a set 
of potentially relevant facts, and a set of relevant rules 
(from the data and knowledge sources), then it passes the 
query with the facts and rules to ALMA. ALMA proc-
esses the query, and the appropriate result is returned to 
IDAN controller. 

ALMA was implemented in Sicstus Prolog, benefiting 
of Prolog built-in unification, backtracking, and “objects” 
(a library for logic object oriented programming) features.  
Rules and facts are stored only in the main memory.  For 
each distinct user (client) a new ALMA object is created, 
hence the facts different ALMA objects are not mixed.  
Each ALMA object remains in memory for a predefined 
amount of time (few minutes), and then it is collected.  
Caching the ALMA objects might consume time in the 
client next queries. 

ALMA was successfully applied to a database of more 
than a thousand patients followed for up to four years after 
a bone marrow transplantation procedure, to support ap-
plications such as visual interactive exploration of time-
oriented clinical data [17]. 

3. Discussion 

TAR mechanism tries to formalize previous knowledge 
embedded in the KBTA.  TAR is a more general language 
for reasoning over time. The KBTA Ontology is a more 
specific language that fulfills common abstraction needs.  
The KBTA method’s mechanisms (without periodic pat-
terns) can be mapped into the TAR language without los-
ing their intuitive underlying original semantics.  Hence, 

                                                           
1 Alma is an Aramaic word meaning “hence”. It is typically used 

as part of a logical argument. 
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we can say that the TAR language subsumes the KBTA 
ontology.  Moreover, we have gained new insights by ap-
plying the TAR safety analysis on the KBTA mecha-
nisms that were mapped into TAR rules. 

As the KBTA ontology is more task-specific, a system 
based on it might perform better than the single, generic 
algorithm that interprets the TAR language.  Knowledge 
acquisition in the KBTA framework is easier, since we 
know which templates the user expects, and they have 
clear, task-specific semantics and corresponding struc-
ture, while in the TAR language the rules are generic.  A 
good symbiosis between the two languages is to interact 
with the user using the KBTA ontology (except for com-
plex patterns, where we might use the more expressive 
TAR language), to translate the knowledge into rules, and 
to answer queries using ALMA.  In the IDAN project, we 
have in fact adopted this solution with initial encouraging 
results. 

The RÉSUMÉ implementation was responsible only 
for the generation of abstractions (i.e., temporal reason-
ing).  The generated facts (output) were transformed into 
an intermediate storage format (e.g., a file, or a database).  
In order to answer queries there was a need to analyze 
this output.  The benefit of this approach is that the rea-
soning can be done in a batch process, and queries are 
quickly answered.  The main drawback of this approach 
that the query is not a part of the reasoning input, hence, 
the reasoning process can not be focused, as is the case in 
ALMA. 

As ALMA does not store its facts in a persistent fash-
ion (only for a short time, but under the assumption that 
during that time no changes were made in the extensional 
facts), Alma does not need a Truth Maintenance System 
(TMS), such as exists in RÉSUMÉ, which caters for 
modification of facts and propagation of effects.  In the 
case of updates, ALMA will reprocess the data from 
scratch.  Thus, ALMA does not operate in incremental 
fashion, as might be more appropriate in a context such 
as intensive care (where data arrive continuously and ab-
stractions need to be updated rather then recomputed). 

In order to be domain independent, ALMA intention-
ally puts value constraints in external packages. The 
rather general structure of such constraints enables 
ALMA to process not only simple value types, as number 
and symbols, but also complex data types, as lists or other 
structures.  For example: medication administrations are 
often represented as complex frames such as <dose, 
preparation, rout…>.  The ability to use additional do-
main-specific packages greatly extends the potential 
benefits of using ALMA. 

The usage of deductive database approach contributes 
to the understanding of termination mechanism.  In the 
future, we intend to relax the current characterizations of 
well defined knowledge bases.  We intend also to opti-

mize the query processing, mainly in order to be able to 
process in the same query several sets of patient records.  
For example, analyzing the set of all the patients who have 
had a bone-marrow transplantation in a particular hospital.  
In addition, we intend to define additional types of rules 
for repeating patterns. 

The initial experience of using ALMA within the 
IDAN architecture leads us to believe that a well defined 
inference mechanism, such as represented by the TAR 
language, has the benefit of maintaining the safety, effec-
tive computability, of query processing.  A domain inde-
pendent expressive language for querying time-oriented 
clinical data, whose evaluation is efficient, has multiple 
implications for automated support to clinical care and 
medical research, both of which currently focus on 
chronic patients. 
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