
A Temporal-Abstraction Rule Language for Medical Databases

David Boaz1, Mira Balaban2, and Yuval Shahar1

Department of Information Systems Engineering,

Ben Gurion University, Beer Sheva 84105, Israel
1{dboaz, yshahar}@bgumail.bgu.ac.il, 2mira@cs.bgu.ac.il

Abstract. Physicians and medical decision-support applica-
tions, such as for diagnosis, therapy, monitoring, quality as-
sessment, and clinical research, reason about patients in terms
of abstract, clinically meaningful concepts, typically over sig-
nificant time periods. Clinical databases, however, store only
raw, time-stamped data. Thus, there is a need to bridge this
gap. We introduce the Temporal Abstraction Language (TAR)
which enables specification of abstract relations involving raw
data and abstract concepts, and supports query answering. We
characterize TAR knowledge bases that guarantee finite answer
sets and shortly explain why a complete bottom-up inference
mechanism terminates. The TAR language was implemented as
the inference component termed ALMA in the distributed me-
diation system IDAN, which integrates a set of clinical data-
bases and medical knowledge bases. Initial experiments with
ALMA and IDAN on a large oncology-patients dataset are
highly encouraging.

1. Introduction: Temporal Abstraction and
Deductive Databases

Many clinical domains require measurement and capture
of numerous data of multiple types, often on electronic
media. Making decisions in those domains requires rea-
soning about these data. Most stored data include a time
stamp in which the particular datum was valid. Thus, it is
desirable to automatically create abstractions of time-
oriented data, and to be able to answer queries about such
abstractions. These needs can be referred to as temporal-
abstraction services. Providing these services would
benefit both humans (e.g. physicians) and automated de-
cision-support tools (e.g., clinical-guideline application,
quality assessment of medical care, eligibility determina-
tion, exploration and visualization of time-oriented clini-
cal data for patient-management and medical-research
purposes, etc).

The main contribution of this paper is the proposal of a
general language for temporal abstraction, investigating
the properties of knowledge bases specified in that lan-
guage, and presenting an implementation of a problem-
solving module that answers queries about a set of time-
oriented patient data. We define restrictions on such

knowledge bases, in order to guaranty finiteness of answer
sets. Under these restrictions, conventional bottom-up
complete inference mechanisms terminate. The language
is implemented as the inference component of the IDAN
mediation architecture [1], and is used for visual explora-
tion of a large set of medical records of patients monitored
for several years after a bone marrow transplantation pro-
cedure. Initial results are highly encouraging.

1.1. Background

Many approaches had been proposed previously for
providing temporal-abstraction services [2, 3, 4, 5, 6, 7].

One of the first in-depth ontologies for handling many
aspects involved in the temporal-abstraction task is the
knowledge-based temporal-abstraction (KBTA) ontology
[8]. A problem solving method based on the KBTA on-
tology, the KBTA method, was implemented within the
RÉSUMÉ system. The input of the KBTA method in-
cludes a set of time-stamped facts: primitive (raw-data)
parameters (e.g., blood-glucose values), external events
(e.g., insulin injections, a chemotherapy protocol), and,
optionally, the user’s abstraction goals (e.g., abstract the
data in the context of “therapy of patients who have insu-
lin-dependent diabetes”). The output includes a set of in-
terval-based, context-specific parameters at the same or at
a higher level of abstraction and their respective values
(e.g., "a period of 5 weeks of grade III bone-marrow tox-
icity in the context of therapy with AZT"). (Contexts are
induced by the existence of parameters, events, or abstrac-
tion goals).

The constraint-based pattern-specification language
(CAPSUL) [9] is an extension of the KBTA ontology that
describes its pattern-matching language. CAPSUL en-
ables specification of linear patterns (a single occurrence
of a set of phenomena, including other patterns, from
which the pattern is composed, and constraints on that set)
and periodic patterns (two or more repetitions of a phe-
nomenon, and the constraints on these repetitions).

A useful framework for discussion and analysis of tem-
poral-abstraction inference rules is a deductive database.

A deductive database is a general approach for answering
queries that are formulated as rules [10, 11]. Extensional
relations in deductive database are equivalent to regular
relations. In addition, a deductive database extends regu-
lar databases with rules that specify intensional relations
(intensional relations are close to database views with re-
cursion mechanism). Rules in a deductive database are
more expressive than relational algebra, since they may
be defined recursively. Relations in a database driven
knowledge base must be finite. The finiteness property is
called safety. Significant amount of researches [10, 12,
13] was devoted to the syntactic characterization of safety
in deductive database, and to the study of complete com-
putation mechanisms. Determining safety is undecidable
for general deductive databases with function symbols.
The study of safety concentrates on the characterization
of classes of problems for which safety can be checked.

Methods for processing queries in deductive databases
are partitioned into two classes: top-down and bottom-up.
Bottom-up strategies start from the base relations and
keep assembling them to produce derived relations, until
they generate the query answer set. Top-down strategies
start from a query, and keep reducing it by applying the
rules to the derived predicates.

A Datalog database is a deductive database where
functions are not permitted [11]. The domain of a Data-
log database is finite, since the extensional predicates are
finite (the number of tuples in the database relation is fi-
nite), and new terms can not be created (there are no
function symbols). Therefore, there are simple algo-
rithms for checking safety of Datalog rules, although they
are not precise.

1.2 Requirements from Temporal-Abstraction Query
Services

A necessary feature for temporal abstraction, other than
the existence of the time dimension, is the existence of
multiple abstraction levels in the domain, with mappings
among them. Abstractions typically are vertical, derived
from the values of one or more facts occurring at the
same time, or horizontal, derived from facts occurring at
different times. For example, “150 kgs” might be
mapped to heavy, while two distinct “heavy” facts that
held on Monday and Friday might be mapped into one
“heavy” fact that holds during the interval from Monday
to Friday.

Our goal in this research is to formalize and generalize
the semantics of temporal abstraction. We present a tem-
poral abstraction mechanism that subsumes CAPSUL’s
linear pattern, as well as other mechanisms types in the
KBTA ontology and the RÉSUMÉ system.

A temporal-abstraction service should supply the fol-
lowing requirements:

1. Finite answer sets to user queries.

2. Tractable and complete inference mechanism.

3. The temporal dimension, such as the time-point,
time-interval, and time-measure data-types,
should be part of the language.

4. The rules used to answer queries must enable
evaluation of value-oriented and time-oriented
functions. For example, mapping the hemoglo-
bin value 10 gr/dl to moderately low requires a
value-classification function; creating a preg-
nancy context during the nine months after con-
ception, as done by the KBTA methods context-
forming mechanism [14] requires, among others,
a time-oriented function.

5. The language should enable specification of recur-
sive rules. For example, the KBTA method’s in-
terpolation mechanism [15], which concatenates
two time intervals by bridging the gap between
them, is recursive.

6. The time is the unique concrete domain supported
by the language. That is, the language should be
independent of any particular application do-
main, e.g., financial, meteorological or medical
domains.

Note that relational algebra can not account for recur-
sive reasoning. While Datalog does not allow functions
and neither support the time dimension. General deduc-
tive databases allow function symbols but have to cope
with termination problems. Thus, a specialized temporal-
abstraction language and a corresponding knowledge-base
structure are needed.

2. The Temporal-Abstraction Rules (TAR)
Language

A TAR knowledge-base consists of Rules and Facts, and
can be viewed as a subset of deductive databases. The fol-
lowing examples show how medical patterns are mapped
into TAR rules:

Example 2.1: In patient with acute myocardial infarc-
tion (m.i.) the serum level of cardiac specific enzyme tro-
ponin increase 3 -12 hours after the onset of m.i., and re-
turn to base line over 5-14 days. Values (ng/ml) bellow
0.6 are normal, between 0.7 and 1.4 are indeterminate and
above 1.5 are abnormal. The presence of this specific en-
zyme in serum permits accurate diagnosis of m.i. This
pattern can be written in the TAR language as the follow-
ing rule:

myocardial_necrosis(D, I, V) ← troponin(D, I1, V1) |
V1>0.6, ifn, vfn

The consequence of the rule is myocardial_necrosis(D, I,
V) (to the left of the arrow), and the rule condition is tro-
ponin(D, I1, V1) (to the right of the arrow). In addition,
the rule has the constraint: V1>0.6, ifn, is a time function
that returns an appropriate interval relative to the exami-
nation date. vfn is a value function that returns an appro-
priate value according to the test result.

Example 2.2: Hemoglobin state is derived from he-
moglobin measures. The function hgbClass maps hemo-
globin values less than 9 into low, values between 9 and
16 into normal, and above 16 into high. Two close
enough hemoglobin state facts can be concatenated into a
single long fact. The function interpolate computes the
new fact interval. This pattern can be written in the TAR
language as the following pair of rules:

hemoglobin_state(D, I, V) ← hemoglobin(D, I1, V1)
ifn, hgbClass

hemoglobin_state(D, I, V) ← hemoglobin_state(D, I1,
V1), hemoglobin_state(D, I2, V2) |
 close_enogh(I1,I2), interpolate, vfn

Note, that the second rule is recursive.

2.1. TAR Language Syntax

The TAR language contains symbols of three types (for
each there are constant and variable symbols; variables
start with upper case letters): 1) individual symbols (e.g.,
john), 2) time-interval symbols (e.g., the day of 1/1/2000)
and 3) value symbols (e.g., 2.3 cm, low, abnormal, and
green).

A fact is a TAR atomic formula specified using a
predicate symbol with the signature individual × time-
interval × value. For example, height(john, 1/1/1990-
1/1/1990, 152 cm). That is, atomic formulae have the
structure p(d, i ,v), where p is a predicate symbol, d is a
term of type individual, i is a term of type time-interval
and v is a term of type value. A fact is a ground (without
variables) atomic formula.

The language contains also a set of external evaluable
functions and constraints: A time-function is a function
symbol with the signature (time-interval∪value)n→time-
interval (i.e. the function accepts time-intervals and
values, and returns a time-interval). A value-function is a
function symbol with the signature (time-
interval∪value)n→value. A constraint is an external n-
ary predicate symbol that accepts time-intervals and
values symbols as arguments, and evaluate to TRUE/

FALSE by calling an external constraints package (e.g.,
greater_than, during, monday etc).

A TAR rule (to be defined from now on, simply as rule)
is a statement of the form:

h(D, I, V) ← b1(D, I1, V1),…,bn(D, In, Vn) |
{c1,…,cm}, ifn, vfn

where h(D, I, V), b1(D, I1, V1),…,bn(D, In, Vn) are atomic
formulae (note that the same individual appears in all
atomic formulae, and n≥1), c1,…,cm are constraints, ifn is a
time-function symbol, and vfn is a value-function symbol.
h(D, I, V) is the head atom of the rule, h is the head predi-
cate, each bi(D, Ii, Vi) is a base atom of the rule, bi is a
base predicate in the rule, the conjunction of the bases is
the body of the rule. Variables that appear in the head are
head variables, and variables that appear in the body are
body variables, denoted B

r
. The Interval and Value head

variables are distinct from all body variables. A rule in-
stance is a pair of substitutions (σh, σb), where σh is a sub-
stitution for the head variables, and σb a substitution for
the body variables. A ground rule instance is a rule in-
stance in which all body variables are ground.

2.2. Semantics of TAR

The Temporal Model: We assume a time line that can
be identified with the integers. The model distinguishes
among three temporal data-types. A time-point is identi-
fied with the integers, a time-measure that denotes sizes
on the time-line and a time-interval that denotes a segment
on the time line. For example, 3 o’clock is time-point,
two hours is a time measure, and it can be from 3 to 5
o’clock or from 8 to 10 o’clock. A measure can be a posi-
tive, negative or zero.

Language of Constraints: In the TAR language facts
can be constrained by temporal or value constraints.
Temporal constraints are built-in, and value constraints
depend on the application domain. Constraints can be
combined using logical connectives and possibly by car-
dinality based connectives like at-least-N.

The language temporal built-in constraints are: Calen-
dar constraints over a single time-point. e.g., wednes-
day(P1) holds if P1 happened on Wednesday. Point- and
Measure-constraints enables comparison of time-points
and time-measures. Following Allen time-interval algebra
[16], we define interval-constraints as predicates equiva-
lent to the 13 basic binary relations between intervals.

TAR language is domain independent. It can be applied
on various value types, e.g., numbers, strings, images,
structures etc. For each value type, the user adds external
value constraints that are invoked (evaluated) on query

processing. It is the user responsibility to apply the cor-
rect constraints on the appropriate value types.

A TAR semantic structure is a pair J= (D, ⋅ J) of a do-
main D. The Domain is partitioned into three parts: Indi-
vidual, Time-Interval and Value.

• Individual is a finite non-empty domain of indi-
viduals (in the medical domain patients are indi-
viduals), e.g., the person whose name is John.

• Time-Interval is an infinite domain of time inter-
vals. An interval is a segment on a discrete time
line, e.g., the segment of time from 1/1/2000
00:00 to 04:00.

• Value is a finite or infinite domain of values. Dif-
ferent value domains are possible in different ap-
plication domains, e.g., 182 centimeters and high-
fever.

The time-interval and value symbols in the language are
identified with the entities in the Time-Interval and the
various Value domains. That is, the collection of symbols
is the semantic domain for these types.

A time-function symbol denotes a function that ac-
cepts time-intervals and values, and returns an interval.
Similarly, a value function symbol denotes a function
with the same argument types that return a value. A rela-
tion symbol denotes Individual × Time-Interval × Value.
For example: the meaning of the relation height is a finite
set of triplets: {(john, 1/1/1990-1/1/1990, 152 cm),
(marry, 1/1/1990-1/1/1990, 160 cm), (john, 1/1/2000-
1/1/2000, 185 cm)…}. Constraint symbols denote exter-
nal constraint predicates. The constraints are partitioned
into temporal constraints which are built-in, and value
constraints which are evaluated using external, packages.
A set of constraints must be evaluable for every ground
instance of a rule.

Temporal-Abstraction Property: Given the rule r=h(D,
I, V) ← b1(D, I1, V1),…,bn(D, In, Vn) | {c1,…,cm}, ifn, vfn,
and an interpretation J, we say that the rule is true in J,
written J╞ r, if for every ground instance (σh, σb) of r,
where σh is empty, the following holds:

If:

1. All body atoms are satisfied in J, i.e., J╞
(b1(D, I1, V1),…,bn(D, In, Vn))σb

2. All constraints evaluate to TRUE, i.e.,
(ci)σb=TRUE for every 1≤i≤m

Then:

1. The time variable, I, and the value variable,
V, in the head are substituted to the values
obtained by the time function, ifn, and value
function, vfn, i.e., define σh’ to be {I=i, V=v}

such that iJ=ifn((B
r
σb)J) and

vJ=vfn((B
r
σb)J)

2. The rule head holds in J, i.e., J╞ (h(D, I, V)σh’

This condition is called the Temporal-Abstraction
Property of r with respect to interpretation J.

An interpretation J is a model of a knowledge-base if
every rule in it fulfills the temporal-abstraction property
with respect to J. An inference mechanism for TAR can
be either query driven i.e., find whether the query holds,
in every model of the knowledge base, or can compute the
intensional relations. We say that an inference mechanism
is complete if it can compute the intensional relations.

2.3. Well Defined Knowledge-Bases

In a TAR knowledge base we are interested in having safe
(finite) intensional relations that can be effectively com-
puted by a complete inference mechanism. Such a TAR
knowledge base is termed well defined. Clearly, the exis-
tence of a complete terminating inference mechanism im-
plies safety. The common approach for computing inten-
sional relations is bottom-up evaluation of the rules [10,
11]. In this approach one computes the knowledge-base
least fixpoint (which is known to exists and be comput-
able). Bottom-up evaluation repeatedly applies the rules
to the facts, in order to create new facts; each application
is called a round. If a round provides no new facts, the
least fixpoint is reached (finite in this case), and the algo-
rithm stops. Termination is guarantied [12] if: each round
is finite, and the number of rounds is finite.

Claim 2.1: TAR rules guaranty finite rounds, i.e., in
each round, a finite number of facts are added (note that in
the general case, if a rule has an infinite number of in-
stances, this is not necessarily true).

Proof: (shortened) The claim results form the fact that
all base relations are finite, and the head variables are lim-
ited by the functions in the rule body.□

In order to guaranty termination we still have to make
sure that the number of rounds in bottom-up evaluation is
finite. For that purpose, we impose restrictions on the
structure of knowledge bases. These restrictions consist of
characterizations of two function types: converging and
diverging and the definition of diverging dependency
graph that is derived from the rules. A similar restriction
was used in [13] for guarantying finiteness of answers to
queries over sequence databases.

A Converging function is a function that does not pro-
duce new terms. e.g.: maximum, member and substring are
converging functions. For instance, maximum (2,4,1) is 4,
a term that already exist in the knowledge base. On the
other hand, a Diverging function might extend the domain.

For instance, the + function with the parameters (1, 2)
creates a new term 3, sequence concatenation is also a
diverging function. The diverging dependency graph of a
TAR knowledge-base is a directed-graph, where nodes
are labeled by the predicates. There is a converging arc
from b to h, labeled “c”, if there is a rule, r, with h as the
head predicate, b as a base predicate and the time and
value functions of r are converging; and there is a diverg-
ing arc from b to h, labeled “d”, if at least one of the rule
functions is diverging. A knowledge-base has a strati-
fied-diversion structure if it does not contain cycles with
a diverging arc. Fig. 1 shows an example for a knowl-
edge base that is not stratified diversion.

r1: p2(V) ←p1(V1)| V= V1*2

r2: p2(V) ←p3(V3), p5(V5)| max(2*V5, V3)

r3: p3(V) ←p2(V2)| V= V2

r4: p4(V) ←p2(V2)| V= V2

r5: p4(V) ←p4(V4)| V= s(V4)

Fig. 1. An example of a knowledge base and its diverging de-
pendency-graph (for the sake of simplicity, we omit the time
variables, the constraints and the time function of the rules). p1
and p5 are finite, since they are extensional predicates. The
value functions used in r1, r2, and r5 are diverging. p2 and p3
are finite because they are not participating in a cycle with a di-
verging arc. p4 is not finite because it participates in a cycle
with a diverging arc (p4→p4). The knowledge base does not
have a stratified-diversion structure, and hence it is not well de-
fined.

Claim 2.2: A TAR knowledge base with a stratified-
diversion structure is well defined.

Proof: (shortened) Each round that applies diverging
functions produces new terms. Therefore recursive ap-
plication includes only converging functions that do not
add new terms, while non recursive applications might be
applied only finite number of times diverging functions
that might add new terms. All in all, the amount of new
terms in finite.□

2.6. The ALMA System and its Query Evaluation
Strategy

We have implemented a system that applies the semantics
of a TAR knowledge base to any particular time-oriented
database, called ALMA1. ALMA processes TAR queries
using a focused bottom-up strategy [10].

ALMA uses a set of optimizations, such as caching in-
termediate computation results, reordering of the rule
body base predicates according to their number of tuples,
evaluation of constraints as early as possible, in order to
cut irrelevant branches, a special time-sorted data-
structure, and other task-specific means.

ALMA is a component of IDAN distributed temporal-
abstraction mediation architecture. IDAN includes a set
of distributed data-sources, distributed knowledge-
sources, as well as ALMA and a controller that serves as
the interface to client applications (see [17] for details).
When IDAN Controller receives a query, it prepares a set
of potentially relevant facts, and a set of relevant rules
(from the data and knowledge sources), then it passes the
query with the facts and rules to ALMA. ALMA proc-
esses the query, and the appropriate result is returned to
IDAN controller.

ALMA was implemented in Sicstus Prolog, benefiting
of Prolog built-in unification, backtracking, and “objects”
(a library for logic object oriented programming) features.
Rules and facts are stored only in the main memory. For
each distinct user (client) a new ALMA object is created,
hence the facts different ALMA objects are not mixed.
Each ALMA object remains in memory for a predefined
amount of time (few minutes), and then it is collected.
Caching the ALMA objects might consume time in the
client next queries.

ALMA was successfully applied to a database of more
than a thousand patients followed for up to four years after
a bone marrow transplantation procedure, to support ap-
plications such as visual interactive exploration of time-
oriented clinical data [17].

3. Discussion

TAR mechanism tries to formalize previous knowledge
embedded in the KBTA. TAR is a more general language
for reasoning over time. The KBTA Ontology is a more
specific language that fulfills common abstraction needs.
The KBTA method’s mechanisms (without periodic pat-
terns) can be mapped into the TAR language without los-
ing their intuitive underlying original semantics. Hence,

1 Alma is an Aramaic word meaning “hence”. It is typically used

as part of a logical argument.

p 4

p 2

p 1

c

p 3

p 5

c

c
d d

d

we can say that the TAR language subsumes the KBTA
ontology. Moreover, we have gained new insights by ap-
plying the TAR safety analysis on the KBTA mecha-
nisms that were mapped into TAR rules.

As the KBTA ontology is more task-specific, a system
based on it might perform better than the single, generic
algorithm that interprets the TAR language. Knowledge
acquisition in the KBTA framework is easier, since we
know which templates the user expects, and they have
clear, task-specific semantics and corresponding struc-
ture, while in the TAR language the rules are generic. A
good symbiosis between the two languages is to interact
with the user using the KBTA ontology (except for com-
plex patterns, where we might use the more expressive
TAR language), to translate the knowledge into rules, and
to answer queries using ALMA. In the IDAN project, we
have in fact adopted this solution with initial encouraging
results.

The RÉSUMÉ implementation was responsible only
for the generation of abstractions (i.e., temporal reason-
ing). The generated facts (output) were transformed into
an intermediate storage format (e.g., a file, or a database).
In order to answer queries there was a need to analyze
this output. The benefit of this approach is that the rea-
soning can be done in a batch process, and queries are
quickly answered. The main drawback of this approach
that the query is not a part of the reasoning input, hence,
the reasoning process can not be focused, as is the case in
ALMA.

As ALMA does not store its facts in a persistent fash-
ion (only for a short time, but under the assumption that
during that time no changes were made in the extensional
facts), Alma does not need a Truth Maintenance System
(TMS), such as exists in RÉSUMÉ, which caters for
modification of facts and propagation of effects. In the
case of updates, ALMA will reprocess the data from
scratch. Thus, ALMA does not operate in incremental
fashion, as might be more appropriate in a context such
as intensive care (where data arrive continuously and ab-
stractions need to be updated rather then recomputed).

In order to be domain independent, ALMA intention-
ally puts value constraints in external packages. The
rather general structure of such constraints enables
ALMA to process not only simple value types, as number
and symbols, but also complex data types, as lists or other
structures. For example: medication administrations are
often represented as complex frames such as <dose,
preparation, rout…>. The ability to use additional do-
main-specific packages greatly extends the potential
benefits of using ALMA.

The usage of deductive database approach contributes
to the understanding of termination mechanism. In the
future, we intend to relax the current characterizations of
well defined knowledge bases. We intend also to opti-

mize the query processing, mainly in order to be able to
process in the same query several sets of patient records.
For example, analyzing the set of all the patients who have
had a bone-marrow transplantation in a particular hospital.
In addition, we intend to define additional types of rules
for repeating patterns.

The initial experience of using ALMA within the
IDAN architecture leads us to believe that a well defined
inference mechanism, such as represented by the TAR
language, has the benefit of maintaining the safety, effec-
tive computability, of query processing. A domain inde-
pendent expressive language for querying time-oriented
clinical data, whose evaluation is efficient, has multiple
implications for automated support to clinical care and
medical research, both of which currently focus on
chronic patients.

References

1. Boaz, D. and Y. Shahar: IDAN: A Distributed Tem-
poral-Abstraction Mediator for Medical Databases.
Proceedings of the 9th Conference on Artificial Intel-
ligence in Medicine—Europe (2003), Protaras, Cy-
prus.

2. Kohane, I. S.: Medical Reasoning in Medical Expert
Systems. In Salamon, R., et al., (eds.), Proceeding of
Fifth Conference on Medical Informatics
(MEDINFO-86), (1986) 170-174.

3. Russ, T.A.: Using hindsight in medical decision mak-
ing. Proc. Symposium on Computer Applications in
Medical Care, New York NY: IEEE Computer Soci-
ety Press (1989) 38–44.

4. Kahn, M. G.: Combining physiologic models and
symbolic methods to interpret time-varying patient
data Methods of Information in Medicine 30 (1991)
167–178.

5. Larizza, C., A. Moglia, and M. Stefanelli: M-HTP: A
system for monitoring heart-transplant patients, Arti-
ficial Intelligence in Medicine 4(2) (1992) 111–126.

6. Haimowitz, I. J. and Kohane, I.S.: Managing tempo-
ral worlds for medical trend diagnosis. Artificial In-
telligence in Medicine, Vol.8, No.3 (1996) 299–321.

7. Keravnou, E. T.: Temporal diagnostic reasoning
based on time-objects. Artificial Intelligence in Medi-
cine, Vol.8, (1996) 235–265.

8. Shahar, Y.: A Framework for knowledge-based tem-
poral abstraction in clinical domains. Artificial intel-
ligence 90(1-2) (1997) 79-133.

9. Chakravarty, S. and Y. Shahar: CAPSUL: A Con-
straint-Based Specification of Repeating Patterns in

Time-Oriented Data. Annals of mathematics and arti-
ficial intelligence (AMAI); Vol. 30 (2000) 3-22.

10. Bancilhon, F. and R. Ramakrishnan: An amateur’s
introduction to recursive query-processing strategies.
ACM SIGMOD Intl. Conf. on Management of data,
(1986) 16-52.

11. Ullman, J. D.: Principles of database and knowledge-
base systems. (1988) volume1 chapter 3.

12. Krishnamurthy, R., R. Ramakrishnan, and O.
Shmueli: A Framework for Testing Safety and Effec-
tive Computability of Extended Datalog. Proc. Sixth
ACM Symposium on Principles of Database sys-
tems, (1988) 154-163.

13. Mecca, G. and A. J. Bonner: Sequences, Datalog
and Transducers. In Fourteenth ACM SIGMOD In-
tern. Symposium on Principles of Database Systems
(PODS’95), San Jose, California, (1995) 23-35.

14. Shahar, Y.: Dynamic Temporal Interpretation Con-
texts for Temporal Abstraction. Annals of Mathemat-
ics and Artificial Intelligence. 22(1-2) (1998) 159-92.

15. Shahar, Y.: Knowledge-based Temporal Interpola-
tion. Journal of Experimental and Theoretical Artifi-
cial Intelligence. 11 (1999) 123-144

16. Allen, J. F.: Maintaining knowledge about temporal
intervals. CACM 26 (11) (1983) 832-843.

17. Shahar Y., D. Goren-Bar, M. Galperin-Aizenberg, D.
Boaz, and G. Tahan: KNAVE-II: A Distributed Ar-
chitecture for Interactive Visualization and Intelli-
gent Exploration of Time-Oriented Clinical Data. In-
telligent Data Analysis in Medicine and
Pharmacology—Europe (2003), Protaras, Cyprus.

