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Abstract

Function decomposition can be used as a

machine learning method that, given a set

of training examples, induces a de�nition of

the target concept in terms of a hierarchy of

intermediate concepts and their de�nitions.

We present a new approach that allows func-

tion decomposition to learn from noisy data,

where a discovery of new concepts is guided

by the aim to reduce the estimated error of

the resulting classi�er. The method was im-

plemented within the program HINT. The ex-

perimental evaluation of HINT demonstrates

its ability to e�ectively decompose the prob-

lem into smaller, less complex problems, and

by this discover data models of high classi�-

cation accuracy that include potentially rel-

evant and interpretable concepts.

1. Introduction

Machine learning based on function decomposition

(Zupan et al., 1999; Zupan et al., 1997) is an approach

that, given a set of training examples, induces a de�-

nition of the target concept in terms of (1) a hierarchy

of intermediate concepts and (2) de�nitions of these

concepts. Each intermediate concept is described by

a separate example set obtained by the decomposition

of original training set.

The distinguishing capabilities of function decompo-

sition are to discover new concepts from training

data, organize them into a concept hierarchy, and in-

duce concept descriptions by decomposing the original

training set into smaller and less complex example sets.

For example, consider the CAR data set (Murphy &

Aha, 1994). Originally, it consists of 1728 instances

mapping six attributes to a four-valued outcome (Fig-

ure 1.a). Decomposition �nds a concept hierarchy

(Figure 1.b) with four meaningful intermediate con-

cepts, c1 to c4 (Zupan et al., 1997). When interpreted,

for instance, c2 was found to represent the overall cost

of a car and c3 its technical characteristics.

Until recently, function decomposition algorithms did

not include mechanisms that would handle noise in the

training data. Most probably this was because for its

prevailing use in switching circuit design, where the de-

rived logic circuits have to be 100% consistent with the

originally tabulated function. The process was guided

by minimization of complexity, as the decomposition

tried to �nd the least complex implementation of the

original function. Within machine learning, however,

appropriate treatment of noise is not only desired but

required for any modern concept induction algorithm.

This paper is based on our original e�ort (Zupan,

1997) and reports on a particular mechanism for noise

handling that extends the basic approach to machine

learning based on function decomposition introduced

in Zupan et al. (1997) and Zupan et al. (1999). Un-

like previous approaches, here decomposition explicitly

aims at minimizing the expected classi�cation error.

We refer to the proposed decomposition method as

minimal-error function decomposition. In this paper

we present the method and its experimental evalua-

tion on a number of data sets.
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Figure 1. Attribute-class relation in undecomposed CAR

data set (top) and its corresponding concept structure after

decomposition (bottom).

2. Induction of Concept Hierarchies

Given a tabular representation of a function y = F (X),

X = hx1; : : : ; xni, and a partition of input attributes

X to its proper subsets A and B, the decomposition

employs its basic step to �nd tabulated functions y =

G(A; c) and c = H(B). By recursive application of

this step on G and H , the aim is to derive a hierarchy

of functions.

Basic function decomposition step (see Zupan et al.

(1999) for details) is the core of the overall algorithm.

In the case of noisy data, for a given attribute partition

AjB it not only �nds the corresponding functions G

and H , but also estimates their classi�cation error.

The overall decomposition uses its basic step to search

for the attribute partition that minimizes this error.

We �rst describe the error estimation method, followed

by a description of the basic decomposition step and

overall decomposition algorithm.

2.1 Examples With Class Distributions and

Estimation of Their Classi�cation Error

We will explain the minimal-error decomposition

method by an example. Consider a function y =

F (x1; x2; x3) which is partially speci�ed by a set of

examples shown in Table 1. Note that the set is incon-

sistent as some examples specify di�erent class values

y for the same values of the attributes x1 to x3. To

start, the training set is converted to the one that uses

class distributions. That is, a class distribution vector

is assigned to every distinct combination of attribute

values in the training set. Class distribution vector

di = (d1
i
; : : : ; d

jjyjj
i

) gives the counts of how many times

such a combination was labeled with each of the classes

Table 1. An example training set

x1 x2 x3 y

low low hi low
low hi low low

low hi low low
low hi hi hi

med low low med
med low low hi
med low low med

med hi low med
med hi low med

med hi hi hi
hi low low hi

hi low hi med
hi hi low hi
hi hi hi hi

Table 2. Examples with class distribution vectors di, prob-

abilities of examples p(ei), and estimated errors "(ei) when

examples are used for classi�cation.

i x1 x2 x3 di p(ei) "(ei) p(ei)"(ei)

1 lo lo hi (1,0,0) 0.071 0.524 0.037

2 lo hi lo (2,0,0) 0.143 0.393 0.056
3 lo hi hi (0,0,1) 0.071 0.381 0.027
4 med lo lo (0,2,1) 0.214 0.457 0.098

5 med hi lo (0,2,0) 0.143 0.321 0.046
6 med hi hi (0,0,1) 0.071 0.381 0.027

7 hi lo lo (0,0,1) 0.071 0.381 0.027
8 hi lo hi (0,1,0) 0.071 0.429 0.031

9 hi hi lo (0,0,1) 0.071 0.381 0.027
10 hi hi hi (0,0,1) 0.071 0.381 0.027

� = 0:404

y1; : : : ; yjjyjj, where jjyjj is a cardinality of class value

set (in our case equal to 3). For the training set in

Table 1, an equivalent set of examples EF with class

distributions is given in Table 2.

Suppose now we use the examples with class distribu-

tions for classi�cation. Given a set of attribute values

we look for the corresponding example ei 2 EF and

use its class distribution vector di to predict the class.

If, for instance, the predicted class is yk, the estimated

error using m-error estimate proposed by Cestnik and

Bratko (1991) is

"(ei; k) = 1�
d
k

i
+ p(yk)mX

j

d
j

i
+m

(1)

where p(yk) is the apriori probability of class yk. Apri-

ori probabilities of classes can be estimated by relative

frequencies of the classes in the training set (for our

data set, plo = 0:214, pmed = 0:357 and phi = 0:429),

and m is a parameter of the estimation formula, which

should be adjusted according to the noise level of the

domain. Example ei should thus classify to the class

yk that minimizes the estimated error "(ei; k). The

one but last column of Table 2 gives the correspond-

ing example error estimates, when the default value of

m = 2 is used.



Table 3. Initial partition matrix (a) and partition matrices

after two successive merging of columns (c and e). Tables

b, d, and f give error estimates for di�erent candidate pairs

for column merging.

a)

x2 lo lo hi hi

x1 x3 lo hi lo hi

lo - (1,0,0) (2,0,0) (0,0,1)

med (0,2,1) - (0,2,0) (0,0,1)
hi (0,0,1) (0,1,0) (0,0,1) (0,0,1)

c 1 2 3 4

b)

2 3 4

1 0.423 0.363 0.415

2 0.397 0.435
3 0.442

c)

x2 lo hi lo hi

x1 x3 lo lo hi hi

lo (2,0,0) (1,0,0) (0,0,1)
med (0,4,1) - (0,0,1)
hi (0,0,2) (0,1,0) (0,0,1)

c 1 2 3

d)

2 3

1 0.357 0.403
2 0.394

e)

x2 lo hi lo hi

x1 x3 lo lo hi hi

lo (3,0,0) (0,0,1)
med (0,4,1) (0,0,1)
hi (0,1,2) (0,0,1)

c 1 2

f)
2

1 0.401

We compute the probability of each row in Table 2 as

the proportion of instances it represents among all the

training instances, that is
P

j
d
j

i
divided by

P
i

P
j
d
j

i
.

The sum of weighted errors (last column in Table 2)

estimates the overall error that we would make if the

data set EF would be used for classi�cation. In our

case, this error is estimated as 0:404. Notice that this

assumes only the classi�cation of those cases that ex-

actly match an entry in Table 2. Generalization to

\unseen" cases results from decomposition explained

in the following sections.

2.2 Basic Decomposition Step

Let us now assume that we want to decompose our

example set EF which partially de�nes a function y =

F (x1; x2; x3) to sets EG and EH , such that these would

partially de�ne new functions c = H(x2; x3) and y =

G(x1; c) where c is a new, intermediate concept. For

this, we �rst represent our data set from Table 2 by a

partition matrix. This uses combinations of values of

x2 and x3 as column labels and combinations of values

of the remaining attributes (in our case, x1) as row

labels. Each instance from EF is then placed in the

corresponding cell in the partition matrix (Table 3.a).

Note that for two cells of partition matrix marked with

\-" there were no corresponding examples: they can

be treated as if the corresponding distribution vector

is (0,0,0).

The basic decomposition step aims to derive an inter-

mediate concept c, i.e., in our case a mapping of value

combinations of x2 and x3 to a value of c. A trivial

mapping would de�ne a distinct value of c for each

combination of x2 and x3 (c labels in Table 3.a). A

data set represented with such partition matrix would

also retain the estimated classi�cation error of 0.404

of the undecomposed data set EF . Suppose now we

merge two partition matrix's columns, say the �rst and

the third column. By this, we examine the case where

combinations (lo,lo) and (hi,lo) of attributes x2 and x3
would be assigned the same value of c. The resulting

partition matrix is given in Table 3.c.

Two columns are merged by summing-up the distri-

bution vectors of corresponding columns. The new,

merged data set represented by new partition matrix

now consists of only eight instances. We now use the

same method as described above to compute the es-

timated classi�cation error of the new data set, and

obtain 0:363. Compared to the original data set, the

estimated error has been reduced from 0:404 to 0:363.

This is essential for our decomposition method, as we

can see that column merging may produce data sets of

lower estimated error.

Starting with the initial partition matrix (Table 3.a),

we could have merged any pair of columns. The pre-

ferred merging is the one that gives a data set with

lowest error. For six possible column mergings, Ta-

ble 3.b depicts the errors of corresponding resulting

data sets. The merging that results in a data set with

the lowest estimated error is preferred. In our case,

this is the merging of columns 1 and 3.

We now continue the column merging process. For

partition matrix in Table 3.c, there are three distinct

mergings of which the one involving �rst and second

column yields the lowest estimated error (Table 3.d).

This further reduces the error (0:357 < 0:363). The

resulting data set is represented by partition matrix in

Table 3.e. Note that if its two columns were merged,

the error would increase (0:401 > 0:357), so this merg-

ing is not performed.

Therefore, the resulting (�nal) partition matrix is the

one in Table 3.e. It is now trivial to use it to derive

the new data sets EH and EG which represent the

decomposed functions c = H(x2; x3) and y = G(x1; c),

respectively. Note also that we only need two values to

describe c. To deriveEH , we simply look at the c labels



for columns of the �nal partition matrix. Distributions

for EH have all elements equal to 0 except the element

for the corresponding class c, which equals the number

of instances in the original data set that had a speci�c

combination of x2 and x3. For EG, a combination of

x1 and c is looked-up from the �nal partition matrix

and entered in a data set.

The two decomposed data sets are shown in Table 4.

To interpret them, if we take that c's value \1" means

\low", and \2" means \high", one can easily see that

c = MIN(x2; x3) and y = MAX(x1; c). This is a typi-

cal result of the function decomposition method we are

proposing: while aiming at minimizing the classi�ca-

tion error, it can discover meaningful and interpretable

concept hierarchies.

Table 4. Example sets EH (above) and EG (below) that

are decompositions of the set EF from Table 2.

x2 x3 distribution c

lo lo (4 0) 1
lo hi (2 0) 1

hi lo (5 0) 1
hi hi (0 3) 2

x1 c distribution y

lo 1 (3 0 0) lo
lo 2 (0 0 1) hi

med 1 (0 4 1) med
med 2 (0 0 1) hi

hi 1 (0 1 2) hi
hi 2 (0 0 1) hi

2.3 Overall Decomposition Algorithm

Given an initial (training) data set with attributes X ,

the overall decomposition algorithm searches through

possible attribute partitions AjB, where A [ B = X

and A\B = ;. It uses the basic decomposition step to
�nd an attribute partition and its corresponding par-

tition matrix, for which the column merging results in

a data set with the lowest estimated error. If this error

is lower than the one estimated for the initial data set,

the data set is decomposed accordingly. By applying

this step recursively on the resulting two data sets, a

concept hierarchy is discovered. Decomposition is not

performed on a data set if this includes only two at-

tributes or if no attribute partition (and corresponding

partition matrix column merging) is found that would

reduce the estimated error.

A special characteristic of function decomposition is

its capability to identify and remove redundant at-

tributes and/or their values. Namely, whenever a func-

tion c = H(xi) is found such that c uses only a single

value (i.e., H is a constant), the attribute xi is redun-

dant and can be removed from the data set. Similarly,

whenever c uses fewer values than xi, it can replace

the original attribute. We employ both approaches for

preprocessing to remove redundancies in the increas-

ing order of attributes' relevance: the less relevant at-

tributes are checked �rst, and if any type of redun-

dancy mentioned above is discovered, the data set is

accordingly transformed. In our implementation, the

attributes are estimated by the ReliefF measure of rel-

evance (Kononenko, 1994).

2.4 Implementation and Complexity

The minimal-error decomposition algorithm was im-

plemented within the program HINT (Hierarchy IN-

duction Tool). To illustrate HINT's eÆciency, HINT

uses less then 1 second for induction in the Monk do-

mains, and no more than two minutes of CPU time

for any of the data sets in Table 6 on a medium scale

UNIX workstation.

Several implementational enhancements made the al-

gorithm more eÆcient. The partition matrix is en-

coded as a linked list of columns, where each column

is represented as a linked list sorted by the values of

attributes in the set A. Instead of computing abso-

lute errors of the table after potential column merge,

we compute changes of errors for each merge. Since

the columns are sorted, this can be done in a single

parallel pass through the values in both columns. The

changes of errors for all potential merges are stored

in a priority queue. After merging the two columns,

the changes of errors for pairs that included one of the

merged columns are replaced by the errors for pairs

in the new column. The total complexity of this algo-

rithm is O(N(jjX jj+ jjy0jj
2)), where N is the number

of examples, jjX jj is the number of attributes and jjy0jj
number of existing combinations of values of attributes

in the set B. A detailed description of the algorithm

and its analysis can be found in Dem�sar (1999) and

Zupan (1997).

To reduce computational complexity, HINT explores

only k-tuples of attributes that may form a new con-

cept. For the experiments reported in this paper, only

couples and triples of attributes were explored.

For the estimation of classi�cation error, HINT uses

internal 5-fold cross-validation on the training set to

determine the appropriate value of m from a set of

candidate values. The value that yields classi�ers with

best estimated performance is then used when learning

from the complete training set.

3. Experimental Evaluation

The minimal-error decomposition as implemented in

HINT was evaluated on well-known Monk data sets,



selected DEX data sets that were derived from already

structured classi�ers (where the task was reconstruc-

tion of original models), and selected data sets from

the UCI machine learning repository.

3.1 Monk Data Sets

The study of 25 machine learning algorithms in (Thrun

et al., 1991) used three arti�cial domains, of which

MONK3 included 122 examples where 5% of examples

were subject to noise. To test the classi�er, a set of 432

examples that covered the complete attribute space

and were consistent with the target concept de�nition

were provided. MONK3 uses two two-valued (c and

f), three three-valued (a, b, and d), and a four-valued

attribute e of which only three are used to de�ne the

target concept e=3 AND d=1 OR e6=4 AND b6=3.

Using cross-validation on the training set, HINT found

m = 0:4 to be the most appropriate for this data set.

The concept structure induced with this value of m

(Figure 2.b) correctly classi�ed all the examples in the

test set. The data sets discovered by HINT are given

in Table 5. First, note that the irrelevant attributes

a, c, and f are not present and as they were removed

by HINT's preprocessing. Next, the example sets for

b', d', and e' reveal that HINT successfully found the

groups of values which are relevant to the target con-

cept. The interpretation of examples for the interme-

diate concept c1 reveals that c1=2 if e=4, c1=1 if d=1

and e=3, and c1=0 otherwise. Finally, MONK3=1 if c1=2,

or if c1=1 and b6=3, which is equivalent to the original

concept for MONK3.

Concept hierarchies that HINT derives when using

m = 0:2 and m = 0:7 are given in Figures 2.a and

c. Note that with m = 0:2, the hierarchy additionally

includes an irrelevant attribute a, while with m = 0:7

a relevant attribute d is missing. These two concept

hierarchies misclassify 4.6% and 2.8% of the examples

in the test set, respectively.

We have also tested HINT on noise-free domains of

MONK1 and MONK2 (Thrun et al., 1991). For both,

HINT found the best value of m to be 0.0 (which was

expected due to noise-free domains) and with discov-

ered concept structure correctly classi�ed all examples

in corresponding test sets. Note that in the study by

Thrun et al. (1991) there is no single machine learning

tool that would achieve this performance on all three

Monk domains.

3.2 DEX Data Sets

We have considered HOUSE and ENTERP domains

for which the hierarchical classi�ers in DEX (Bohanec

Table 5. Resulting example sets for the concept structure

from Figure 2.b for MONK3 as discovered by HINT (class

distributions are not shown).

b b'

1 0
2 0

3 1

d d'

1 0
2 1

3 1

e e'

1 0
2 0

3 1
4 2

d' e' c1

1 2 2
1 1 0
1 0 0

0 2 2
0 1 1

0 0 0

b' c MONK3

1 2 0
1 1 1
1 0 0

0 2 0
0 1 1

0 0 1

& Rajkovi�c, 1990) formalism already existed. The

HOUSE model was used by the Slovenia's Housing

Fund to assess the priority of applications for hous-

ing loans (Bohanec et al., 1998). Speci�cally, among

several Fund's models we took the one that was used in

the Fund's eighth 
oat of loans for applications related

to housing renovation and maintenance. ENTERP is

one of the models developed at the International Cen-

ter for Public Enterprises in Ljubljana aimed at per-

formance evaluation of public enterprises (Bohanec &

Rajkovi�c, 1990). The two models were used to ob-

tain a set of examples from which HINT tried to re-

construct the original hierarchies. HOUSE includes

nine attributes and uses 4319 examples that are each

classi�ed to one of nine class values. These exhaus-

tively de�ne the domain. The majority class appears

in 22.8% of examples. ENTERP uses seven attributes,

960 examples and a four-valued class. Some 61.5% of

examples in ENTERP are classi�ed into the majority

class.

We have investigated the behavior of minimal-error

function decomposition through the construction of

learning curves, where a variant of strati�ed ten-fold

cross-validation was used. In ten-fold cross validation,

the data is divided to ten subsets, of which nine are

used for training and the remaining one for testing.

The experiment is repeated ten times, each time using

a di�erent testing subset. In our case, instead of learn-

ing from all examples from nine subsets, only a certain

percentage (from 10% to 100% in 10% steps) of train-

ing instances from nine subsets are randomly selected

for learning. This adaptation of the standard method

was necessary to keep test sets independent and com-

pare classi�ers as proposed by Salzberg (1997).

The training data was spoiled by noise: 10%, 20% or

30% of instances were assigned a random class. HINT

�rst used the resulting training data to determine the

value of m (29 di�erent values were used, ranging from



MONK3/2

e’/3 c2/5

e/4 b/3 c1/4

a/3 d/3

(a) m = 0:2

MONK3/2

b’/2 c1/3

b/3 d’/2 e’/3

d/3 e/4

(b) m = 0:4

MONK3/2

e’/2 b’/2

e/4 b/3

(c) m = 0:7

Figure 2. Concept structures for MONK3 discovered by HINT when di�erent values of m were used.

0 to 20; see Sec. 2.4) and then used the obtained value

to derive the concept hierarchy. Results of HINT were

compared to those of C4.5 (Quinlan, 1993), where in-

ternal 5-fold cross validation on a training data was

used to select among 20 di�erent option settings (run-

ning C4.5 with and without option -s, -c ranged from

10 to 100 step 10).

The learning curves are given in Figure 3. Overall,

HINT performed better than C4.5. For ENTERP, it

appears that HINT requires a suÆciently large number

of examples to be signi�cantly better than C4.5. When

we have examined the concept hierarchies HINT in-

duces, we found that for both domains with increased

size of training set HINT converged to hierarchies that

were equivalent to the original DEX hierarchies, the

only di�erence being that some concepts from the orig-

inal hierarchies were further decomposed. These re-

sults are consistent with experiments on DEX domains

with our previous decomposition method that could

not handle noise (Zupan et al., 1999).

3.3 Data Sets from UCI ML Repository

Ten-fold cross validation was used to compare the per-

formance of HINT and C4.5 on selected data sets from

UCI machine learning repository (Murphy & Aha,

1994). The m-value for HINT and option settings for

C4.5 were determined as in the DEX domains. Table 6

summarizes the results. The null hypothesis (the two

classi�ers perform equally) that was tested, as pro-

posed in Salzberg (1997), was rejected with probabil-

ities p given in the last column of the table. The two

algorithms perform rather similarly in terms of classi�-

cation accuracy, C4.5 being slightly but insigni�cantly

better. Because of the unavailability of expertise for

these data sets, we could not further analyze the rel-

evance of the concepts HINT discovered. Notice that

the data sets in Table 6 only contain discrete data.

HINT can not directly handle continuous attributes

and classes.

Table 6. Classi�cation accuracy, standard errors and sig-

ni�cance levels (p) on UCI ML-Repository data sets.

data set HINT C4.5 p

shuttle 98.4 � 2.8 98.8 � 2.6 0.664
zoo 91.0 � 9.9 91.2 � 8.5 0.951
crx 86.1 � 5.9 85.9 � 5.0 0.886

soybean 97.5 � 7.9 98.3 � 5.3 0.798
led 72.2 � 4.1 73.6 � 3.7 0.379
led17 73.1 � 3.8 72.1 � 4.3 0.073
breast 79.0 � 9.5 78.3 � 8.9 0.698
rheuma 65.0 � 6.5 65.5 � 7.6 0.515
diab 70.3 � 6.4 72.5 � 5.3 0.146
hear 75.6 � 7.2 81.1 � 5.6 0.002
lymp 75.1 � 10.4 78.3 � 13.3 0.435

4. Related Work

Originally, function decomposition was intended to

support switching circuit design (Ashenhurst, 1952;

Curtis, 1962). Given a completely speci�ed tabulated

Boolean function, the aim was to derive a hierarchy

of functions that can be implemented using simple

logic gates. Recent enhancement enabled function de-

composition to handle incompletely speci�ed functions

(Wan & Perkowski, 1992; Luba & Selvaraj, 1995) and

multi-valued attributes and classes (Zupan et al., 1999;

Zupan et al., 1997). By these, it became an interesting

new paradigm for machine learning.

Within machine learning, Samuel (1967) was the one

who �rst realized the utility of concepts hierarchies.

His hierarchies were prede�ned, but functions were de-

termined from data. Biermann et al. (1982) pointed

out the correlation of Samuel's approach and func-

tion decomposition. While, unfortunately, their work

largely escaped the attention of machine learning com-

munity, concepts hierarchies were later used within

structured induction (Shapiro, 1987) and DEX (Bo-

hanec & Rajkovi�c, 1990) approaches that involved ex-

perts in crafting both hierarchies and functions. While

most of related approaches only use concept hierar-
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(f) HOUSE, 30%

Figure 3. Learning curves for three DEX datasets and three noise levels (10%, 20%, and 30%). Symbol Æ is used for

HINT and symbol � for HINT when signi�cantly (p < 0:05) better than C4.5. Symbol � is used for C4.5, which was

never signi�cantly better than HINT for these two DEX domains.

chies, there are a few including (Tadepalli & Russell,

1998; Bshouty et al., 1995) that derive them from

data. When compared to function decomposition as

presented in Zupan et al. (1999), these approaches are

often limited to Boolean or some other special kind of

functions.

The work presented in this paper is based on our orig-

inal e�ort described in Zupan (1997). The only other

work we are aware of that aims at extending func-

tion decomposition to handle noise is that of Perkowski

et al. (1998). Their function decomposition program

Scomin is limited to binary attributes and classes and

it is not clear how its heuristic decides on an appro-

priate balance between the error on training data and

the simplicity of the induced hypothesis. Experimental

results presented in that paper do not give any indi-

cation how successful Scomin is in terms of prediction

accuracy.

5. Conclusions

We have presented a minimal-error function decom-

position approach to machine learning. Our work ex-

tends the existing function decomposition method (Zu-

pan et al., 1999) with mechanisms that allow appropri-

ate treatment of noise in data. Both approaches aim

at decomposing initial set of examples to smaller and

more manageable example sets that are organized in a

concept hierarchy. Whereas the older approach aimed

at reducing the complexity, the approach proposed

here aims at minimizing the estimated error when the

decomposition example sets are used for classi�cation.

The proposed decomposition method relies on an

estimation of classi�cation error that uses m-

estimates (Cestnik & Bratko, 1991). Finding the

\right" value of m allows decomposition to adjust to

the speci�c noise level in the data. In general, us-

ing higher values for m yields less complex concepts

and concept hierarchies. This is because with higher

m more columns in partition matrices are allowed to

be merged. The e�ect is analogous to decision tree

punning, where with higher m's decision trees become

simpler.

The proposed decomposition approach is computa-

tionally expensive since it has to examine all couples,

triples, etc., of attributes in the training set. Heuristic

approaches are needed to select and examine only a

subset of attribute tuples. Some possibilities for fur-

ther research include examining only the tuples of most

relevant attributes, or, for instance, the use of decision

trees as in FRINGE (Pagallo & Haussler, 1990) to de-

termine which attributes may be related.

Experimental evaluation of HINT{ the system within

which we have implemented the proposed method {

shows that decomposition may generalize well and,

perhaps more importantly, may discover useful and

interpretable concepts. We strongly believe, however,



that decomposition should not be used alone and in the

\completely automatic" fashion, but should rather be

incorporated within interactive data mining systems

to propose new concepts that are then reviewed and

interpreted by experts. Another potential use is for

constructive induction (Liu & Motoda, 1998), where

the particular advantage of decomposition over other

approaches is discovery of arbitrary functions that re-

late attributes and form new features.
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