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els. Therefore, automated learning of
probabilities for those models are demanded.
On the other hand, we may not have sufficient
data to learn probabilities from. Based on our
experiment with DynaMoL, we think that a
feasible way out of this dilemma is through
Bayesian learning, data abstraction and mod-
el abstraction. As our case study and
comments from our expert show, model ab-
straction may lose some of the aspects in a
decision problem, but the abstract model can
be instructive and informative at a high level.

We observe that in dynamic decision problem
modeling, prior distribution elicitation is not
much more complicated than in static deci-
sion problem modeling. This is because the
decision stages provide the expert with a con-
text to compare the exponents of Dirichlet or
Beta distributions across decision stages.

In our learning system, all the influence views
are built by the modeler in collaboration with
the domain expert. One of our future tasks is
to learn influence-view structures from data
or refine partial influence-view structures
based on the data. Although there are quite a
lot of people on that line, e.g. [2,5,12], it
seems that dynamic decision models might
be much more difficult to learn or refine. An-
other issue we are facing is that the table of
conditional probabilities for the influence
views are usually very large. In our case
study, the table has about 4500 rows. How to
store and retrieve the table of conditional
probabilities efficiently is also a future re-
search issue in our work.

ACKNOWLEDGMENTS

We would like to thank Susan Teo, Belinda
Chang and Nancis Phoon of Singapore Gen-
eral Hospital for their generous assistance
with the experiments, and Lau Aik Hiang for
her effort in the data processing. The work is
supported by an academic research grant
RP950617 from the National University of
Singapore and a postdoctoral fellowship from

the National Science and Technology Board
in Singapore.

REFERENCES

[1] J.R. Beck and S.G. Pauker. The markov
process in medical prognosis. Medical
Decision Making, 3:419–458, 1983.

[2] W. Buntine. Theory refinement on
bayesian networks. In the 7th Conference
on Uncertainty in Artificial Intelligence,
pages 52–60. Morgan Kaufmann, 1991.

[3] R. Cowel, A. Dawid, and P. Sebastiani. A
comparison of sequential learning
methods for incomplete data. Bayesian
Statistics, pages 581–588, 1996.

[4] A. Dempster, D. Laird, and D.B. Rubin.
Maximum likelihood from incomplete
data via the em algorithm. Royal
Statistical Society B, 39:1–38, 1977.

[5] D. Heckerman, D. Geiger, and
D. Chichering. Learning bayesian
networks: The combination of knowledge
and statistical data. Technical Report
MSR-TR-94-09, Microsoft Research,
1994.

[6] S. Lauritzen. The em algorithm for
graphical association models with
missing data. Computational Statistics
and Data Analysis, 19:191–201, 1995.

[7] Tze-Yun Leong. Dynamic decision
modeling in medicine: A critique of
existing f ormalisms. In Proceedings of
the Seventeenth Annual Symposium on
Computer Applications in Medical Care,
pages 478–484. IEEE, 1993.

[8] Tze-Yun Leong. Multiple perspective
reasoning. In Proceedings of the 1996
International Conference on Knowledge
Representation. Morgan Kaufmann,
1996.

[9] G.M. Provan. Model selection for
diagnosis and treatment using temporal
influence diagrams. In Selecting Models
from Data, volume 89 of Lecture Notes in



bution or may not get used to the elicitation
procedure, and hence the answers from him
might not be meaningful from the very
beginning.

In our work, we used an “on-line” checking.
The idea behind the on-line checking is actu-
ally a game between the expert and the
modeler. Before interviewing the expert, we
learn from the database the sufficient statis-
tics, i.e.  and , and the sufficient-
statistics ratio, i.e., , for all i and j.
The ratio of sufficient statistics serve as a
checkpoint for the prior ratio, i.e. .
For example, if  = 30/70, but the
prior ratio = 80/20 based on the
answers from the expert, then the modeler
could interrupt the expert to see if any change
for the  and  is necessary. This can
sometimes lead the expert to reconsider his
estimates.

6 LEARNING EXPERIMENTS

In our case study, we chose the data of Stage
C patients (denoted as FU-DATA), and use
Beta distributions as prior distributions for
θijk, since all the event variables are binary.
Based on the elicitation method discussed in
Section 5.2, we elicited all the Beta distribu-
tions associated with the events in our
influence views. Let us take a dynamic local
influence view, DLIV(TR, {S, EOR, EOM},
M&T, STAGE), from Figure 3. Some of the
prior information for the DLIV is shown in
Tables 2 and 3. Here, α+ and α- are the respec-
tive abbreviations for αij1 and αij2 in the
elicitation question, and are provided by our
expert. During the elicitation process, we also
interrupt the expert when the ratio α+/α- dif-
fers from that of their corresponding
sufficient statistics too much (recall discus-
sions in Section 5.2).

After the prior distributions are obtained, we
invoke the Bayesian learning system to learn
the posterior distributions of θijk and calcu-
late their expectations. The learning results

are output in a tabular format, as shown in Ta-
bles 2 and 3. Note that we have chosen six
decision stages in our example.

In Table 2, θ+ and θ− respectively denote:

- Pr(TR=+|EOR=N,EOM=Y,well, M&T, STAGE, FU-DATA)

- Pr(TR=-|EOR=N, EOM=Y,well, M&T,STAGE,FU-DATA),

and Ε(θ+) and E(θ−) respectively denote the
posterior expectations of θ+ and θ−. Similarly
in Table 3, θ+ and θ− respectively represent:

- Pr(TR=+|EOR=Y,EOM=N,well, M&T, STAGE, FU-DATA)

- Pr(TR=-|EOR=Y, EOM=N,well, M&T,STAGE,FU-DATA),

and their corresponding expectations are de-
noted by Ε(θ+) and E(θ−).

The learned parameters can be verified by
cross-validation, or by verifying and conduct-
ing sensitivity analyses on the optimal course
of action derived from the resulting dynamic
decision model.

7 DISCUSSION AND CONCLUSION

Dynamic decision analysis has received con-
siderable study in recent years. Compared to
its static counterpart, dynamic decision anal-
ysis is much more complicated, because
many model parameters (e.g. probabilities)
vary with time. The domain experts may not
be able to assess probabilities with sufficient
precision needed in dynamic decision mod-

α'ij1 α'ij2
α'ij1 α'ij2⁄

αij1 αij2⁄
α'ij1 α'ij2⁄

αij1 αij2⁄

αij1 αij2

Table 2: Prior Information and posterior probabilities

Ε(θ+) Ε(θ−) STAGE STATE EOR EOM TR α+ α−
0.6200 0.3800 1 well N Y + 30 70

0.6010 0.3990 2 well N Y + 60 40

0.3836 0.6164 3 well N Y + 60 40

0.6039 0.3961 4 well N Y + 65 35

0.6041 0.3959 5 well N Y + 70 30

0.6095 0.3905 6 well N Y + 80 20

Table 3: Prior Information and posterior probabilities

Ε(θ+) Ε(θ−) STAGE STATE EOR EOM TR α+ α−
0.9047 0.0953 1 well Y N + 95 5

0.9000 0.1000 2 well Y N + 90 10

0.9000 0.1000 3 well Y N + 90 10

0.8932 0.1068 4 well Y N + 85 15

0.9038 0.0062 5 well Y N + 80 20

0.9019 0.0081 6 well Y N + 80 20



rior distribution of θij1 and θij2 is given by:

When the posterior distribution is calculated,
the Bayes estimate (i.e. expectation) of θijk is
calculated by:

where αij =αij1+αij2 and α’ij =αij1+αij2.

5•2 Assessing Prior Distributions

Now we discuss how to assess the exponents
for Beta distributions, especially when deci-
sion stages are taken into consideration. The
assessment issue was addressed by several
authors from a static perspective. Based on
our experience and previous works by other
authors [15,16,5], we have devised a proce-
dure for eliciting from the expert the
exponents, i.e. αij1 and αij2, associated with a
binary variable Xi in an influence view.

The elicitation phase centers around dynamic
local influence structures (DLIV) in influ-
ence views. A dynamic local influence view,
DLIV(Xi, πi, T, A), consists of an event
(called the center), its parents, a decision
stage, and an action.  Figure 7 shows a DLIV.

Figure 7: A DLIV with Xi=TR, T=i, and A=M&T

Suppose DLIV(Xi, πi, T, A) is a dynamic local
influence view structure. We fix a value for
each of πi, Xi and A, and these values serve as
part of a “context” to ask the expert questions

in. We then let T vary increasingly and for
each value of T, we ask the expert to assess 1)
a size of a sample which is roughly equivalent
to his prior knowledge about DLIV(Xi, πi, T,
A) with the fixed values, and 2) the times that
Xi takes its fixed value in the sample. This re-
quest is a dynamic version of the “equivalent
sample size” technique (e.g. see [15,16,5]).
The continuity in the values of T proves to be
very useful for the expert to offer the expo-
nents. We notice that the expert often thinks
for moments before offering exponents for
the first decision stage. But for other stages,
he can give exponents immediately. As our
expert told us, this is so because the exponent
with respect to the initial stage provides a
useful reference point to orient himself.

We also notice that the expert gets sometimes
stuck in the assessment procedure, because
he does not know the equivalent sample sizes
for some pieces of his prior information. In
two recent studies, we find that experts often
like to fix the sample size to be 100 or 10. In
that case, the elicitation question becomes
“Assuming that you are given 100 cases,
what is the number of cases in which Xi takes
Xi1 and πi takes πij?” Suppose that the expert
tells us the number is about αij1. Then, we
roughly have:

To increase the precision of the exponents in
some situations, the number 100 can be en-
larged to 1000.

We can not expect the estimates offered by
the experts are always reasonable. This is es-
pecially true if the expert is not familiar with
probability theory, or the expert is not confi-
dent in the way his prior information is
assessed. Thus, some sort of checking is nec-
essary. Checking the estimates can be done
after the whole elicitation is completed. But
this “off-line” checking might not be effi-
cient. The main reason is that the expert may
misunderstand the meaning of a Beta distri-
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ence structure, the event variables in their
structure may have different probability dis-
tributions.

Figure 6: Influence view for M&ST and M&AT

We do not use the specific actions and their
influence views, because we find that patients
with metastatic cancers have little specific
treatment information kept in the databases
under study. That is, we found two data-
sparse areas corresponding to AT and ST. We
need to group the two areas together to form
a data-rich one.

Nevertheless, the action M&T and its influ-
ence view are still meaningful in the sense
that it offers a general guideline for the doctor
at a given decision stage, and the doctor will
take other aspects of patients into account
when determining which specific treatment
(e.g. AT or ST) to prescribe.

5 THE LEARNING FRAMEWORK

5•1 The Learning Mechanism

In the Bayesian learning community, the Di-
richlet or Beta distributions are commonly
used as prior distributions for model parame-
ters. This strategy simplifies the learning
process [12,5, 11], because of mathematical
properties of those distributions[16]. Howev-
er, the question is whether Dirichlet or Beta
distributions are “rich” enough in the sense
that they can capture a variety of an individu-
al’s prior information. Fortunately, as noted
by Winkler [16], these distributions can pos-
sess “different locations, dispersions, shapes,
and so on”.

We first present the general definitions of
variables in the learning framework. Let Xi be
an event with ri possible values. We use πi to
denote the set of parents of Xi , and assume
that the values of πi can be ordered somehow
(theoretically, this can always be done since
influence views are acyclic graphs). We use
θijk to parameterize the probability that Xi
takes its k-th value (denoted by Xik), given πi
taking its j-th value (denoted by πij), an action
A, and a decision stage T. Note that we omit A
and T from θijk for simplicity, but one should
understand θijk based on its context. Let Θij
denote the collection of those θijk.

We assume that the variables Θij have a Di-
richlet distribution with exponents

.The general formula of the Di-

richlet distribution is then:

where Γ() is the gamma function:
Γ(x+1)=xΓ(x) for positive real number x.

In our case study, all the event variables are
binary (i.e. all ri are 2). In this case, the Di-
richlet distribution degenerates to a Beta
distribution:*

When given a database D, we calculate the
posterior distribution of θij1 and θij2 as fol-
lows. Let  be the number of the cases of
D in which Xi=Xik and πi =πij. Then the poste-

*The following discussions will mainly be based on the
Beta distributions. The main conclusions and insights, how-
ever, should apply to the general Dirichlet distributions.
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variable whose value is missing.

Two association rules are given below. They
fill in a missing value of TR (test result) if me-
tastasis (M) or local recurrence (R) are
detected. They are used in the data processing
for our case study.

It is well-accepted that rule elicitation is gen-
erally hard, especially when the problem
domain is complicated and domain experts
can not articulate their knowledge easily (it is
usually the case). But fortunately, we elicit
the association rules along the way of deci-
sion model building, and the model building
itself provides a sound basis for rule
elicitation.

4•2 Implicit Values

When modeling a dynamic decision problem,
we may make or introduce a number of new
variables whose values may not be directly
available in the database at hand. In our case
study, for instance, we introduced two binary
abstract variables, i.e. EOR and EOM, in in-
fluence views depicted in Figures 3, 4 and 5.
EOR is a variable representing whether evi-
dence of local recurrence is present (e.g.
change of bowel habit, and loss of appetite),
while EOM is a variable representing evi-
dence related to metastasis (e.g. back pain,
loss of appetite, and lymph node involve-
ment). In other words, EOR (EOM) is Y if the
patient has symptoms/signs which may sug-
gest local recurrence (metastasis). Therefore,
the values of EOR and EOM are implicit in
our database.

Again, deducing the values for the new vari-
ables is based a set of association rules
extracted from the expert. Two rules for EOM
are shown below:

Furthermore, actions in DynaMoL influence
views can be simple and compound (e.g.
M&T). In the latter case, we may not directly
have their instances in the database, and
therefore have to develop domain-specific in-
quiries which extract the action instances
from the data. For example, to find a instance
of M&T, we have to select from the original
database those cases where tests are ordered
for detecting metastasis and if metastasis is
detected, proper treatment is planned for
patients.

4•3 Sparse Data

Another common problem of raw data is data
spareness. Data sparseness refers to data-
poor areas in a database. In such areas, learn-
ing performance often degenerates.

One way out of the data-spareness problem is
simply to ignore it, and thus the modeler does
not qualitatively model those parts of the
problem where quantitative modeling may
rely on data-poor areas. This strategy may not
always work, because the precise locations of
data-poor areas are not easy to determine, or
the database may have so many data-poor ar-
eas that a trivial qualitative model of the
problem may result.

Another way, which we usually take, is
through data abstraction. When a data-poor
area is detected, we group it with a data-rich
area or another data-poor area together so that
it becomes data-rich.

Data abstraction goes hand in hand with mod-
el abstraction. Consider Figure 3 again. The
influence view shown in Figure 3 is an ab-
straction of the two influence views for two
more specific actions, namely M&AT and
M&ST. AT and ST mean adjuvant and surgi-
cal treatments, respectively; they are
specializations of M&T. These two actions
have an identical influence structure, as de-
picited in Figure 6. Notice that although
“M&ST” and “M&AT” have the same influ-

If M = Y, then TR = +
If R = Y, then TR = +

If BACK-PAIN = Y, then EOM = Y
If LYMPH-NODES = INVOLVED, then EOM = Y



the possible event variables that affect the
state transitions, and the links the probabilis-
tic dependences. For example, EOM
probabilistically influences TR, which in turn
influences M.

For an event variable X in an influence view,
those who directly influence X are called par-
ents of X. For example, in Figure 3, EOR,
EOM, and statei are the three parents of TR.

3•3 The Learning Problem

We adopt a Bayesian approach to assessing
conditional probabilities for event variables
in the influence views. We use Dirichlet or
Beta prior distributions as the prior
distributions.

Our learning problem consists of two tasks.
First, we have to elicit prior information from
the domain expert. This prior information is
needed for assessing Dirichlet or Beta prior
distributions of events in influence views. In
dynamic decision making, the expert typical-
ly has different prior information at different
decision stages, which makes prior informa-
tion elicitation more time-consuming.
However, we note that when events (e.g. can-
cer status) evolve continually over time, the
burden of prior information elicitation could
be much reduced, since the “continuity” len-
provides a time scale for the expert to assess
the prior information at different decision
stages. For more details about prior informa-
tion elicitation, see Section 5.

Second, we have to learn the posterior proba-
bilities for event variables in influence views.
The posterior probabilities of an event vari-
able X are conditional on a action chosen, a
decision stage at which the action is taken,
and the parent event variables of X, as exem-
plified below:

4 DATA PREPROCESSING

There are a few tricky issues regarding raw

data that must be handled before conditional
probabilities can be learned. In dynamic deci-
sion modeling, we summarize a number of
key issues in the following subsections, and
discuss feasible methods for handling them.

4•1 Missing Values

a common phenomenon in a real-life data-
base is that values of some variables may be
missing in a database. Two general “missing
mechanisms” can be distinguished. When
there are no rules to account for the missing-
ness, we say that the missing values are
missing at random; otherwise, we say that
they are missing systematically.

In the machine learning community, several
techniques have been developed to learning
probabilistic networks from incomplete data
[6,4,13,3, 11]. These methods assume that the
unknown values are missing at random [11].
This assumption is not reasonable in real-life
domains. In decision-making domains, un-
known values are missing usually due to
decisions made. For example, when the doc-
tor decides not to prescribe a test for a patient,
the result of that test is certainly missing in
the database. But it is not missing at random,
but due to the doctor’s decision.

In this paper, we adopt a rule-based approach
to handling the missing-value issue. The ap-
proach fills in the missing values by deducing
them based on a set of association rules. An
association rule consists of two parts:

• If: Specifying the condition where it
is applicable. The condition is repre-
sented by a conjunction of simple
terms of the form (variablerelvalue),
where value is either a value interval
(e.g. (0.5, 3.5]), a set of values (e.g.
{back-pain, bone-pain}), or a single
value (e.g. yes), and rel is one of the
two set relators in and notin, or the six
numeric relators =, >=, >, <=, < and
!=.
• Then: Recommending a value for a

Pr(TR|EOR, EOM, STATE, ACTION, STAGE, DATASET).



semi-Markov decision process, provides a
concise formulation of the decision problem;
it also admits various solution methods. The
translation convention supports automatic
transformations among the different graphi-
cal representations.

3•1 Transition View

The transition view corresponds directly to
the Markov state transition diagram. Given an
action, the transition view depicts the possi-
ble state transitions. Figure 2 shows a
transition view for an action or strategy
“M&T”, which denotes performing a diag-
nostic test to detect metastasis, and treating
accordingly if cancer is detected. In the fig-
ure, the nodes denote the states, and the arcs
the possible transitions given the action. The
possible transitions at any decision stage are
governed by a set of transition probabilities.

Figure 2: Transition view for action “M&T”.

To solve for the optimal course of action, we
have to assess transition probabilities for the
alternative actions. It is, however, usually
very difficult to assess such numbers directly.
Therefore, the effects of the action are elabo-
rated in the Influence View to facilitate
reasoning and assessment of the
probabilities.

3•2 Influence View

Given an action, the influence view shows the
possible event variables that affect transitions
from one state to another. In other words, an
influence view is a refinement of a transition
view. The event variables correspond to the
chance nodes in an influence diagram; the in-
fluence view, therefore, is also analogous to a

slice of a dynamic influence diagram[13], in-
cluding all the chance nodes relevant to a
specific decision stage.

Figures 3, 4, and 5depict the influence views
for the three actions “M&T”, “R&T”, and
“RM&T” in our example, respectively. Table
1 specifies all the event variables involved in
the influence views.

Figure 3: Influence view for action “M&T”.

Figure 4: Influence view for action “R&T”

Figure 5: Influence view for action “RM&T”

Figure 3 shows the influence structure for the
action “M&T”. The circular nodes represent

well

metastatic

rec-met

recurrent

dead

Table 1: Event Variables Specification

Variable Possible values Meaning

EOR Y, N evidence of recurrence

EOM Y, N evidence of metastasis

TR +, - test results

R Y, N Is recurrence detected?

M Y, N Is metastasis detected?

statei+1

 EOM

 EOR

M

 R

TRstatei

statei+1

 EOM

 EOR

M

 R

TRstatei

statei+1

 EOM

 EOR

M

 R

TRstatei



objective probabilities may not be easily cal-
culated to support decision modeling; the
recording formats, the measurement assump-
tions, and the processing errors associated
with the data may complicate such
derivations.

In this work, we examine the critical issues in
automated learning of probabilistic parame-
ters from large medical database. Our
discussions are based on the DynaMoL
framework and a case study in the follow-up
of patients who have undergone colorectal
cancer surgery. We present a Bayesian meth-
od for learning conditional probabilities from
data for influence views, a key decision mod-
el in DynaMoL, analyze how to elicit prior
probabilities from the domain expert, and dis-
cuss several important issues on preparing
and processing raw data for application in dy-
namic decision modeling.

2 FOLLOWING UP PATIENTS WITH
COLORECTAL CANCERS

To facilitate exposition, we consider a dy-
namic decision problem of detecting an
optimal course of action in a follow-up pro-
gram of colorectal cancer patients. After
colorectal cancer surgery, patients are fol-
lowed up so that any recurrence and/or
metastases can be detected early. Based on
the Dukes’ classification system, colorectal
cancers have four possible stages: A, B, C, or
D. Stages A and B colorectal cancers are lo-
calized and have a good prognosis after
curative resection. Stage C cancers are re-
gional and are at a high risk of recurrence and
metastasis. Stage D cancers are late-stage or
metastatic cancers and have a poor prognosis
even after surgery. In our case study, we focus
on Stage C cancers.

At any decision stage, a Stage C patient’s
health state can be classified into three gener-
al states: dead, well, or cancerous; and
cancerous can be further refined into three
subclasses: recurrent, metastatic, rec-met

(a special term for both recurrent and meta-
static). The classification is shown in Figure
1.

Figure 1: Patient’s health state hierarchy

At each decision stage of a follow-up pro-
gram for a patient, a doctor has three
alternatives: 1) decide to detect if the patient
has metastatic cancers; if detected, prescribe
treatment (i.e. M&T); 2) decide whether to
detect if the patient has recurrent cancers; if
detected, prescribe treatment (i.e. R&T); 3)
decide to detect if the patient has both meta-
static and recurrent cancers; if detected,
prescribe treatment (i.e. RM&T).

In managing the follow-up of colorectal can-
cer patients, a series of diagnostic tests are
performed to detect possible recurrence, me-
tastasis, or both recurrence and metastasis of
the cancer; treatment is prescribed if cancer is
detected. The decision is to determined the
optimal course of diagnostic tests, over a se-
quence of decision stages, that would lead to
the most cost-effective treatment outcomes.

3 THE DynaMoL FRAMEWORK

The DynaMoL framework has four major
components: a dynamic decision grammar, a
graphical presentation convention, a formal
mathematical representation, and a transla-
tion convention. The decision grammar
supports problem formulation with multiple
interfaces. The presentation convention, in
the tradition of graphical decision models,
governs parameter visualization and specifi-
cation in multiple perspectives; two graphical
representations are currently included: Tran-
sition View and Influence View. The
mathematical representation, in terms of a

patient health

cancerous

recurrent metastatic rec-met

well



Abstract

Dynamic decision making concerns prob-
lems in which both time and uncertainty are
explicitly considered. A major challenge in
applying decision analysis in dynamic deci-
sion problems is to elicit, estimate, and
specify the numerous time-dependent condi-
tional probabilities in the models. Based on
the DynaMoL (a Dynamic decision Modeling
Language) framework, we examine the criti-
cal issues in automated learning of numerical
parameters from large medical databases. In
this paper, we present a Bayesian method for
learning conditional probabilities from data
for influence views, a key decision-modeling
facility in DynaMoL, analyze how to elicit
prior probabilities from the domain expert,
and discuss several important issues on pro-
cessing and preparing raw data for
application in dynamic decision modeling

1 INTRODUCTION

Many challenging decision problems in med-
icine and pharmacology involve explicit
consideration of time and uncertainty. For in-
stance, in patients who have undergone
colorectal cancer surgery, an important deci-
sion problem is to determine the optimal
follow-up schedule over 5 to 10 years. Simi-
larly, the cost-effectiveness of a new drug for
AIDS can be evaluated by comparing alterna-
tive treatment efficacies over the course of
disease progression, in terms of estimated

CD4 cells counts.

In recent years, decision analysis techniques
are increasingly being applied to model and
analyze dynamic decision problems in medi-
cine [1,14,9,10]. Dynamic decision analysis
or modeling frameworks are based on struc-
tural and semantical extensions of
conventional decision models, e.g., decision
trees and influence diagrams, with the mathe-
matical definitions of finite-state stochastic
processes. Recently, [7] has identified semi-
Markov decision processes (SMDPs) as the
common theoretical basis of existing dynam-
ic decision modeling formalisms. A new
framework called DynaMoL (for a Dynamic
decision Modeling Language) has subse-
quently been proposed to integrate the
graphical capabilities of the existing frame-
works, and the concise properties and varied
solutions of the mathematical formulations
[8].

The mathematical formulations render the re-
quirements for building complete or well-
formed dynamic decision models more ex-
plicit. Nevertheless, assessing the relevant
probabilistic parameters remains a very chal-
lenging task. Subjective assessments from
domain experts may be adequate in some cas-
es. When the decision situations are complex
or the decision dimensions are large, howev-
er, the practicality of the modeling approach
is limited by the lack of realistic estimations.
On the other hand, given a large set of data,

 Learning Conditional Probabilities for Dynamic Influence Views

Cungen Cao and Tze-Yun Leong
Medical Computing laboratory

Department of Information Systems and Computer Science
National University of Singapore, Lower Kent Ridge Road, Singapore 119260

{caocg,leongty}@iscs.nus.sg

Adrian Pheng Kheong Leong and Francis Seow Choen
Department of Colorectal Surgery

Singapore General Hospital, Outram Road, Block 6, Singapore 169608


