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Abstract

We present a new machine learning method that, given a set of training examples,
induces a definition of the target concept in terms of a hierarchy of intermediate concepts
and their definitions. This effectively decomposes the problem into smaller, less complex
problems. The method is inspired by the Boolean function decomposition approach to
the design of switching circuits. To cope with high time complexity of finding an optimal
decomposition, we propose a suboptimal heuristic algorithm. The method, implemented
in program HINT (Hierarchy INduction Tool), is experimentally evaluated using a set
of artificial and real-world learning problems. In particular, the evaluation addresses
the generalization property of decomposition and its capability to discover meaningful
hierarchies. The experiments show that HINT performs well in both respects.
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1 Introduction

To solve a complex problem, one of the most general approaches is to decompose it into
smaller, less complex and more manageable subproblems. In machine learning, this principle
is a foundation for structured induction [45]: instead of learning a single complex classification
rule from examples, define a concept hierarchy and learn rules for each of the (sub)concepts.
Shapiro [45] used structured induction for the classification of a fairly complex chess endgame
and demonstrated that the complexity and comprehensibility (“brain-compatibility”) of the
obtained solution was superior to the unstructured one. Shapiro was helped by a chess master
to structure his problem domain. Typically, applications of structured induction involve a
manual development of the hierarchy and a manual selection and classification of examples to
induce the subconcept classification rules; usually this is a tiresome process that requires an
active availability of a domain expert over long periods of time. Considerable improvements
in this respect may be expected from methods that automate or at least actively support the
user in the problem decomposition task.

In this article we present a method for automatically developing a concept hierarchy from
examples and investigate its applicability in machine learning. The method is implemented in
the program called HINT (Hierarchy INduction Tool). As an illustration of the effectiveness
of this approach, we present here some motivating experimental results in reconstruction of
Boolean functions from examples. Consider the learning of Boolean function y of five Boolean
attributes x1, ..., x5:

y = (x1 OR x2) XOR (x3 OR (x4 XOR x5))

Out of the complete 5-attribute space of 32 points, 24 points (75%) were randomly selected
as examples for learning. The examples were stated as attribute-value vectors, hiding from
HINT any underlying conceptual structure of the domain. In nine out of ten experiments
with different randomly selected subsets of 24 examples, HINT found that the most appro-
priate structure of subconcepts is as shown in Figure 1. HINT also found a definition of the
intermediate functions corresponding to:

f1 = OR

f2 = XOR

f3 = OR

f4 = XOR

This corresponds to complete reconstruction of the target concept. It should be noted that
HINT does not use any predefined repertoire of intermediate functions; the definitions of the
four intermediate functions above were induced solely from the learning examples.

The following results show how much the detection of a useful structure in data, like the
one in Figure 1, helps in terms of classification accuracy on new data. “New data” in our case
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Figure 1: Hierarchy of intermediate concepts induced by HINT for the example Boolean
function.

was the remaining 25% of the points (other than those 24 examples used for learning). The
average accuracy on new data over the 10 experiments was 97.5% with standard deviation
7.9%. For a comparison with a “flat” learner (one that does not look for concept structure in
data), the program C4.5 [36] was run on the same 10 data sets. Its accuracy was 60% with
standard deviation 16.5%. This result is typical of the difference in performance between
HINT and flat learners in similar domains where there exist useful concept hierarchies and
illustrates dramatic effects of exploiting a possible structure in the domain. A more thorough
experimental evaluation of the HINT method is given later in the paper.

The HINT method is based on function decomposition, an approach originally developed
for the design of switching circuits [1, 10]. The goal is to decompose a function y = F (X)
into y = G(A,H(B)), where X is a set of input attributes x1, . . . , xn, and y is the class
variable (Figure 2). F , G, and H are functions partially specified by examples, i.e., by sets
of attribute-value vectors with assigned classes. A and B are subsets of input attributes
such that A ∪ B = X. The functions G and H are determined in the decomposition process
and are not predefined in any way. Their joint complexity (determined by some complexity
measure) should be lower than the complexity of F . Such a decomposition also discovers a
new intermediate concept c = H(B). Since the decomposition can be applied recursively on
H and G, the result in general is a hierarchy of concepts. For each concept in the hierarchy,
there is a corresponding function (such as H(B)) that determines the dependency of that
concept on its immediate descendants in the hierarchy.

A method for discovery of a concept hierarchy from an unstructured set of examples by
function decomposition can be regarded as a process that comprises the following mechanisms:

Basic function decomposition step which, given a function y = F (X) partially represented
by examples EF , and a partition of the attribute set X to sets A and B, finds the
corresponding functions G and H, such that y = G(A, c) and c = H(B). The new
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Figure 2: Basic decomposition step.

functions are partially defined by examples EG and EH .

Attribute partition selection is a process which, given a function y = F (X), examines candi-
date partitions of X to A and B and the corresponding functions G and H. It then
selects the preferred partition of X to A and B that minimizes some complexity measure
defined over G and H.

Overall function decomposition is then a recursive invocation of the above two operations on
an initial example set that defines y = F (X). In each step, the best attribute partition
of X to A and B for y = F (X) is selected. A function y = F (X) is decomposed to
y = G(A, c) and c = H(B) provided that G and H are overall less complex than F . If
this is the case, this step is recursively repeated on newly constructed functions G and
H.

Generalization usually occurs in the basic function decomposition step. When constructing
example sets EG and EH , some points not included in EF may be assigned a class value,
thereby inductively generalizing the definition of F to points other than those explicitly
stated in the examples EF .

One of the most important problems with function decomposition is its time complexity.
An algorithm for finding an optimal decomposition would consist of steps of exponential time
complexity in the number of attributes. To cope with reasonably sized problems, these steps
must be replaced by heuristic methods. The method presented here is “greedy” in the sense
that it tries to optimize only a single step of the decomposition process; the whole discovered
hierarchy, however, might not be optimal. The time complexity of splitting the attributes
into sets A and B in a single decomposition step is reduced by bounding the size of B. For
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the task of determining the required number of values of a newly discovered concept c, which
is equivalent to the graph coloring problem, we use a sub-optimal but efficient algorithm.

The proposed decomposition method is limited to nominal-valued attributes and classes.
It only does disjoint partitions of attributes: A∩B = ∅. This constrains the discovered concept
hierarchies to concept trees. Furthermore, because of constraining the size of the bound set
B to, say, b attributes, each internal node in the tree can have at most b descendants. In this
article we do not describe the specific noise handling mechanism in HINT.

Although the function decomposition approach results in a tree, it should be noted that
it is quite different from the well-known top down induction of decision trees [37]. In de-
cision trees, nodes correspond to attributes and leaves correspond to classes. In function
decomposition trees, nodes correspond to functions, and leaves correspond to attributes.

The remainder of this article first starts with the detailed description of each of the above
mentioned decomposition components (Sections 2, 3, and 4). A method that uses function
decomposition to detect the redundancy of attributes and to select non-redundant and most
relevant attributes is given in Section 5. Section 6 experimentally evaluates the decomposition
method and in particular addresses its ability to generalize and to construct meaningful
concept hierarchies. The related work on the use and discovery of concept hierarchies is
presented in Section 7. Section 8 gives conclusions and points to some directions for further
research.

2 Basic decomposition step

Given a set of examples EF that partially specify a function y = F (X) and a partition of
attributes X to subsets A and B, the basic decomposition step of F constructs the functions
y = G(A, c) and c = H(B) (Figure 2). Functions G and H are partially specified by the
example sets EG and EH , respectively, that are derived from and are consistent with the
example set EF . Example sets EG and EH are discovered in the decomposition process and
are not predefined in any way. X is a set of attributes x1, . . . , xm, and A and B are a nontrivial
disjoint partition of attributes in X, such that A ∪B = X, A ∩B = ∅, A 6= ∅, and B 6= ∅.

The decomposition requires both the input attributes xi ∈ X and class variable y to be
nominal-valued with domains Dxi and Dy, respectively. The cardinality of these domains,
denoted by |Dxi | and |Dy|, is required to be finite. The set EF is required to be consistent:
no two examples may have the same attribute values and different class values.

As proposed by Curtis [10], we will use the names free set and bound set for attribute sets
A and B, respectively, and use the notation A|B for the partition of attributes X into these
two sets. Before the decomposition, the concept y is defined by an example set EF and is
after the decomposition defined by an example set EG. Basic decomposition step discovers
a new intermediate concept c which is defined by an example set EH . We first present an
example of such a decomposition and then define the method for basic decomposition step.
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Example 1 Consider a function y = F (x1, x2, x3) where x1, x2, and x3 are attributes and y
is the target concept. The domain of y, x1, and x2 is {lo, med, hi} and the domain for x3 is
{lo, hi}. The function F is partially specified with a set of examples shown in Table 1.

x1 x2 x3 y

lo lo lo lo

lo lo hi lo

lo med lo lo

lo med hi med

lo hi lo lo

lo hi hi hi

med med lo med

med hi lo med

med hi hi hi

hi lo lo hi

hi hi lo hi

Table 1: Set of examples that partially define the function y = F (x1, x2, x3).

Consider the decomposition y = G(x1,H(x2, x3)), i.e., a decomposition with attribute
partition 〈x1〉|〈x2, x3〉. This is given in Figure 3. The following can be observed:

• The new concept hierarchy is consistent with the original example set. This can be
verified by classifying each example in EF . For instance, for attribute values x1 = med,
x2 = med, and x3 = low, we derive c = 1 and y = med, which is indeed the same as the
value of F (med, med, lo).

• The example sets EG and EH are overall smaller than the original EF and also easier
to interpret. We can see that the new concept c corresponds to MIN(x2, x3), and EG

represents the function MAX(x1, c).

• The decomposition generalizes some undefined entries of F . For example, F (hi, lo, hi),
which does not appear in example set EF , is generalized to hi (c = H(lo, hi) = 1 and
y = G(hi, 1) = hi).

2.1 The method

Let EF be a set of examples that partially specify the function y = F (X) and let A|B be a
partition of attributes X. The basic decomposition step derives new example sets EG and EH

from EF , such that they partially specify functions y = G(A, c) and c = H(B), respectively.
Functions G and H are consistent with F , so that each example from EF is classified equally
by F and by its decomposition to G and H.

The decomposition starts with the derivation of a partition matrix.
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Figure 3: Decomposition y = G1(x1,H1(x2, x3)) of the example set from Table 1.

Definition 1 Given a partition of X to A|B, a partition matrix PA|B is a tabular represen-
tation of example set EF with each row corresponding to a distinct combination of values
of attributes in A, and each column corresponding to a distinct combination of values of
attributes in B. Each example ei ∈ EF has its corresponding entry in PA|B with row index
A(ei) and column index B(ei). The elements of PA|B with no corresponding examples in EF

are denoted by “-” and treated as don’t care. A column a of PA|B is called non-empty if there
exists an example ei ∈ EF such that B(ei) = a. 2

An example partition matrix is given in Figure 4. Note that the columns represent all
possible combinations of the values of the attributes in B. Each column thus denotes the
behavior of F when the attributes in the bound set are constant. To find a function c = H(B),
it is necessary to find a corresponding value (label) for each non-empty column of the partition
matrix. Columns that exhibit non-contradicting behavior are called compatible. We will show
that the necessary condition for consistency of F with G and H is that the same labels are
assigned only to compatible columns.

Definition 2 Columns a and b of partition matrix PA|B are compatible if F (ei) = F (ej) for
every pair of examples ei, ej ∈ EF with A(ei) = A(ej) and B(ei) = a, B(ej) = b. The number
of such pairs is called degree of compatibility between columns a and b and is denoted by
d(a, b). The columns not being compatible are incompatible and their degree of compatibility
is zero. 2

Theorem 1 Example sets EG and EH are consistent with EF only if EH is derived from
labeled partition matrix PA|B so that no two incompatible columns are labeled with the same
label.

7



x2 lo lo med med hi hi

x1 x3 lo hi lo hi lo hi

lo lo lo lo med lo hi

med - - med - med hi

hi hi - - - hi -

c 1 1 1 2 1 3

Figure 4: Partition matrix for the example set from Table 1 and the attribute partition
〈x1〉|〈x2, x3〉. The bottom row shows the column labels (values of c for combinations of x2

and x3) obtained by the coloring of incompatibility graph.

Proof: Let A(e) denote the values of attributes in A for example e and B(e) is defined
similarly. Suppose we have a pair of incompatible columns bi and bj . By Definition 2, there
exists a pair of examples ei, ej ∈ F with A(ei) = A(ej) = a, B(ei) = bi, B(ej) = bj and with
F (ei) 6= F (ej). If decomposition F (X) = G(A,H(B)) is consistent, F (ei) = G(a,H(bi)) and
F (ej) = G(a,H(bj)). Therefore F (ei) 6= F (ej) leads to G(a,H(bi)) 6= G(a,H(bj)), which is
clearly not possible if H(bi) = H(bj). 2

Theorem 1 provides a necessary condition for consistency. Let us define a partition matrix
to be properly labeled if the same label is not used for mutually incompatible columns. Below
we introduce a method that constructs EG and EH that are consistent with EF and derived
from any properly labeled partition matrix. The labeling preferred by decomposition is the
one that introduces the fewest distinct labels, i.e., the one that defines the smallest domain
for intermediate concepts c. Finding such labeling corresponds to finding the lowest number
of groups of mutually compatible columns. This number is called column multiplicity and is
denoted by ν(A|B).

Definition 3 Column incompatibility graph IA|B is a graph where each non-empty column of
PA|B is represented by a vertex. Two vertices are connected if and only if the corresponding
columns are incompatible. 2

The partition matrix column multiplicity ν(A|B) is then the number of colors needed to
color the incompatibility graph IA|B. Namely, the proper coloring guarantees that two vertices
representing incompatible columns are not assigned the same color. The same colors are only
assigned to the columns that are compatible. Therefore, the optimal coloring discovers the
lowest number of groups of compatible PA|B columns, and thus induces the assignment of
y to every non-empty column of PA|B such that |Dc| is minimal. An example of colored
incompatibility graph is given in Figure 5.

Graph coloring is an NP-hard problem and the computation time of an exhaustive search
algorithm is prohibitive even for small graphs with about 15 vertices. Instead of optimal
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Figure 5: Incompatibility graph for the partition 〈x1〉|〈x2, x3〉 and the partition matrix of
Figure 4. Numbers in circles represent different colors (labels) of vertices.

coloring, a heuristic approach should be used. For proper labeling of partition matrix, an
efficient heuristic algorithm called Color Influence Method was proposed by Perkowski and
Uong [34] and Wan and Perkowski [50]. They empirically showed that the method generates
solutions close to optimal. Essentially, Color Influence Method uses similar idea to a heuristic
algorithm for graph coloring by Welsh and Powell [51], which sorts the vertices by their
decreasing connectivity and then assigns to each vertex a color that is different from the
colors of its neighbors so that the minimal number of colors is used. We use the same coloring
method, with the following improvement: when a color is to be assigned to vertex v and
several compatible vertices have already been colored with different colors, the color is chosen
that is used for a group of colored vertices v1, . . . , vk that are most compatible to v. The
degree of compatibility is estimated as

∑k
i=1 d(v, vi) (see Definition 2 for d).

Each vertex in IA|B denotes a distinct combination of values of attributes in B, and its
label (color) denotes a value of c. It is therefore straightforward to derive an example set EH

from the colored IA|B. The attribute set for these examples is B. Each vertex in IA|B is an
example in set EH . Color c of the vertex is the class of the example.

Example set EG is derived as follows. For any value of c and combination of values a of
attributes in A, y = G(a, c) is determined by looking for an example ei in row a = A(ei)
and in any column labeled with the value of c. If such an example exists, an example with
attribute values A(ei) and c and class y = F (ei) is added to EG.

Decomposition generalizes every undefined (“-”) element of PA|B in row a and column b, if
a corresponding example ei with a = A(ei) and column B(ei) with the same label as column b
is found. For example, an undefined element PA|B[<hi>,<lo,hi>] of the first partition matrix
in Figure 4 was generalized to hi because the column <lo,hi> had the same label as columns
<lo,lo> and <hi,lo>.

2.2 Some properties of basic decomposition step

Here we give some properties of the basic decomposition step. We omit the proofs which
rather obviously follow from the method of constructing examples sets EG and EH .
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Theorem 2 The example sets EG and EH obtained by basic decomposition step are con-
sistent with EF , i.e., every example in EF is correctly classified using the functions H and
G.

Theorem 3 The partition matrix column multiplicity ν(A|B) obtained by optimal coloring
of IA|B is the lowest number of values for c to guarantee the consistence of example sets EG

and EH with respect to example set EF .

Theorem 4 Let NG, NH , and NF be the numbers of examples in EG, EH , EF , respectively.
Decomposition derives EG and EH from EF using the attribute partition A|B. Then, EG

and EH use fewer or equal number of attributes than EF (|B| < |X| and |A|+1 ≤ |X|, where
X is the initial attribute set) and include fewer or equal number of examples (NG ≤ NF and
NH ≤ NF ).

2.3 Efficient derivation of incompatibility graph

Most often, machine learning algorithms deal with sparse datasets. For these, the implemen-
tation using the partition matrix is memory inefficient. Instead, the incompatibility graph
IA|B can be derived directly from the example set EF . According to Definition 3, an edge
(vi, vj) of incompatibility graph IA|B connects two vertices vi and vj if there exist examples
ek, el ∈ EF with F (ek) 6= F (el) such that A(ek) = A(el), i = B(ek), and j = B(el). We
propose an algorithm that efficiently implements the construction of IA|B using this defini-
tion. The algorithm first sorts the examples EF based on the values of attributes in A and
values of y. Sorting uses a combination of radix and counting sort [9], and thus runs |A|+ 1
intermediate sorts of time complexity |EF |. After sorting, the examples with the same A(ei)
constitute consecutive groups that correspond to rows in partition matrix PA|B. Within each
group, examples with the same value of y constitute consecutive subgroups. Each pair of
examples from the same group and different subgroups has a corresponding edge in IA|B.

Again, EH is derived directly from the colored IA|B. The sorted examples of EF are then
used to efficiently derive EG. With coloring, each subgroup has obtained a label (value of c).
Each subgroup then defines a single example of EG with the values of attributes in A and a
value of c, and a value of y which is the same and given by any example in the subgroup.

Example 2 For the example set from Table 1 and for the partition 〈x1〉|〈x2, x3〉, the examples
sorted on the basis of the values of attributes in A and values of y are given in Table 2. The
double lines delimit the groups and the single lines the subgroups. Now consider the two
instances printed in bold. Their corresponding vertices in IA|B are (lo,lo) and (med,hi).
Because these instances are in the same group but in different subgroups, there is an edge in
IA|B connecting (lo,lo) and (med,hi). 2
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x1 x2 x3 y

lo lo lo lo
lo lo hi lo

lo med lo lo

lo hi lo lo

lo med hi med
lo hi hi hi

med med lo med

med hi lo med

med hi hi hi

hi lo lo hi

hi hi lo hi

Table 2: Examples from Table 1 sorted by x1 and y.

3 Partition selection measures

The basic decomposition step assumes that a partition of the attributes to free and bound
sets is given. However, for each function F there can be many possible partitions, each one
yielding a different intermediate concept c and a different pair of functions G and H. Among
these partitions, we prefer those that lead to a simple concept c and functions G and H of
low complexity.

Example 3 Consider again the example set from Table 1. Its decomposition that uses the
attribute partition 〈x1〉|〈x2, x3〉 is shown in Figure 3. There are two other non-trivial attribute
partitions 〈x2〉|〈x1, x3〉 and 〈x3〉|〈x1, x2〉 whose decompositions are given in Figure 6. Note
that, compared to these two decompositions, the first decomposition yields less complex and
more comprehensible datasets. While we could interpret the datasets of the first decomposi-
tion (concepts MIN and MAX), the interpretation of concepts for other two decompositions is
harder. Note also that these two decompositions both discover intermediate concepts that use
more values than the one in the first decomposition. Among the three attribute partitions it
is therefore best to decide for 〈x1〉|〈x2, x3〉 and decompose y = F (x1, x2, x3) to y = G1(x1, c1)
and c1 = H1(x2, x3)).

We introduce a partition selection measure ψ(A|B) that estimates the complexity of de-
composition of F to G and H using the attribute partition A|B. The best partition is the one
that minimizes ψ(A|B). This section introduces three partition selection measures, one based
on column multiplicity of partition matrix and the remaining two based on the amount of in-
formation needed to represent the functions G and H. The three measures are experimentally
compared in Section 6.4.
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Figure 6: The decompositions y = G2(x2,H2(x1, x3)) and y = G3(x3,H3(x1, x2)) of the
example set from Table 1.

3.1 Column multiplicity

Our simplest partition selection measure, denoted ψν , is defined as the number of values
required for the new feature c. That is, when decomposing F , a set of candidate partitions
is examined and one that yields c with the smallest set of possible values is selected for
decomposition. The number of required values for c is equal to column multiplicity of partition
matrix PA|B, so:

ψν(A|B) = ν(A|B) (1)

Note that ν(A|B) also indirectly affects the size of instance space that defines G. The smaller
the ν(A|B), the less complex the function G.

The idea for this measure came from practical experience with decision support system
DEX [6]. There, a hierarchical system of decision tables is constructed manually. In more
than 50 real-life applications it was observed that in order to alleviate the construction and
interpretation, the designers consistently developed functions that define concepts with a
small number of values. In most cases, they used intermediate concepts with 2 to 5 values.

Example 4 For the partitions in Figure 4, ψν is 3, 4, and 5, respectively. As expected, the
best partition according to ψν is 〈x1〉|〈x2, x3〉. 2
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3.2 Information-based measures

The following two partition selection measures are based on the complexity of functions. Let
I(F ) denote the minimal number of bits needed to encode some function F . Then, the best
partition is the one that minimizes the overall complexity of newly discovered functions H
and G, i.e., the partition with minimal I(H) + I(G). The following two measures estimate I
differently: the first one takes into account only the attribute-class space size of the functions,
while the second one additionally considers specific constraints imposed by the decomposition
over the functions.

Let us first consider some function of type y = F (X). The instance space for this function
is of size

|DX | =
∏
x∈X

|Dx| (2)

Each instance is labeled with a class value from |Dy|. Therefore, the number of all possible
functions in the attribute-class space is

N1(X, y) = |Dy||DX | (3)

Assuming the uniform distribution of functions, the number of bits to encode a function F is
then

I1(F ) = log2 N1(X, y) = |DX | log2 |Dy| (4)

Based on I1 we can define our first information-based measure ψs, which is equal to the
sum of bits to encode the functions G and H

ψs(A|B) = I1(G) + I1(H) (5)

A similar measure for Boolean functions was proposed by Ross et al. [40] and called DFC
(Decomposed Function Cardinality). They have used it to guide the decomposition of Boolean
functions and to estimate the overall complexity of derived functions. DFC of a single function
is equal to |DX |. Similarly to our definition of ψs, the DFC of a system of functions is the
sum of their DFCs.

Example 5 For the attribute partitions in Figure 4, the ψs-based partition selection mea-
sures are: ψs(〈x1〉|〈x2, x3〉) = 23.8 bits, ψs(〈x2〉|〈x1, x3〉) = 31.0 bits, and ψs(〈x3〉|〈x1, x2〉) =
36.7 bits. The preferred partition is again 〈x1〉|〈x2, x3〉. 2

When y = F (X) is decomposed to y = G(A, c) and c = H(B), the function H is actually
constrained so that:

• The intermediate concept c uses exactly |Dc| values. Valid functions H include only
those that, among the examples that define them, use at least one for each of the values
in Dc.
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• The labels for c are abstract in the sense that they are used for internal bookkeeping
only and may be reordered or renamed. A specific function H therefore represents |Dc|!
equivalent functions.

For the first constraint, the number of functions that define the concept y with cardinality
|Dy| using the set of attributes X is:

N2(X, y) = S(|DX |, |Dy|) (6)

where S(n, r) is the number of distinct classifications of n objects to r classes (Stirling number
of the second kind multiplied by r!) defined as:

S(n, r) =
r∑

i=0

(−1)r−i

(
r

i

)
in (7)

The formula is derived using the principle of inclusions and exclusions, which takes the total
number of distributions of n objects to r classes, rn, and subtracts the number of distributions
with one class empty,

(r
1

)
(r− 1)n. The distributions which have not only one but two classes

empty were counted twice;
(r
2

)
(r − 2)n is added to correct this. Now, the distributions with

three empty classes were subtracted three times as singles and then added three times again
as pairs;

(r
3

)
(r − 3)n must be subtracted as a correction. Continuing this way, we derive the

above formula. For a detailed discussion, see [15].
The number of valid functions H is therefore N2(B, c)/|Dc|! and the number of bits to

encode a specific function H assuming the uniform distribution of functions is:

I2(H) = log2

N2(B, c)
|Dc|!

(8)

For function G, the second of the above two constraints does not apply: outputs of G are
uniquely determined from examples that define F and the developed function H. We may
assume that F uses all the values in Dy, and so does the resulting function G. Thus, the first
constraint applies to G as well, and the number of bits to encode a specific function G is:

I′2(G) = log2 N2(A ∪ {c}, y) (9)

The partition selection measure ψc based on the above definition is therefore:

ψc(A|B) = I′2(G) + I2(H) = log2 N2(A ∪ {c}, y) + log2

N2(B, c)
|Dc|!

(10)

This measure will, for any attribute partition, always be lower than or equal to ψs.
Our development of ψc was motivated by the work of Biermann et al. [2]. They found

an exact formula for counting the number of functions that can be represented by a given
concept hierarchy.
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In addition to the constraints on H and G mentioned above, Biermann et al. considered
constraints related to the so-called reducibility of functions: if c = G(B) is decomposition-
constructed, then any function H should be disregarded that makes any value of c redundant
(see Definition 5 for redundancy of values). We did not incorporate these constraints into ψc

since they would considerably complicate the computation and make it practically infeasible.
Namely, the computation of Biermann et al.’s formula is exponential in the number of at-
tributes and their domain sizes. Furthermore, it would require taking into account not only
the properties of the function F and its attribute-class space, but also the properties of the
complete concept hierarchy developed so far.

Example 6 For the attribute partitions in Figure 4, the ψc-based partition selection mea-
sures are: ψc(〈x1〉|〈x2, x3〉) = 20.6 bits, ψc(〈x2〉|〈x1, x3〉) = 25.0 bits, and ψc(〈x3〉|〈x1, x2〉) =
28.5 bits. Again, the preferred partition is 〈x1〉|〈x2, x3〉. 2

4 Overall function decomposition

The decomposition aims to discover a hierarchy of concepts defined by example sets that are
overall less complex than the initial one. Since an exhaustive search is prohibitively complex,
the decomposition uses a suboptimal greedy algorithm.

4.1 Decomposition algorithm

The overall decomposition algorithm (Algorithm 1) applies the basic decomposition step
over the evolving example sets in a concept hierarchy, starting with a single non-structured
example set. The algorithm keeps a list E of constructed example sets, which initially contains
a complete training set EF0 .

In each step (the while loop) the algorithm arbitrarily selects an example set EFi from
E which belongs to a single node in the evolving concept hierarchy. The algorithm tries to
decompose EFi by evaluating all candidate partitions of its attributes. To limit the complexity,
the candidate partitions are those with the cardinality of the bound set less than or equal to a
user defined parameter b. For all such partitions, a partition selection measure is determined
and the best partition Abest|Bbest is selected accordingly. Next, the decomposition determines
if the best partition would result in two new example sets of lower complexity than the
example set EFi being decomposed. If this is the case, EFi is called decomposable and is
replaced by two new example sets. This decomposition step is then repeated until a concept
structure is found that includes only non-decomposable example sets.

To decompose a function further or not is determined by the decomposability criterion.
Suppose that we are decomposing a function F and its best attribute partition would yield
functions G and H. Then, either one of the two information-based complexity measures
defined in Section 3.2 can be used to determine the number of bits I(F ), I(G), and I(H) to
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〈x1〉|〈x2, x3〉 〈x2〉|〈x1, x3〉 〈x3〉|〈x1, x2〉
I(G) + I(H) I(F ) I(G) + I(H) I(F ) I(G) + I(H) I(F )

ψs 23.7 28.5 ✓ 31.0 28.5 ✗ 36.7 28.5 ✗

ψc 20.7 28.5 ✓ 25.0 28.5 ✓ 28.5 28.5 ✗

Table 3: Complexity measures and decomposability for partitions of Figure 4.

encode the three functions, where the method to compute I(F ) is the same as for I(G). The
decomposability criterion is then I(G) + I(H) < I(F ).

Note that because ψν is not based on function complexity, it can not be similarly used as
decomposability criterion. Therefore, when using ψν as a partition selection measure, either
of the two information-based complexity measures is used to determine decomposability.

Input: Set of examples EF0 describing a single output concept
Output: Its hierarchical decomposition

initialize E ← {EF0}
initialize j ← 1
while E 6= ∅

arbitrarily select EFi
∈ E that partially specifies ci = Fi(x1, . . . , xm), i < j

E ← E \ {EFi
}

Abest|Bbest = arg min
A|B

ψ(A|B),

where A|B runs over all possible partitions of X =< x1, . . . , xm >

such that A ∪B = X, A ∩B = ∅, and |B| ≤ b
if EFi

is decomposable using Abest|Bbest then
decompose EFi to EG and EFj , such that ci = G(Abest, cj) and cj = Fj(Bbest)

and EG and EFj partially specify G and Fj , respectively
EFi
← EG

if |Abest| > 1 then E ← E ∪ {EFi
} end if

if |Bbest| > 2 then E ← E ∪ {EFj
} end if

j ← j + 1
end if

end while

Algorithm 1 Decomposition algorithm

Example 7 Table 3 compares the application of decomposability criteria ψs and ψc on the
example set from Table 1. Neither criterion allows the decomposition with 〈x3〉|〈x1, x2〉. Of
the other two partitions, the partition 〈x1〉|〈x2, x3〉 is the best partition according to both
partition selection measures. 2
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4.2 Complexity of decomposition algorithm

The time complexity of a single step decomposition of EF to EG and EH , which consists of
sorting EF and deriving and coloring the incompatibility graph is O(Nnc) +O(Nk) +O(k2),
where N is the number of examples in EF , k is the number of vertices in IA|B, and nc is the
maximum cardinality of attribute domains and domains of constructed intermediate concepts.
For any bound set B, the upper bound of k is

kmax = nb
c (11)

where b = |B|. The number of disjoint partitions considered by decomposition when decom-
posing EF with n attributes is

b∑
j=2

(
n

j

)
≤

b∑
j=2

nj ≤ (b− 1)nb = O(nb) (12)

The highest number of n − 2 decompositions is required when the hierarchy is a binary
tree, where n is the number of attributes in the initial example set. The time complexity of
the decomposition algorithm is thus

O
(
(Nnc +Nkmax + k2

max)
n∑

m=3

mb
)

= O
(
nb+1(Nnc +Nkmax + k2

max)
)

(13)

Therefore, the algorithm’s complexity is polynomial in N and n, and exponential in b

(kmax is exponential in b). Note that the bound b is a user-defined parameter. This analysis
clearly illustrates the benefits of setting b to a sufficiently low value. In our experiments, b
was usually set to 3.

5 Attribute redundancy and decomposition-based attribute

subset selection

When applying a basic decomposition step to a function y = F (X) using some attribute par-
tition A|B, an interesting situation occurs when the resulting function c = H(B) is constant,
i.e., when |Dc| = 1. For such a decomposition, the intermediate concept c can be removed as it
does not influence the value of y. Thus, the attributes in B are redundant, and y = F (X) can
be consistently represented with y = G(A), which is a decomposition-constructed function
G(A, c) with c removed.

Such decomposition-discovered redundancy may well indicate for a true attribute redun-
dancy. However, especially with the example sets that sparsely cover the attribute space, this
redundancy may also be due to undersampling: the defined entries in partition matrix are
sparse and do not provide the evidence for incompatibility of any two columns. In such cases,
several bound sets yielding intermediate concepts with |Dc| = 1 may exist, thus misleading
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Figure 7: Discovery of redundant attribute a3 and its removal from the training set.

the partition selection measures to prefer partitions with redundant bound sets instead of
those that include attributes that really define some underlying concept.

To overcome this problem, we propose an example set preprocessing by means of attribute
subset selection which removes the redundant attributes. The resulting example set is then
further used for decomposition. Attributes are removed one at the time, their redundancy
being determined by the following definition.

Definition 4 An attribute aj is redundant for a function y = F (X) = F (a1, . . . , an), if for
the partition of attributes X to A|B such that B = 〈aj〉 and A = X \ 〈aj〉, the column
multiplicity of partition matrix PA|B is ν(A|B) = 1.

Figure 7 provides an example of the discovery and removal of a redundant attribute.
The original dataset (left) was examined for redundancy of attribute a3 by constructing a
corresponding partition matrix (center). Since the two columns for a3 = lo and a3 = hi are
compatible, a3 can be reduced to a constant and can thus be removed (right).

Besides attribute redundancy, we also define redundancy in attribute values.

Definition 5 An attribute aj has redundant values if for a function y = F (X) = F (a1, . . . , an)
and for a partition of X to A|B such that B = 〈aj〉 and A = X \〈aj〉, the column multiplicity
of partition matrix PA|B is lower than |Dj |.

By the above definition, such attribute can be replaced by an attribute a′j = H(aj), and
a function y = G(A, a′j) may be used instead of y = F (X). An example of such attribute
replacement is given in Figure 8. Since an example set EH may itself be of interest and point
out some regularities in data, it is included in the representation and a′j is treated as an
intermediate concept.

It should be noted that not all redundancies according to Definitions 4 and 5 may simply
be removed. For example, after removing a redundant attribute from X, other redundant
attributes may become non redundant. Therefore, redundant attributes are processed one at
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Figure 8: Replacement of attribute a2 with a corresponding attribute a′2. Note that |a′2| < |a2|.

a time in the reverse order of their relevance. Given an initial example set, redundancy and
relevance of the attributes is determined. Next, the least relevant attribute is selected, and
its redundancy removed by either removing the attribute or replacing it by a corresponding
attribute with fewer values, whichever appropriate. The process is then repeated on the new
example set, until no more redundancies are found.

To estimate the relevance of attributes, we use the ReliefF algorithm as proposed by
Kononenko [18]. This particular algorithm is used due to its advantages over the other
impurity functions usually used in inductive learning algorithms [19]. ReliefF estimates the
attributes according to how well they distinguish among the instances that are close to each
other. The relevance of attribute a is then

W (a) = P (different value of a | k−nearest instances from different class)−

P (different value of a | k−nearest instances from same class) (14)

We use the version of ReliefF which determines the attribute’s relevance based on at most
200 randomly selected examples from the training set, and which for every example examines
k = 5 nearest instances of the same class and k nearest instances of different different class.
The distance between two examples is measured as the number of attributes in which these
two examples differ. Probabilities are estimated by relative frequencies. For further details
of the ReliefF algorithm see [18].

6 Experimental evaluation

The decomposition methods described in this article were implemented in the program HINT

(Hierarchy INduction Tool). This section attempts to evaluate HINT and the underlying
methods from the aspects of generalization and discovery of concept hierarchies. For this
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purpose, several datasets are used for which either the underlying concepts hierarchy is known
or anticipated, or unknown. The latter datasets are considered only for the evaluation of
generalization.

The datasets on which experiments were performed are introduced first. This is followed by
the assessment of generalization and evaluation of HINT’s capabilities to discover meaningful
concept hierarchies. Finally, we study how different partition selection measures influence
HINT’s behavior.

6.1 Datasets

Three types of datasets were used: (1) artificial datasets with known underlying concepts,
(2) real-life datasets taken mostly from UCI Repository of machine learning databases [31],
and (3) datasets derived from hierarchical decision support models developed with the DEX
methodology. To distinguish among them, we will refer to these datasets as artificial, reposi-
tory, and DEX datasets. Their basic characteristics are given in Table 4.

dataset #class #atts. #val/att. #examples maj. class (%)

PALINDROME 2 6 3.0 729 96.3
PARITY 2 10 2.0 1024 50.0
MONK1 2 6 2.8 432 50.0
MONK2 2 6 2.8 432 67.1

VOTE 2 16 3.0 435 61.4
PROMOTERS 2 57 4.0 106 50.0
SPLICE 3 60 8.0 3191 50.0

MUSHROOM 2 22 - 5644 61.8

CAR 4 6 3.5 1728 70.0
NURSERY 5 8 3.4 12960 33.3
HOUSING 9 12 2.9 5000 29.9
BREAST 4 12 2.8 5000 41.5
EIS 5 14 3.0 10000 59.0

BANKING 3 17 2.2 5000 40.8

Table 4: Basic characteristics of datasets.

The artificial datasets are PALINDROME, PARITY, MONK1, and MONK2. PALINDROME is a
palindrome function over six 3-valued attributes. PARITY is defined as XOR over five binary
attributes; the other five attributes in this domain are irrelevant. MONK1 and MONK2 are well
known six-attribute binary classification problems [31, 49] that use 2 to 4-valued attributes.
MONK1 has an underlying concept x1 = x2 OR x5 = 1, and MONK2 the concept x = 1 for
exactly two choices of attributes x ∈ {x1, . . . , x6}.
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VOTE is a real-world database as given with Quinlan’s C4.5 package [36] that includes
example votes by U.S. House of Representatives Congressmen. The votes are simplified to yes,
no, or unknown. PROMOTERS, SPLICE and MUSHROOM were all obtained from the UCI Repository
[31]. PROMOTERS describes E. coli promoter gene sequences and classifies them according to
biological promoter activity. Given a position in the middle of a window of 60 DNA sequence
elements, instances in SPLICE are classified to donors, acceptors, or neither. Given an
attribute-value description of a mushroom, the class of MUSHROOM instances is either edible

or poisonous. Common to all four datasets is that they include only nominal attributes.
Only MUSHROOM includes instances with undefined attributes, which were for the purpose
of this study removed since HINT – as described in this article – does not include explicit
mechanism to handle such cases. As the concept hierarchies for these datasets are unknown
to us and neither could we anticipate them, these datasets were only used for the study of
generalization. That is, we were interested in HINT’s accuracy on test data.

The remaining six datasets were obtained from multi-attribute decision models originally
developed using DEX [6]. DEX models are hierarchical, so both the structure and interme-
diate concepts for these domains are known. The formalism used to describe the resulting
model and its interpretation are essentially the same as those derived by decomposition.
This makes models developed by DEX ideal benchmarks for the evaluation of decomposition.
Additional convenience of DEX examples is the availability of the decision support expert
(Marko Bohanec) who was involved in the development of the models, for the evaluation of
comprehensibility and appropriateness of the structures discovered by decomposition.

Six different DEX models were used. CAR is a model for evaluating cars based on their price
and technical characteristics. This simple model was developed for educational purposes and
is described in [5]. NURSERY is a real-world model developed to rank applications for nursery
schools [33]. HOUSING is a model to determine the priority of housing loans applications [4].
This model is a part of a management decision support system for allocating housing loans
that has been used since 1991 in the Housing Fund of Slovenia. BANKING, EIS and BREAST

are three previously unpublished models for the evaluation of business partners in banking,
evaluation of executive information systems, and breast-cancer risk assessment, respectively.

Each DEX model was used to obtain either 5000 or 10000 attribute-value instances with
corresponding classes as derived from the model such that the class distribution was equal as
in the dataset that would completely cover the attribute space. We have decided for either
5000 or 10000 examples because within this range HINT’s behavior was found to be most
relevant and diverse. The only exception is CAR where 1728 instances completely cover the
attribute space.
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6.2 Generalization

Here we study how the size of the training set affects HINT’s ability to find a correct gen-
eralization. We construct learning curves by a variant of 10-fold cross-validation. In 10-fold
cross validation, the data is divided to 10 subsets, of which 9 are used for training and the
remaining one for testing. The experiment is repeated 10 times, each time using a different
testing subset. Stratified splits are used, i.e., the class distribution of the original dataset and
training and test sets are essentially the same. In our case, instead of learning from all exam-
ples from 9 subsets, only p percent of training instances from 9 subsets are randomly selected
for learning, where p ranges from 10% to 100% in 10% steps. This adaptation of the standard
method was necessary to keep test sets independent and compare classifiers as proposed in
[42]. Note that when p = 100%, this method is equivalent to the standard stratified 10-fold
cross-validation.

HINT derived a concept hierarchy and corresponding classifier using the examples in the
training set. The hierarchy was tested for classification accuracy on the test set. For each p,
the results are the average of 10 independent experiments. The attribute subset selection was
used on a training set as described in Section 5. The resulting set of examples was then used
to induce a concept hierarchy. HINT used the column multiplicity as a partition selection
measure and determined the decomposability based on our first information-based measure
ψν (Section 3.2). The bound set size b was limited to three.

The concept hierarchy obtained from training set was used to classify the instances in the
test set. The instance’s class value was obtained by bottom-up derivation of intermediate
concepts. For each intermediate concept, its example set may or may not include the appro-
priate example to be used for classification. In the latter case, the default rule was used that
assigns the value of most frequently used class in the example set that defines the intermediate
concept.

We compare HINT’s learning curve to the one obtained by C4.5 inductive decision tree
learner [36] run on the same data. As is the case with HINT, C4.5 was also required to
induce a decision tree consistent with the training set. Hence, C4.5 used the default options
except for -m1 (minimal number of instances in leafs was set to 1) and the classification
accuracy was evaluated on unpruned decision trees. For several datasets, we have observed
that subsetting (option -s) obtains a more accurate classifier: the learning curves for C4.5
were then developed both with and without subsetting, and the better one of the two was
used for comparison with HINT. For each p, a binomial test [42] was used to test for significant
differences between the methods using α = 0.01 (99% confidence level).

The learning curves are shown in Figures 9 and 10. Drawing symbols are ◦ for HINT and
� for C4.5. Where the difference is significant, the symbol for the better classifier is filled (•
for HINT and ◆ for C4.5). The following can be observed:

• In general, for artificial datasets HINT performs significantly better than C4.5. For
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Figure 9: Learning curves for artificial and repository datasets.
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Figure 10: Learning curves for DEX datasets.
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all four domains HINT’s classification accuracy converges to 100% as the training set
sizes increase. The percentage of instances needed to reach 100% accuracy varies be-
tween domains from 10% to 60%. Note that C4.5 never reaches the 100% classification
accuracy.

• For VOTE, PROMOTERS, and MUSHROOM the differences are not significant, while for SPLICE
C4.5 performs better. Only for MUSHROOM both classifiers reached the maximum accu-
racy.

• Common for all six DEX domains is that with small training sets HINT performs similar
or worse than C4.5, while when increasing the training set size it gains the advantage
and finally reaches the classification accuracy of close to or exactly 100%.

Note that for DEX and most of the artificial datasets, there exist useful concept structures
in the form of concept trees. Given sufficient training instances, it is exactly in these domains
where HINT outperforms C4.5. Repository datasets do not necessarily have such character-
istics, which may be the reason why for these domains HINT’s performance is worse. For
example, the domain theory given with the SPLICE dataset [31] mentions several potentially
useful intermediate concepts that share attributes. Thus these concepts form a concept lattice
rather than a concept tree, and therefore can not be discovered by HINT. Furthermore, DEX
and artificial datasets indicate that although a domain possesses a proper structure discover-
able by decomposition, HINT needs a sufficient number of training examples to induce good
classifiers: HINT’s performance suffers from undersampling more than C4.5’s.
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Figure 11: Number of attributes used in concept hiearchy as a function of training set size.

The number of attributes used in concept hierachies depends on attribute subset selec-
tion (training data preprocessing by removing redundant attributes). This further depends
on the existence of irrelevant attributes and on the coverage of attribute space by training
set. Figure 11 illustrates that with increasing coverage the number of attributes in induced
structures increases and, in general, converges to a specific number of most relevant and non-
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Figure 12: MONK1 feature hierachy as discovered by HINT.

redundant attributes. Interestingly, for PARITY and MONK1 domain HINT finds, as expected,
that only 5 and 3 attributes are relevant, respectively. HINT converges to the use of about 10
attributes for VOTE, 12 for SPLICE, and 5 for MUSHROOM. For all DEX domains, with sufficiently
large training sets HINT does not remove any of the attributes – this was expected since all
attributes in these domains are relevant.

Attribute redundancy removal based on function decomposition is part of the HINT
method. However, it could also be used for C4.5 as a preprocessor of the learning data.
It would be interesting to investigate how this would effect the performance of C4.5, but such
an experiment is beyond the scope of this paper.

The use of default rule for classification had a minor impact on classification accuracy. This
holds even for the smallest training sets, where 95% of instances were classified without firing
the default rule. In most cases, with increasing training set size this percentage monotonically
increased to 100%.

6.3 Hierarchical concept structures

Induced concept structures were compared to those anticipated for artificial and DEX do-
mains. For each of these, HINT converged to a single concept structure when increasing the
training set size. For PALINDROME and PARITY, HINT induced expected structure of the type
(x1 = x6 AND x2 = x5) AND (x3 = x4) and x1 XOR ((x2 XOR x3) XOR (x4 XOR x5)).

More interesting are the structures for MONK1 and MONK2. For MONK1, HINT develops a
concept hierarchy (Figure 12) that (1) correctly excludes irrelevant attributes x3, x4, and x6,
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Figure 13: The feature hierarchy discovered for MONK2. Each node gives a name of the feature
and cardinality of its set of values.

Figure 14: Original (left) and discovered structure (right) for NURSERY.

(2) transforms x5 to x′5 by mapping four values of x5 to only two values of x′5, (3) includes an
intermediate concept c and its tabular representation for x1 = x2, and (4) relates c and x′5 with
a tabular representation of the OR function. In other words, the resulting hierarchy correctly
represents the target concept. For MONK2, although the discovered structure (Figure 13) does
not directly correspond to the original concept definition, it correctly reformulates the target
concept by introducing concepts that count the number of ones in their arguments. Also note
that all attributes that have more than two values are replaced by new binary ones.

For all DEX domains HINT converged to concept hierarchies that were very similar to
original DEX models. A typical example is NURSERY, for which Figure 14 shows the original
DEX model and the concept hierarchy discovered by HINT. Note that the two structures are
actually the same except that some original DEX intermediate concepts were additionally
decomposed. Similarities of the same type were also observed for other DEX domains.

For NURSERY, no attributes were removed by preprocessing and redundancies were found
only in attributes’ domains: applicant’s social status none and medium were found equivalent,
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and there was no difference between a family having 3 or more-than-3 children. Similar type
of redundancies were also found in other DEX models. When a decision support expert that
participated in the development of DEX models was asked to comment on these findings, he
indeed recognized most of them as those that were intentionally used in DEX models with
future extension and specialization of model functions in mind.

6.4 Comparison of partition selection measures

So far, all experiments with HINT used column multiplicity as the partition selection measure.
The same experiments were also performed under the same settings but using two information-
based partition selection measures. The study revealed that there are no significant differences
in terms of classification accuracy. Figure 15 depicts typical examples of learning curves; only
average classification accuracies are shown, which are for all training set sizes insignificantly
different for all three measures. Moreover and especially for artificial and DEX datasets, HINT

converged to the same concept structure for either of the selection measures. To conclude, it
is interesting that a measure as simple as column multiplicity performed equally well as the
other two more complex measures.
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Figure 15: Learning curves for different partition selection measures.

7 Related work

The decomposition approach to machine learning was used early by a pioneer of artificial
intelligence, A. Samuel. He proposed a method based on a signature table system [44] and
used it as an evaluation mechanism for his checkers playing programs. A signature table
system is a tree of input, intermediate, and a single output variable, and is essentially an
identical representation of concept trees as used in this article. Signature tables define the
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intermediate concepts and use signatures (examples) that completely cover the attribute
space. The value of an output variable is determined by a bottom-up derivation that first
assigns the values to the intermediate variables, and finally derives the value of the output
variable. Samuel used a manually defined concept structures with two layers of intermediate
concepts. Learning was based on presenting a set of book moves to the concept hierarchy and
adjusting the output values of the signatures according to the correlation coefficient computed
from learning examples. Compared to his previous approach that was based on the learning
of the coefficients in a linear evaluation polynomial [43], Samuel showed that the use of a
signature table system significantly improves the performance. Samuel’s approach was later
studied and improved by Biermann et al. [2], but still required the concept structure to be
given in advance.

While, within machine learning, Samuel and Biermann et al. may be the first to realize
the power of using concept hierarchies, fundamentals of the approach that can discover such
hierarchies were defined earlier in the area of switching circuit design. Curtis [10] reports that
in the late 1940’s and 1950’s several switching circuit theorists considered this subject and
in 1952 Ashenhurst reported on a unified theory of decomposition of switching functions [1].
The method proposed by Ashenhurst decomposes the truth table of a Boolean function to be
realized with standard binary gates. Most of other related work of that time is reported and
reprinted in [10], where Curtis compares the decomposition approach to other switching circuit
design approaches and further formalizes and extends the decomposition theory. Besides a
disjoint decomposition, where each variable can appear as input in just one of the derived
tables, Curtis defines a non-disjoint decomposition where the resulting structure is an acyclic
graph rather than a tree. Furthermore, Curtis defines a decomposition algorithm that aims
at constructing a switching circuit of the lowest complexity, i.e., with the lowest number of
gates used. Curtis’ method is defined over two-valued variables and requires a set of examples
that completely cover the attribute space.

Recently, the Ashenhurst-Curtis approach was substantially improved by research groups
of M. A. Perkowski, T. Luba, and T. D. Ross. Perkowski and Uong [34] and Wan and
Perkowski [50] propose a graph coloring approach to the decomposition of incompletely spec-
ified switching functions. A different approach is presented by Luba and Selvaraj [23]. Their
decomposition algorithms are able to generalize. A generalization of function decomposition
when applied to a set of simple Boolean functions was studied by Ross et al. [40] and Gold-
man [14]. The authors indicate that the decomposition approach to switching function design
may be termed knowledge discovery as functions and features not previously anticipated can
be discovered. A similar point, but using different terminology, was made already by Cur-
tis [10], who observed that the same truth table representing a Boolean function might have
different decompositions.

Feature discovery has been at large investigated by constructive induction, a recently ac-
tive field within machine learning. The term was first used by Michalski [25], who defined it
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as an ability of the system to derive and use new attributes in the process of learning. Fol-
lowing this idea and perhaps closest to function decomposition are the constructive induction
systems that use a set of constructive operators to derive new attributes. Examples of such
systems are described in [24, 35, 38]. The main limitation of these approaches is that the set
of constructive operators has to be defined in advance. Moreover, in constructive induction,
the new features are primarily introduced for the purpose of improving the classification ac-
curacy of the induced classifier, while the above described function decomposition approaches
focused primarily on the reduction of complexity, where the impact on classification accuracy
can be regarded rather as a side-effect of decomposition-based generalization. In first-order
learning of relational concept descriptions, constructive induction is referred to as predicate
invention. An overview of recent achievements in this area can be found in [47].

Decomposition with nominal-valued attributes and classes may be regarded as a straight-
forward extension of Ashenhurst-Curtis approach. Such an extension was described by Bier-
mann et al. [2]. Alternatively, Luba [22] proposes a decomposition where multi-valued in-
termediate concepts are binarized. Files et al. [13] propose a decomposition approach for
k-valued logic where both attributes and intermediate concepts take at most k values.

A concept structure as used in this article defines a declarative bias over the hypothesis
space. Biermann et al. [2] showed that concept structure significantly limits the number
of representable functions. This was also observed by Russel [41], who proved that tree-
structured bias can reduce the size of concept language from doubly-exponential to singly
exponential in the number of attributes. Tadepalli and Russel [48] show that such bias
enables PAC-learning of tabulated functions within concept structure. Their approach for
decomposition of Boolean functions requires the concept structure to be given in advance.
Their learning algorithm differs from the function decomposition approaches in that it uses
both examples and queries, i.e., asks the oracle for the class value of instances that are needed
in derivation but not provided in the training examples. Similar to function decomposition,
the learning algorithm of Tadepalli and Russel induces intermediate concepts that are lower
in the hierarchy first. As with Ashenhurst-Curtis decomposition, the resulting classifiers
are consistent with training examples. Queries are also used in PAC-learning described by
Bshouty et al [8]. Their algorithm identifies both concept structures and their associated
tabulated functions, but can deal only with Boolean functions with symmetric and constant
fan-in gates. Within PAC-learning, Hancock et al. [16] learn non-overlapping perceptron
networks from examples and membership queries. An excellent review of other related work
in PAC-learning that uses structural bias and queries is given in [48].

Function decomposition is also related to construction of oblivious read-once decision
graphs (OODG). OODGs are rooted, directed acyclic graphs that can be divided into levels
[17]. All nodes at a level test the same attribute, and all edges that originate from one level
terminate at the next level. Like with decision trees, OODG leaf nodes represent class values.
OODGs can be regarded as a special case of decomposition, where decomposition structures
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are of the form f1(x1, f2(x2, . . . , fn(xn))) and where xn is at the top of a decision graph
and the number of nodes at each level equals the number of distinct output values used by
corresponding function fi. In fact, decision graphs were found as a good form of representation
of examples to be used by decomposition [21, 20, 13]. Within machine learning, the use
of oblivious decision graphs was studied by Kohavi [17]. Graphs induced by his learning
algorithm are consistent with training examples, and for incomplete datasets the core of the
algorithm is a graph coloring algorithm similar to the one defined by Perkowski and Uong [34].

Of other machine learning approaches that construct concept hierarchies we here mention
Muggleton’s DUCE [29, 30] which uses transformation operators to compress the given exam-
ples by successive generalization and feature construction. Nevill-Manning and Witten [32]
describe SEQUITUR, an algorithm that infers a hierarchical structure from a sequence of
discrete symbols. Although there are some similarities with function decomposition (e.g.,
maintaining consistency and induction of new features), DUCE and SEQUITUR are essen-
tially different in both the algorithmic and representational aspects.

Within machine learning, there are other approaches based on problem decomposition,
but where the problem is decomposed by an expert and not discovered by a machine. A well-
known example is structured induction, a term introduced by Donald Michie and applied by
Shapiro and Niblett [46] and Shapiro [45]. Their approach is based on a manual decomposition
of the problem and an expert-assisted selection and classification of examples to construct
rules for intermediate concepts in the hierarchy. In comparison with standard decision tree
induction techniques, structured induction exhibits about the same classification accuracy
with the increased transparency and lower complexity of the developed models. Michie [26]
emphasized the important role of structured induction in the future and listed several real
problems that had been solved in this way.

Mozetič [27, 28, 7] employed another scheme for structuring the learning problem. That
approach was particularly aimed at automated construction of system models from input-
output observations of the system’s behavior. The structure of the learning problem, specified
by a Prolog clause, corresponded to the physical structure of the modeled system in terms of
the system’s components and connections among them. In an experiment, a substantial part
of a qualitative model of the heart was induced from examples of the behavior of the heart. It
was shown that the structuring of the domain very significantly improved the effectiveness of
learning compared to unstructured learning. Again, the structure of the system was specified
by the user and not induced automatically.

Concept hierarchy has also been used in a multi-attribute decision support expert system
shell DEX [6] which has its roots in DECMAK methodology [12, 3]. There, a tree-like
structure of variables is defined by an expert, and several tools assist in the acquisition
of decision rules. These are, like Samuel’s signature tables, used to derive the values of
intermediate and output variables. DEX also allows different representations of user-defined
decision tables, including decision trees [45] and decision rules [39]. DEX has been applied in

31



more than 50 real decision making problems.
The method presented in this article essentially borrows from three different research

areas: it shares the motivation with structured induction and structured approach to decision
support, while the core of the method is based on Ashenhurst-Curtis function decomposition.
In comparison with related work, the present article is original in the following respects: new
method for handling multi-valued attributes and classes, improved decomposition heuristics,
treatment of redundancies, emphasis on generalization effects of decomposition, paying strong
attention to the discovery of meaningful concept hierarchies, and experimental evaluation on
machine learning problems. Our earlier experiments in function decomposition applied to
DEX domains were presented in [54, 53].

8 Conclusion

We introduced a new machine learning approach based on function decomposition. A distin-
guishing feature of this approach is its capability to discover new intermediate concepts, orga-
nize them into a hierarchical structure, and induce the relationships between the attributes,
newly discovered concepts, and the target concept. In their basic form, these relationships
are specified by newly constructed example sets. In a way, the learning process can thus be
viewed as a process of generating new, equivalent example sets, which are consistent with
the original example set. The new sets are smaller, have smaller number of attributes, and
introduce intermediate concepts. Generalization also occurs in this process.

We have evaluated the decomposition-based learning method on several datasets. In
particular, we studied the accuracy of the induced descriptions by HINT and its capability
to discover meaningful hierarchies. For all datasets where useful hierarchies existed, HINT

significantly outperformed C4.5 and found relevant concept hierarchies, provided that enough
examples were used for training. Experiments show that decomposition is more sensitive to
undersampling and, especially in more complex datasets, C4.5 performed relatively better
with small training sets. For other datasets, with no useful concept structure, C4.5 and HINT

performed similarly in all but one domain.
In terms of the meaningfulness of discovered structures, the most significant experiments

were those with DEX domains. For these domains HINT’s task was to reconstruct the un-
derlying concept hierarchy. We have observed that for all six domains investigated, HINT

converges to concept hierarchies that are very similar or identical to those anticipated. It
should be emphasized that we consider these similarities of concept structures as the most
significant indicator of HINT’s success.

The approach described in this article is limited to consistent datasets and nominal fea-
tures. It is therefore desired to extend the approach to discover new features from noisy data,
and from data that comprises continuous features. To handle noisy data, a minimal-error de-
composition was recently proposed [52]. It is based on a representation of training examples
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with class distributions and uses successive column merging of partition matrix, so that the
expected error of classification is minimized. For continuously-valued datasets, the function
decomposition method was proposed in [11]. They both present preliminary results which
strongly encourage further development in this direction and integration of their techniques
into common function decomposition framework. The feature construction aspect of HINT is
investigated in more detail in [55].
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