
Knowledge-Based Interpolation of Time-Oriented Clinical Data

Yuval Shahar

Section on Medical Informatics, Knowledge Systems Laboratory
Medical School Office Building (MSOB) X215, Stanford University, Stanford, CA 94305, USA

email: shahar@smi.stanford.edu  Tel: 1-415-725-3393  Fax: 1-415-725-7944

Abstract

Temporal interpolation is the task of bridging
gaps between time-oriented clinical data or
abstracted concepts in a context-sensitive manner.
It is one of the subtasks important for solving the
temporal-abstraction task—abstraction of
interval-based, higher-level concepts from time-
stamped clinical data.  We present a knowledge-
based approach to the temporal-interpolation task.
The temporal-interpolation mechanism we discuss
relies, among other knowledge types, on a
temporal-persistence model.  This model employs
local temporal-persistence functions that are
temporally bidirectional (i.e., extend a belief
measure in a predicate both into the future and into
the past) and global, maximal-gap temporal-
persistence functions that bridge gaps between
interval-based predicates.  We investigate the
quantitative and qualitative properties implied by
both types of  persistence functions.  Our goal is to
formulate the knowledge required for solving the
temporal-abstraction task, and in particular the
temporal-interpolation subtask, so as to facilitate
the acquisition of that knowledge, its maintenance,
its reuse for the same task in different domains, and
its sharing among different applications in the same
domain.  We have implemented our approach and
evaluated it in several clinical domains.

1  Temporal-Abstraction and Temporal
Interpolation

Time-stamped clinical data often need to be abstracted in
a context-sensitive manner into more abstract, interval–based
concepts, meaningful for a specific medical domain (e.g.,
oncology) and a particular task (e.g., monitoring of patients
that are being treated by chemotherapy).  We term this
interpretation task the temporal-abstraction (TA)
task.  For instance, most clinical tasks require measurement
and capture of numerous patient data.  An automated,
knowledge-based decision-support tool that assists
physicians should provide short, informative, context-
sensitive summaries, at various desirable levels of

abstraction, of time-oriented clinical data stored on electronic
media.  Data abstraction assists both physicians and
automated decision-support systems.  A meaningful
summary characterizes significant features over periods of
time, such as "2 weeks of grade-II bone-marrow toxicity in
the context of therapy for potential complications of a bone-
marrow transplantation event” (Figure 1).

Solving the TA task involves the solution of several
subtasks (see Section 2).  One of these tasks is the
temporal-interpolation task: bridging gaps between
point- or interval-based temporal predicates of a similar-type
that are temporally disjoint, to create longer intervals (see
Figure 1).  Temporal interpolation requires, among other
knowledge types, some measure of temporal persistence
of temporal predicates (denoting either raw data or abstract
concepts).  For instance, if we measured hemoglobin levels
on Tuesday and on Friday, both being abstracted as LOW,
was the patient’s hemoglobin level on Thursday also LOW?”
In fact, the very notion of an episode implies some form of
bounded persistence of concepts over time, preventing the
clumping together of similar, but distinct instances of the
same concept.  The concept of persistence was addressed
previously; we discuss the relationship of such work to ours
in Section 6.

2  Knowledge-Based Temporal
Abstraction

The framework we employ for solving the TA task is the
knowledge-based temporal-abstraction (K B T A )
method [Shahar, 1997].  The KBTA method is a general
problem-solving method  [Eriksson et al., 1995] for
interpreting data in time-oriented domains, with clear
semantics for both the method and its domain-specific
knowledge requirements.  The KBTA method comprises a
knowledge-level representation of the TA task and of the
knowledge required to solve that task. The KBTA method
has a formal model of input and output entities,
theirrelations, and properties associated with these entities—
the KBTA ontology.

The KBTA method decomposes the TA task into five
parallel subtasks :
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Figure 1:  Typical inputs to and outputs of the temporal-abstraction task.  The figure presents examples of abstractions of platelet
and granulocyte values during administration of the PAZ clinical protocol for treating patients who have chronic graft-versus-host
disease (CGVHD).  The time line starts with a bone-marrow transplantation (BMT) event.   = event; • = platelet counts; ∆ =

granulocyte counts;  = open context interval;  = closed abstraction interval; M[n] = myelotoxicity (bone-marrow–
toxicity) grade n.

(1) temporal-context restriction: creation of
relevant contexts for interpretation of data (e.g., effect of a
drug), crucial for focusing and limiting the scope of the
inference

(2) vertical temporal inference: inference from
values of contemporaneous input data or abstractions (e.g.,
results of several blood tests conducted during the same day)
into values of higher-level concepts (e.g., classification into
bone-marrow toxicity Grade II)

(3) horizontal temporal inference: inference from
similar-type propositions that hold over different time
intervals (e.g., joining different-value abstractions of the
same parameter that hold over two meeting time intervals
and computing the value of the new abstraction)

(4) temporal interpolation: bridging of gaps
between similar-type but temporally disjoint point- or
interval-based propositions to create longer intervals (e.g.,
joining two disjoint episodes of anemia, occurring during
different days, into a longer episode)

(5) temporal-pattern matching: creation of intervals
by matching patterns over disjoint intervals over which hold
propositions of various types.

The five subtasks of the KBTA method are solved by five
temporal-abstraction mechanisms (nondecomposable
computational modules), which depend on four domain-
specific knowledge types: structural, classification
(functional), temporal-semantic (logical), and temporal-
dynamic (probabilistic) knowledge.  Values for the four
knowledge types are specified as the domain’s temporal-
abstraction ontology.  The KBTA method has been
implemented in the RÉSUMÉ  system and evaluated
encouragingly in several medical and domains [Shahar and
Musen, 1996] and even in an engineering domain [Shahar
and Molina, 1996].

In this paper, we analyze one of the key TA subtasks in
clinical domains: context-specific temporal interpolation.
First, we define briefly the KBTA ontology, and then
discuss the temporal-interpolation mechanism which uses
that ontology and analyze its theoretical foundations and the
implications of the approach for acquisition and maintenance
of temporal-dynamic knowledge.

3  The Knowledge-Based Temporal-
Abstraction Ontology

The KBTA temporal model includes both time intervals
and time points.  Time  points are the basic temporal
primitives, but propositions can be interpreted only over
time intervals.  Therefore, all propositions are fluents
[McCarthy and Hayes 1969] and in our model must be
interpreted over a particular time period.  The KBTA
ontology [Shahar, 1997] contains the following entities:
1. Time stamps, τi ∈ Τ, comprise the basic primitives of

time.  A time-standardization function, fs(τi ), can
map a time stamp into an integer amount of any pre-
defined temporal granularity unit Gi ∈ Γ (e.g., hour).
Time stamps are measured in Gi units with respect to
a zero-point time stamp.  A finite positive or
negative amount of Gi units is a time measure.

2. A time interval is an ordered pair of time stamps that
denote the endpoints, [I.start, I.end], of the interval.
A zero length interval in which I.start = I.end is a
time point.

3. An interpretation context ξ  ∈ Ξ is a proposition
representing a relevant state of affairs (e.g., “the drug
insulin exerts its effect during this interval”), within
which certain parameters may be interpreted
differently.  IS-A and SUBCONTEXT relations are
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defined over the set of interpretation contexts.  Basic
interpretation contexts are atomic propositions.
Composite interpretation contexts are created by the
temporal intersection of a basic or a composite
interpretation context and one of its subcontexts, and
enable a definition of increasingly specific
interpretation contexts.

4. A context interval is a structure <ξ , I> (i.e.,
interpretation context ξ holds during I).

5. An event proposition or event e ∈ Ε is the occurrence
of an external willful act or process, such as the
administration of a drug.  Events are instantiated
event schemata; an event schema has a series ai of
event attributes (e.g., drug dose) that must be mapped
to attribute values νi.  A PART-OF (or subevent)
relation is defined over event schemata.

6. An event interval is a structure <e, I> represents the
occurrence of event e during I.

7. A parameter schema or parameter  π  ∈  Π  is a
measurable or describable state of the patient.
Parameters may represent raw input data (e.g.,
hemoglobin level) or abstractions from the raw data
(e.g., state of hemoglobin).  Parameter schemata have
various properties, such as a domain Vπ of possible
symbolic or numeric values and measurement units.
An extended parameter is a combination <π, ξ> of a
parameter π and an interpretation context ξ.  A n
extended parameter can have a value ν ∈ Vπ, which is
typically known only at runtime (i.e., parameter
values require a context).  A parameter proposition is
the combination of a parameter, a parameter value,
and an interpretation context, <π, ν, ξ> (e.g., “the state
of hemoglobin is L O W  in the context of
chemotherapy”).  Parameter propositions can have
special properties, such as temporal persistence.

8. A parameter interval <π, ν, ξ, I> represents the fact
that the value ν of parameter π in a specific context ξ
holds during interval I.

9. An abstraction function θ ∈ Θ is a unary or multiple-
argument function that takes one or more parameters
as input and returns an abstract parameter.  The
abstract parameter may be one of three abstraction
types: state, gradient, and rate.  An additional
abstraction type is pattern which defines a temporal
pattern of several other parameters.  An abstraction of
a parameter (e.g., state(π)) is a parameter (e.g.,
hemoglobin value and the state of hemoglobin value
are different parameters).

10. An abstraction is a parameter interval <π, ν, ξ, I>
where π is an abstract parameter.

11. An abstraction goal ψ  ∈ Ψ is a proposition that
indicates an intention relevant to the TA task (e.g.,
the intention to control a diabetes patient’s blood-
glucose values).  Typically, it creates a context.

12. An abstraction-goal interval is a structure <ψ, I>,
where ψ is an abstraction goal that is posted during
the interval I.

13. Interpretation contexts are induced  or inferred
dynamically from event, parameter, or abstraction-
goal propositions.  The time intervals over which the
inducing propositions hold impose temporal
constraints on the interval in which the inferred
context will be valid (e.g., the interpretation context
of the effect of an AZT therapy event might begin 2
days following its start and end 2 weeks after its
termination).

The TA ontology of a domain describes all potentially
relevant (for the TA task) events, parameters, contexts,
abstraction-goals, and relations (e.g., induction of contexts).
The TA task is thus the following: Given a set of event,
parameter, and goal intervals and the domain’s TA ontology,
produce an interpretation—a set of new abstractions that can
answer any temporal query about all the abstractions
derivable from the transitive closure of the input data and the
domain’s TA ontology.  (A temporal query is a set of
temporal and value constraints over the components of a set
of parameter and context intervals.)

4  The Temporal-Interpolation mechanism

The temporal-interpolation subtask can be solved by a
knowledge-based temporal-interpolation mechanism.
The temporal-interpolation mechanism accepts as input two
parameter points, two parameter intervals, or a parameter
interval and a parameter point, and returns as output an
abstraction, interpreted over a superinterval of the input’s
time points or intervals, interpolating over the gap between
these time intervals.  Primary interpolation accepts two
parameter points and returns an abstraction interval.
Secondary interpolation accepts two parameter
intervals (or a parameter interval and a parameter point), and
returns an abstraction (super)interval.  Both interpolation
types are relevant to primitive parameters and to all
abstraction types (e.g., gradient)).  Thus, secondary
gradient interpolation infers, from two gradient-
abstraction intervals of parameter π, a gradient-abstraction
superinterval of π  whose value is I N C R E A S I N G ,
DECREASING, SAME, NONDECREASING, NONINCREASING,
or NONMONOTONIC.

Temporal interpolation requires that the temporal distance
between the two time points or intervals of the parameter
propositions be less than a certain time gap.  Within that
time gap, a certain value of the parameter is then be assumed
to hold.

The maximal allowed gap is a domain-, task-, and
context-dependent function (e.g., the maximal allowed gap
for LOW hemoglobin in the domain of oncology, the task of
caring for patients using protocols, and the interpretation
context of patients receiving X-ray therapy).  The arguments
of the maximal-gap function also include a measure of the
rate of change of the parameter before and after the time gap;
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as an approximation, we use the length of the intervals
before and after the gap.  A maximal-gap function ∆ is a
function ∆(π, ν, L(I1), L(I2), ξ) of a parameter π (assuming
that π includes its abstraction type) and lengths L(I1), L(I2) of
the intervals I1 and I2, to be joined in the context ξ  into an
interval with  an abstraction value ν.  The ∆ function returns
the length of the maximal temporal gap that still allows
interpolation between I1 and I2.  For instance, in any
context, joining two intervals where the hemoglobin-state
abstraction was classified as LOW into a longer interval
whose hemoglobin-state abstraction is classified as LOW
depends on the time gap separating the two intervals, on the
particular context, and on the length of time in which the
LOW property was known both before and after the time gap.
Primary interpolation is the initial constructor of abstraction
intervals, since it joins two separate time points T1 and T2
into a new interval [T1, T2], over which ν is true for π.

Thus, a necessary requirement for primary interpolation
is that L([T1, T2]) ≤ ∆(π, ν , 0, 0, ξ), where L(I) is the
length of I.

A prerequisite to an interpolation operation is that the
value ν of the parameter π  is has the value TRUE for the
concatenable inferential property [Shoham, 1987] in the
context ξ (i.e., the parameter propositions involved can
indeed be joined).  This prerequisite involves temporal-
semantic knowledge.  We summarize the temporal-semantic
knowledge  for a domain in an inference-properties
table [Shahar et al., 1992], a relation in which every tuple
(π , ν , φ , ω , ξ )  represents the knowledge that the
temporal-semantic property φ ∈ Φ, for value ν, of parameter
π, in the context ξ, has the truth value ω  (ω  ∈ {TRUE,
FALSE}) (π is assumed here to include its abstraction type).

Similarly, deciding what is the value of the resulting
abstraction when joining two abstraction intervals with
different values, ν1 and ν2, of the same parameter π requires
using horizontal classification knowledge.  A horizontal-
inference table [Shahar et al., 1992] is a relation that
includes tuples of the form (π , ν1, ν2, ν3, ξ), meaning
that, for parameter π  (assuming that π includes its
abstraction type), when an abstraction interval with
parameter value ν1 meets an abstraction interval with
parameter value ν2, in the context ξ , the value of the
parameter of the joined abstraction interval should be ν3.
That is, ν1 ⊕ ν2 = ν3.  In a horizontal-inference table, it is
assumed that concatenated abstractions are of the same
type—for instance, state (e.g., HIGH or LOW) or gradient
(e.g., INCREASING ⊕ SAME = NONDECREASING).  The ⊕
operator is the horizontal-join operator.  In the case of
joining different values, both the temporal-semantic
knowledge (inferential property) and the temporal-dynamic
knowledge (∆ function) that are used for interpolation are
those specific to the value ν3 .

Secondary state, gradient, and rate interpolation require
additional conditions to preserve consistency, apart from an
upper bound on the temporal gap between intervals.  An
interpolation-inference table defines the interpolation

operation for every relevant parameter (e.g., hemoglobin-
state) and value combination (e.g., INCREASING and SAME).
An interpolation-inference table represents horizontal-
classification knowledge, persistence knowledge, and the
special temporal conditions that should hold between the
temporal elements of the involved abstractions for successful
interpolation.

For example, we need to check that, when we use
secondary temporal interpolation to join two INCREASING
abstractions for π that are true over two intervals I1, I2, into
a INCREASING abstraction for π  over a superinterval Ij, the
value of π has indeed increased, or at least has not decreased
below a certain predefined threshold during the time gap
[I1.end, I2.start] (see Figure 2).  In other words, we have to
check that I1.end.π ≤ I2.start.π+Cπ, where Cπ represents a
measurement variation for π—the maximal decrement in
parameter π , below which a change in π will not be
considered as a decrease.  Cπ can be interpreted as a
measurement error of π, or as a natural random variation of
π  over time, or as a significant change of π, for a particular
task, depending on the context.  In general, Cπ is a function
of π, ƒc(π), that is defined either by the domain expert or
through analysis of the distribution of π.  In principle, ƒc(π)
might also use a context argument ξ and the initial value of
π , I1.end.π  (e.g., what is considered as a significant
variation in the value οf the hemoglobin-value parameter
might have a different value within the interpretation context
BONE-MARROW DEPRESSION, and furthermore, when the
last hemoglobin value known is abstracted as VERY LOW).

Primary temporal interpolation for the INCREASING
gradient abstraction, requires that T2.π – T1.π   ≥ Cπ.
Primary temporal interpolation for the DECREASING
gradient abstraction requires that T1.π – T2.π   ≥ Cπ .
Primary temporal interpolation for the SAME gradient
abstraction requires that |T2.π - T1.π| ≤ Cπ.

Using the Cπ property, we can ignore minor absolute
changes in the value of π that are less than a certain
threshold when we wish to identify general qualitative
trends.

5  Local and Global Persistence Functions

The maximal-gap ∆ functions, which allow interpolation
between point and interval primitive and abstract parameters,
can be interpreted as creating a default abstraction during the
maximal-gap interval.  Like all conclusions inferred by the
temporal-abstraction mechanisms, the inference that creates
such default abstractions is nonmonotonic and can be
overridden by additional data or by other inferences.  The
maximal-gap functions represent domain- and task-dependent
knowledge regarding the rate of change of a parameter
proposition <π, ν, ξ> over time, or the persistence of
the truth of that proposition over a temporal gap.  In
general, however, we distinguish two types of persistence
functions: Local (ρ) persistence functions and global
(∆ ) funct ions .  For the purpose of the following
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discussion, we assume that the context ξ and the value of π,
unless mentioned explicitly, are known.

5.1  Local Persistence Functions

Local  (ρ)  persistence  functions represent the local
persistence of the truth of a parameter proposition, given a
single parameter point or interval: ρ(π, L(I), t), where L(I) is
the length of the interval I during which the parameter
proposition is known to hold, and t is the time since an
endpoint of I.  The ρ function returns a degree of belief—a
probability distribution—in the proposition <π, ν> being
true at time t0 + t, given that <π, ν> was true at endpoint
t0.  The ρ function extends a proposition temporally in both
directions:  to the future and to the past.  Assuming that
time t0 is a random (first) time in which the proposition was
measured, there is no particular reason to assume that a
parameter proposition was not true before time t0 .  Thus, t
might actually have a negative  value.  We need this
extension if we are to include an approximation of the past
value of a parameter, for purposes of interpretation, as
opposed to forecasting a future value of the parameter.
Thus, our model includes both forward decay and
backward decay in belief.  The function describing this
decay is equivalent to a statistical survival function.

In practice, the important question for performing an
interpolation using a local persistence function is how long
t can be before the belief in the parameter proposition ϕ ∈ Ρ
(i.e., its probability) drops below a certain context-specific
threshold ϕth (Figure 2).

5.2  Global Persistence Functions

Global  (∆) maximal-gap functions bridge the gap
between two propositions.  ∆ functions are an extension of
ρ  functions, and, in special cases, as we show in this
section, they can be constructed from the latter functions.
The ∆ function returns the maximal time gap that still
allows us to join the propositions into an abstraction that is
believed to be true, with a sufficient, task-specific,
predefined degree of belief in the proposition, during the gap
(and thus over a superinterval of the input propositions,
given that both were true for some time before and after the
gap).  Thus, the ∆ functions are a global extension of the
local (ρ) persistence functions, since they assume both
forward and backward decay of the propositions involved.

Figure 2 presents a graphic view of the ∆ function as an
interpretation of a decay in the belief in the truth of a
proposition.  For instance, in the case that the abstractions’
parameter values are identical—that is, the propositions are
the same before and after the gap interval—and the forward
and decay times are relatively independent, we are interested
in whether, at all points inside the gap interval, either of the
values, approximated by the forward belief decay in
proposition ϕ, BELforward(ϕ), or by the backward belief
decay, BELbackward(ϕ), is true with a probability p ≥ ϕth.
As the time gap ∆t between the two abstractions increases,
the belief that either the backward- or forward- decay value is
true will eventually fall below the predefined threshold value
ϕth (see Figure 2).
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Figure 2: Local and global persistence functions.  The maximal time gap ∆t returned by a global ∆ function is used to decide
whether the parameter propositions ϕ1 and ϕ2, attached to intervals I1 and I2, can be joined (possibly, if they do not denote the

same value of the relevant parameter, into a new proposition ϕ3 = ϕ1 ⊕ ϕ2) .   The time gap ∆t can be interpreted—in the case that

ϕ1 ≡ ϕ2, and that the truth values of the propositions are relatively independent—as the maximal time gap in which the belief

produced by either the local forward or backward decay (represented by a local persistence ρ function) stays above the predefined

confidence threshold ϕth.  Bel(ϕ) = degree of belief in ϕ; ϕth = the task- and context-specific belief threshold value.



If the local (ρ) persistence function is an exponential-
decay survivor function and the backward- and forward-decay
rates are independent, we can compute the ∆ function.
Assume that the probability p (t) of the parameter
proposition ϕ being true is e-λt, a function of the time t
since the reference time in which P was true, regardless of
the length of the time interval I during which ϕ was true.
Let the forward decay rate be λ1 and the backward decay
ratebe λ2.  Then, we need to know the maximal gap ∆t such
that, in the point of minimal belief, p(t) is at or above the
threshold ϕ t h .  Note that the minimum point of
BELforward(ϕ) or BELbackward(ϕ) is when the values of the
forward- and backward-decay functions are equal (see Figure
2).

Thus, at the minimal p(t),

ΒΕLforward(ϕ) = BELbackward(ϕ),

that is,

e-λ1t = e-λ2(∆t-t ),

so, when p(t) is minimal,

t = [λ2/(λ1 +λ2)] ∆t;

but p ( t) ≥ ϕ th implies, after substituting for t  in
BELforward(ϕ), that

e-[(λ1*λ2)/(λ1+λ2)]∆t  ≥ ϕth = e-K,

and thus

∆t ≤ [(λ1 +λ2)/(λ1 *λ2)] K,     K = -lnϕth.

In other words, the ∆ function for two parameter points,
∆(π, 0, 0), or for two parameter intervals when the duration
of the intervals has no effect on the persistence of the
propositions, is a constant determined by the forward- and
backward-decay rates and the desired level of confidence.

We can generalize this analysis.  Assume that the longer
ϕ is known to be true in the past or in future, the longer we
are likely to keep believing it or to believe that it already
existed in the past, before we measured it (this assumption
will be discussed in Section 5.3).  One (not necessarily the
only) way to represent that assumption would be to modify
the decay rate λ  by assuming that it is inversely
proportional to the length of the relevant intervals, L(Ii),
which we denote simply as Li.  Let

BEL (P) = e[-λi/Li]t,    i = 1,2.

So, if p(t) is minimal, and as before, BELforward(ϕ) =
BELbackward(ϕ),

e[-λ1/L1]t = e[-λ2/L2](∆t-t );

that is, when p(t) is minimal,

t  =  [(L1λ2)/(λ1L2+λ2L1)]∆t.

Substitute for t in BELforward(ϕ), and assume p(t) ≥ ϕth:

∆t  ≤ [(λ2L1
2+λ1L1L2)/λ1λ2L1]K,    K = -lnϕth.

For instance, if λ1 =λ2 =λ  and L(I1) = L(I2) = L, then

∆t  ≤ [(λL2+λL2)/λ2L]K;

that is,

∆t ≤ [2L/λ]K,    K = -lnϕth.

In other words, if exponential decay rates decrease
(equally) linearly forward and backward as a function of the
duration of the proposition, then the maximal time gap
allowing us to join equal-length abstractions would be
proportional to a linear function of the length of either
interval, with the rest of the factors kept constant.  The
duration of the gap would be inversely proportional to the
uniform decay rate.

These simplified examples serve to show that even
though the decay rates λi are in general unknown, and the
decay function is perhaps difficult to compute, the resulting
global ∆ function (using a belief threshold) might be a
simple constant or polynomial, and thus can be more easily
described, computed, or acquired, than the underlying local-
persistence function.

Furthermore, if there is evidence for a particular type of
decay function (e.g., logarithmic), we can compute the
latter’s coefficients by acquiring from the domain expert a
few maximal-gap values—that is, several examples of ∆t.
We might even check the expert’s consistency (or the
adequacy of the decay function) by repeating the calculation
for several other examples.  Alternatively, we can simply
acquire a table of typical ∆t values for various common L(I1)
and L(I2) values, and can interpolate between these values, or
extrapolate from them, when necessary.

Due to the dependence between the forward decay of a
parameter proposition attached to one time point and the
backward decay of that proposition at a later time point, and,
therefore, an implied joint distribution of the forward and
backward belief values, we usually need the actual global (∆)
function, in addition to (or instead of) the local (ρ )
persistence function.  (In the example above, we in fact
computed a lower bound for the ∆ function.)  In practice, the
domain expert often knows several ∆ function values (such
as what is the maximal time gap allowed in order to join
two parameter points for several parameter values in each
context), even if she cannot define any particular, precise,
local-decay function ρ (except, possibly, for specifying the
forward and backward local decay times ∆t corresponding to
reaching the local threshold value ϕth).  Knowing only the
global ∆ function still enables interpolation between two
point-based or interval-based parameter propositions.  In
view of the preceding discussion, in many domains,
knowing only the values needed to maintain Bel(ϕ) above
the threshold value ϕth—that is, the (simpler) ∆ function—
would be a common state of affairs.
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5.3  A Typology of Persistence Functions

Global (∆) persistence functions can have four
qualitative types, depending on whether the ∆ function
is either (1) positive monotonic or (2) negative monotonic,
with respect to (a) the length of the first parameter interval
L(I1) or (b) the length of the second parameter interval L(I2)
(see Figure 2).  (For example, the maximal allowed gap
might be longer, the longer the interval before the gap.)
Theoretically, there are positive-positive (P P ) ,
positive-negative (P N ), negative-positive (N P ) ,
and negative-negative (NN ) monotonic ∆ functions.
We refer to these categories as qualitative persistence
types .

Formally, PP ∆ functions are functions such that

L(I’) > L(I) => ∀i [∆(I’, i) ≥ ∆(I, i) ∧ ∆(i, I’) ≥ ∆(i, I)]

NN ∆ functions are functions such that

L(I’)> L(I) => ∀i [∆(I’,i) ≤ ∆(I, i) ∧ ∆(i, I’) ≤ ∆(i, I)]

where L(I) is the length of interval I  and ∆(I, i) stands
for ∆(L(I), L(i)).

In the case of local (ρ) persistence functions, whether
representing backward or forward local persistence, we can
categorize functions qualitatively into positive (P) and
negative  (N ) categories with similar meaning (i.e.,
whether the longer I, the longer or shorter the relevant
validity interval, before or after I).

Most ∆ functions, in practice, seem to be of the PP type.
In other words, the longer we know that a parameter
proposition was true either before or after a time gap, the
longer we would allow that gap to be while maintaining our
belief that the parameter proposition stayed true throughout
that gap (i.e., its probability was always above a certain
threshold).  (For instance, the proposition denoting the
MODERATE-ANEMIA value of the hemoglobin-state
parameter usually would be associated with a PP ∆ function,
as would be the proposition denoting the DEEP-COMA value
of the consciousness parameter).

Negative-monotonic ∆ functions occur when a longer
duration of either I1 or of I2 lowers the probability that the
abstraction was true during the gap, and the longer the
lengths, the shorter the allowed ∆t.  For instance, knowing
about a longer I1 interval of an almost-fatal cardiac
arrhythmia (say, ventricular fibrillation) actually lowers the
probability that the (following) gap interval had the same
characterization, given the same I2 interval and assuming
that the patient is alive.  Most of the negative-monotonic
functions emerge from a total-length constraint on the time
allowed for the abstraction (or an analogous probabilistic
distribution on the expected total time), or from a total
cardinality constraint on the number of events allowed.

We often can limit ourselves, as a first approximation, to
the common PP ∆ functions.  Note that the exponential-
decay local (ρ) functions that were given as an example in

Section 5.2 for decay functions dependent on the length of
either of the two intervals implied, with the independence
assumption, a PP-type ∆ function.  However, there is also
an important computational advantage in adhering to PP ∆
functions.

lemma 1: PP ∆ functions are associative.  (The order of
joining intervals and points cannot change the resulting set
of abstractions.)

Proof:  Assume a situation where parameter points T1,
T2, and T3 exist in that temporal order.  If we can form  both
the parameter interval [T1, T2] and the parameter interval
[T2,T3 ], then, if we can eventually form  the interval [T1,
T3 ], we can do so  by forming initially  either subinterval,
since the ∆ function is PP.  That is, if we can join one
point to another, we can certainly join that point—forwards
or backwards, as necessary—to an interval starting or
ending, respectively, with the other point.  For instance,

L([T1, T2]) ≤ ∆(0,0) => L([T1, T2]) ≤ ∆(0, L([T2, T3])),

since the ∆ function is PP, and therefore ∆(0,0) ≤ ∆(0,
L([T2, T3])).

A similar argument holds for any four consecutive
points.

Thus, the claim is true for any sequence of primary or
secondary interpolations, since ∆ functions are applied only
when there are no intervening points between the two
intervals or points to be joined.  ❏

The associativity property is important for data-driven
systems, in which the order of the parameter intervals the
system reasons with might be arbitrary.  This property is
necessary also to guarantee that the final abstractions do not
depend on the order of arrival of the input data.

lemma 2: NN ∆ functions are not associative.
Proof: It is easy to construct a case for consecutive

parameter points T1, T2, and T3, where, if we create the
interval [T1, T2], we no longer can join it to T3, and if we
create the interval [T2, T3], the ∆ function value will prevent
our joining it to T1 (e.g., a total-sum constraint does not
allow creating the interval [T1, T3 ] with high enough
probability).  ❏

NP and PN functions cannot be associative for similar
reasons.  Whether such functions can even exist is doubtful,
and we leave it as an open research question.  It would seem
that appropriate semantic restrictions on the nature of ∆
functions might preclude the existence of PN and NP
functions.

In the case of ρ (local) persistence functions, we can
categorize functions into P and N categories with similar
meaning (i.e., whether the longer I, the longer or shorter the
validity interval before or after I).

The dynamic knowledge about the domain does not
necessarily need to include complete, closed, definitions of ∆
functions—partial tables may suffice, or the actual functions
might be approximated.  But knowing whether a maximal-
gap function is positive (PP) or negative (NN) is important
for estimating the value of that function from a few
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examples or for interpolating that value from several discrete
entries in a table.  This qualitative-persistence type is easy
to acquire, since domain experts usually have an excellent
intuition about whether, qualitatively, a longer duration of a
parameter proposition before or after a gap increases or
decreases the probability of the proposition being true during
a longer gap, even if the probabilities involved are in fact
unknown.

6  Related Work

Several temporal logics include some form of a
persistence axiom for facts, that states that a proposition
stays true until known to be otherwise.  The ρ local−
persistence function can be viewed as an extension of
McDermott’s persistence assumption [McDermott, 1982;
Dean and McDermott, 1987] and of McCarthy’s inertia
principle [McCarthy, 1986].  Both, however, include infinite
persistence as a default.  McDermott [1982] suggested that a
fact does not cease to be true unless we explicitly hear that it
no longer is true.  Since this assumption is not always
realistic, McDermott introduced the idea of a typical lifetime
of a fact.  Thus, an event causes persistence of a fact.  Our ρ
function belief threshold creates a value- and context-specific
validity time for a parameter proposition, but ρ functions
extend temporally in both directions.

Tawfik and Neufeld [1996] have computed the relevance
of time-stamped knowledge in a temporal Bayesian
framework, modeling relevance as a Markov process and
looking only at a single predicate and a forward projection.
Their analysis can be viewed as providing bounds on
relevance due to a local persistence function, with certain
independence assumptions.

Dean and Kanazawa [1988] proposed a model of
probabilistic temporal reasoning about propositions that
decay over time.  They modeled explicitly the probability of
a proposition P being true at time t, P(<P, t>), given the
probability of <P, t-∆>.  The assumption is that there are
events of type Ep that can cause proposition p to be true,
and events of type E¬p  that can cause it to be false.  Thus,
one can define a survivor function for P(<P , t>) given
<P, t-∆>, such as an exponential decay function.  Our ρ
function model is somewhat similar.  However, Dean and
Kanazawa’s main intention was not to solve an
interpretation task (such as the TA task) but to solve a
projection task, in particular in the context of the planning
task.  Thus, unlike in our model, persistence is only
considered forwards in time.  In a later work, Kanazawa
[1991] presented a logic of time and probability, Lcp.
Propositions asserted in Lcp were stored in a time network,
which maintained probabilistic dependencies among various
facts, such as the time of arrival of a person at a place, or
the range of time over which it is true that the person stayed
in one place, and was used to answer queries about
probabilities of facts and events over time.

In medical domains, two approaches tat are somewhat
similar to the one used by Dean and Kanazawa are de Zegher-
Geets’ time-oriented probabilistic functions
(TOPFs) in the IDEFIX system [de Zegher-Geets et al.,
1988] for summarization of medical records, and Blum’s
[1982] time-dependent database access functions and proxy
variables to handle missing data in the context of the Rx
project for automated discovery in clinical databases.  The
goals of these systems were also closer in nature to the TA
task—that is, interpretation of time-stamped data.  When de
Zegher-Geets’ TOPFs represent the probability of a state or
disease given a previous identical state, they simulate a
forward ρ function; in addition, states in IDEFIX can have
an expected length  attribute.

Russ [1995] has analyzed the computational cost of
limited temporal persistence, considering medical domains in
particular, and has shown the improvements enabled by data
abstraction.  Since the KBTA method operates at multiple
levels of abstraction, it often capitalizes automatically on
such improvements.

7  Implementation and an Example From
the Diabetes-Monitoring Domain

The KBTA method had been implemented by the
RÉSUMÉ  system [Shahar and Musen, 1993] and was
evaluated in various areas of clinical medicine [Shahar and
Musen, 1996], with highly encouraging results.  The results
emphasized not only the validity of the methodology, but
the advantages of explicit representation of temporal-
abstraction knowledge for acquiring, maintaining, and
reusing that knowledge.  A graphical tool for acquiring
temporal-abstraction knowledge from expert physicians was
constructed [Stein et al., 1996], using the PROTÉGÉ-II
framework’s set of tools [Tu et al., 1995].  The RÉSUMÉ
system is currently integrated within the EON component-
based architecture for guidline-based care [Musen et al.,
1996].

An example of using the RÉSUMÉ system in a medical
domain is an evaluation that we performed in the domain of
monitoring patients who have insulin-dependent diabetes
[Shahar and Musen, 1996].  We collaborated with two
endocrinologists, acquiring within several meetings a TA
ontology from one of the experts.  We created a parameter-
properties ontology for the domain of insulin-dependent
diabetes (Figure 3), an event ontology (e.g., insulin therapy,
meals, physical exercise), and an interpretation-context
ontology (e.g., preprandial [measured at fasting time, before
a meal] and postprandial [after a meal] contexts and
subcontexts, and postexercise contexts).

Glucose_state_state values (i.e., values of the
state(state(glucose)) abstract parameter) that are measured
within different phases (e.g., prelunch and presupper), but
within the same day, can be joined by interpolation within
the nonconvex  context [Shahar, 1996] version of the
PREPRANDIAL generalized interpretation context [Shahar,
1996], thus creating an abstraction comprising several
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Figure 3:  Part of the diabetes parameter-properties ontology.  The Glucose parameter is abstracted into the Glucose_state
parameter.  This abstract parameter has a specialized subclass in the DM context, and is abstracted in that context into the
Glucose_state_state parameter.  The Glucose_state_DM class is further specialized in the preprandial and postprandial contexts, each
of which has several subclasses corresponding to the different relevant premeal contexts.   = class;  = property; 
= IS-A relation;  =  ABSTRACTED-INTO relation;  = PROPERTY-OF relation; DM = diabetes mellitus.

preprandial abstractions within the same day, up to 6 to 8
hours apart.  The maximal gap is defined by a interphase ∆
function.  Diurnal state abstractions that are measured in the
same phase but over different (usually consecutive) days,
s u c h  a s  s e v e r a l  v a l u e s  o f  t h e
Glucuse_state_DM_prebreakfast parameter, can be joined by
interpolation within the same interpretation context (e.g., a
nonconvex PREBREAKFAST context interval, that comprises
all breakfasts within a given interval), up 24 to 28 hours
apart, using another interphase ∆ function.

In the study, the two experts formed (independently)
temporal abstractions from more than 800 points of data,
representing two weeks of glucose and insulin data from
each of eight patients.  The RÉSUMÉ system created 132
(80.4%) of the 164 temporal abstractions noted by both
experts [Shahar and Musen, 1996].  An example of the
output is shown in figure 4.  Examination of the output for
the first three cases by one of the experts showed that the
expert agreed with almost all (97%) of the produced
abstractions—a result similar to the one we found in a
previous study in the domain of growth monitoring.  We
expected this high predictive value, since the domain’s TA
ontology directly reflected that expert’s knowledge about
these low- and intermediate-level abstractions.

8  Discussion and Conclusions

The knowledge requirements for the temporal-
interpolation mechanism include (1) structural knowledge:
the qualitative-dependency aspect of the ABSTRACTED-INTO
relation; domain time units; (2) classification knowledge:
classification of domain-specific gradient and, in particular,
rate abstraction values (e.g., SLOW, FAST) as changes per
time unit; horizontal-classification knowledge, that is, the
horizontal-inference table; (3) temporal-dynamic knowledge:
maximal-gap (∆) functions and local (ρ) persistence
functions, both specific to each parameter proposition
(which includes an explicit context); significant change
values Cπ or functions ƒc(π) for the relevant parameters in
various contexts; additional temporal constraints for
completing the interpolation-inference table; and (4)
temporal-semantic knowledge: truth values for the
concatenable property [Shoham, 1987] for input and inferred
parameters.

Temporal-dynamic knowledge about a domain does not
necessarily need to include complete definitions of ∆
functions—partial functions may suffice, and knowing
whether a maximal-gap function is PP or NN might
complete the picture.  The qualitative type of a persistence
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Figure 4:  Abstraction of data  by the RÉSUMÉ system in the domain of monitoring diabetes patients.

 = (open) context interval;  = abstraction interval; ❒ = prebreakfast glucose; • = prelunch glucose; ∆ = presupper glucose;
DM = diabetes mellitus therapy context; GLSS_DM_PS = Glucose_state_state abstraction in the DM and presupper context;
GLSS_DM_PREPRANDIAL = Glucose_state_state abstraction in the DM and preprandial context.

function is easy to acquire from expert physicians in any
particular clinical area.

Furthermore, one of the insights underlying our model is
that higher-level abstractions are often more persistent.
Since temporal interpolation operates simultaneously at all
abstraction levels, the more stable abstract conclusions often
mask faster changes (and uncertainties) in lower-level
abstractions and raw data.

The bidirectional temporal persistence model we present
is relevant when data is abstracted and interpreted
retrospectively, as is the goal of the TA task.  Furthermore,
both ρ and ∆ functions are context sensitive and are thus
represented explicitly.  Finally, as shown in Sections 5.2,
the use of global (∆) persistence functions facilitates
acquisition of temporal-dynamic knowledge.

The current knowledge-based temporal-interpolation
model has three major limitations.  From the soundness
aspect, the threshold cutoff assumed by the model is
convenient in practice, but might potentially lead to
unsound conclusions (from the clinical domain’s point of
view) of higher-level abstractions that use the result of the
interpolation (which is assumed to hold with certainty once
its probability is higher than a domain-specific threshold).
Thus, a confidence value should still be attached to the
conclusion.  From the completeness point of view, the
model cannot conclude values of the parameter during the

gap in the specific case when the values before and after the
gap are different and also are not part of a horizontal-join
relation.  Finally, from the knowledge acquisition point of
view, even when using the results of the analysis in Section
5.2, considerable amounts of knowledge might still need to
be acquired from expert physicians.  (Currently, we are using
a graphic knowledge-acquisition tool that uses three-
dimensional tables to represent ∆ functions [Stein et al.,
1996] and that is generated automatically, given the KBTA
ontology, by tools from the PROTÉGÉ-II project [Tu et al.,
1995].)

Thus, our future plans are to (1) construct a Bayesian-
semantics framework for the interpolation operation, (2)
attempt to learn local and global interpolation functions
from large temporal databases (given some domain
knowledge, such as the abstraction hierarchy and
classification functions, and the temporal-semantic
properties of relevant parameters), and (3) test the
automatically acquired functions using methodologies that
have been proven valuable in similar cases in clinical
domains.  One example we are considering is the Stanford-
based ARAMIS project, in which records of patients who
have rheumatoid arthritis and related chronic diseases have
been collected for more than 30 years.  In one experiment in
that project, various interpolation functions for missing raw
data have been tested and compared by attempting to “guess”



11

values of data that were temporarily made invisible, thus
simulating the case of missing data [Albridge et al., 1984].
Such methodologies might be applicable also for higher-
level abstractions, once the data had been abstracted partially
(e.g., only vertically).
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