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While not explicitly intended for feature transformation, some methods
for switching circuit design implicitly deal with this problem. Given a tab-
ulated Boolean function, these methods construct a circuit that implements
that function. In 1950s and 1960s, Ashenhurst [1] and Curtis [2] proposed a
function decomposition method that develops a switching circuit by construct-
ing a nested hierarchy of tabulated Boolean functions. Both the hierarchy and
the functions themselves are discovered by the decomposition method and are
not given in advance. This is especially important from the viewpoint of fea-
ture construction, since the outputs of such functions can be regarded as new
features not present in the original problem description.

The basic principle of function decomposition is the following. Let a tab-
ulated function y = F (X) use a set of input features X = x1, . . . , xn. The
goal is to decompose this function into y = G(A, H(B)), where A and B are
subsets of features in X such that A ∪ B = X. G and H are tabulated func-
tions that are determined by the decomposition and are not predefined. Their
joint complexity (determined by some complexity measure) should be lower
than the complexity of F . Such a decomposition also discovers a new feature
c = H(B). Since the decomposition can be applied recursively on H and G,
the result in general is a hierarchy of features. For each feature in the hierarchy,
there is a corresponding tabulated function (such as H(B)) that determines
the dependency of that feature on its immediate descendants in the hierarchy.

Ashenhurst-Curtis decomposition was intended for switching circuit design
of completely specified Boolean functions. Recently, Wan and Perkowski [3]
extended the decomposition to handle incompletely specified Boolean func-
tions. In the framework of feature extraction, Ross et al. [4] used a set of sim-
ple Boolean functions to show the decomposition’s capability to discover and
extract useful features. This article presents an approach to feature transfor-
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mation that is based on the extension of the function decomposition method by
Zupan et al. [5]. This method allows the decomposition to deal with functions
that involve nominal (i.e., not necessarily binary) features, and is implemented
in a system called HINT(Hierarchy INduction Tool).

1 Single-step function decomposition

The core of the decomposition algorithm is a single-step decomposition which
decomposes a tabulated function y = F (X) into two possibly less complex
tabulated functions G and H, so that y = G(A, c) and c = H(B). The
resulting functions G and H have to be consistent with F . For the purpose
of decomposition, a set of features X is partitioned to two disjoint subsets A
and B, referred to as a free and bound set, respectively. For a given feature
partition, single-step decomposition discovers a new feature c and a tabular
representation of H and G.

For example, consider a function y = F (x1, x2, x3) as given in Table 1. The
input features x1, x2, and the output feature y can take the values lo, med, hi;
input feature x3 can take the values lo, hi.

x1 x2 x3 y
lo lo lo lo
lo lo hi lo
lo med lo lo
lo med hi med
lo hi lo lo
lo hi hi hi
med med lo med
med hi lo med
med hi hi hi
hi lo lo hi
hi hi lo hi

Table 1: Tabulated function y = F (x1, x2, x3).

Suppose that we want to discover a description of a new feature c =
H(x2, x3). For this purpose, we represent F by a partition matrix that uses
the values of x1 for row labels, and the combinations of values of x2 and x3

for column labels (Figure 1.a). Partition matrix entries with no corresponding
instance in the tabulated representation of F are denoted with “-” and treated
as don’t-care.
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x2 lo lo med med hi hi
x1 x3 lo hi lo hi lo hi
lo lo lo lo med lo hi
med - - med - med hi
hi hi - - - hi -

c 1 1 1 2 1 3

(a)

........
.............

......................................................................
........
.

........
.............

......................................................................
.........

........
.............

......................................................................
.........

........
.............

......................................................................
........
.

........
.............

......................................................................
.........

........
.............

......................................................................
.........

.....................................................................................................................................................................................................................................

................................................................................................................................

............................................................................

.............................................................................................................................

......................................................................

3

2

1

lo,lo

1

1

1

med,hi

hi,lo

hi,hi

med,lo

lo,hi

(b)

Figure 1: Partition matrix (a) and the corresponding incompatibility graph (b)
for the function from Table 1. The node labels of the incompatibility graph
found by graph coloring are circled.

Each column in the partition matrix denotes the behavior of F for a specific
combination of x2 and x3. Columns that have pairwise equal row entries or at
least one row entry is a don’t-care are called compatible. The decomposition
has to assign each column a label that corresponds to a value of c. If two
columns are compatible, they can be assigned the same label. To preserve the
consistency, different labels have to be used for incompatible columns.

The partition matrix column labels are found by coloring an incompati-
bility graph (Figure 1.b). This has a distinct node for each column of the
partition matrix. Two nodes are connected if the corresponding columns of
partition matrix are incompatible. For instance, the nodes hi,hi and lo,hi

are connected because their corresponding columns are incompatible due to
the entries in the first row (hi6=lo).

With optimal coloring of the incompatibility graph, the new feature c ob-
tains a minimal set of values needed for consistent derivation of H and G from
F . The optimal coloring of the graph from Figure 1.b requires three different
colors, i.e., three abstract values for c. The tabulated functions G and H can
then be derived straightforwardly from the labeled partition matrix.

The resulting decomposition is given in Figure 2. The following can be
observed:

• The tabulated functions G and H are overall smaller than the original
function F .

3



����
x2 ����

x3

����
c

����
y

����
x1

x2 x3 c
lo lo 1
lo hi 1
med lo 1
med hi 2
hi lo 1
hi hi 3

x1 c y
lo 1 lo
lo 2 med
lo 3 hi
med 1 med
med 3 hi
hi 1 hi

��� @@I

��� @@I

6

6

Figure 2: Decomposition of tabulated function from Table 1 using a new fea-
ture c = H(x2, x3).

• By combining the features x2 and x3 we obtained a new feature c and
the corresponding tabulated function H, which can be interpreted as
c = MIN(x2, x3). Similarly, the function G that relates x1 and c to y can
be interpreted as y = MAX(x1, c).

• The decomposition generalizes some undefined entries of the partition
matrix. For example, F (hi, lo, hi) is generalized to hi because the col-
umn lo,hi has the same label as columns lo,lo and hi,lo.

2 Finding the best feature partition

So far, we have assumed that a partition of the features to free and bound
sets is given. However, for each function F there are many possible partitions,
each one yielding a different feature c and a different pair of functions G and
H. In feature transformation, it is important to identify partitions that lead
to simple but useful new features. Typically, we prefer features with a small
number of values, and those that yield functions G and H of low complexity.

The simplest measure for finding good feature partitions is the number of
values required for the new feature c. That is, when decomposing F , a set of
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candidate partitions is examined and the one that yields c with a smallest set
of possible values is selected for decomposition.

An alternative measure for the selection of partitions can be based on the
complexity of functions. Let I(F ) denote a number of bits to encode some
function F [6, 4]. Then, the best partition is the one that minimizes the
overall complexity of newly discovered functions H and G, i.e., the partition
with minimal I(H) + I(G). The complexity of G and H should be lower than
that of F , and decomposition takes place only if I(H) + I(G) < I(F ) for the
best partition.

The number of possible partitions increases exponentially with the number
of input features. To limit the complexity of search, the decomposition should
examine only a subset of partitions. In HINT, the partitions examined are
only those with less than b features in the bound set, where b is a user-defined
parameter usually set to 2 or 3.

The partition matrix can be very large. However, it is never explicitly
represented in the program as HINT derives the incompatibility graph directly
from the data [6]. Partition matrix is thus a formal construct used for ex-
planation or analysis of the decomposition algorithm. The coloring of the
incompatibility graph is another potential bottleneck. HINT uses an efficient
heuristic algorithm for graph coloring [6].

3 Redundancy discovery and removal

A special characteristic of function decomposition is its capability to identify
and remove redundant features and/or their values. Namely, whenever a fea-
ture c = H(xi) is discovered such that c uses only a single value (i.e., H is a
constant function), the feature xi is redundant and can be removed from the
dataset. Similarly, whenever a feature c = H(xi) uses less values than xi, the
original feature xi can be replaced by c.

Both these dataset transformations are particularly useful for data pre-
processing, since they can reduce the size of the problem and increase the
coverage of the problem space by the learning examples. HINT removes re-
dundant features in the increased order of their relevance: the less relevant
features are checked first, and if any type of redundancy mentioned above is
discovered, the dataset is accordingly transformed. The features are estimated
by a ReliefF measure of relevance [7].
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Figure 3: MONK1 feature hierachy as discovered by HINT.

4 Discovering feature hierarchies

With all the above ingredients, decomposition enables the discovery of feature
hierarchies. Given a dataset, it is first pre-processed to remove redundant fea-
tures and their values. Next, a single-step decomposition is used to decompose
the pre-processed tabulated function F to G and H. This process is recur-
sively repeated on G and H until they can not be decomposed further, i.e.,
their further decomposition would increase the overall complexity of resulting
functions.

Let us illustrate this process with several examples. The first example is a
well-known machine learning problem MONK1 [8]. The dataset uses six 2 to
4-valued input features (x1 to x6) and contains 124 (of 435 possible) distinct
learning examples that partially define the target concept x1 = x2 OR x5 = 1.
HINT develops a feature hierarchy (Figure 3) that

1. correctly excludes irrelevant input features x3, x4, and x6,

2. transforms x5 to x′
5 by mapping four values of x5 to only two values of

x′
5,
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3. includes a new feature c and its tabular representation for x1 = x2, and

4. relates c and x′
5 with a tabular representation of the OR function.

In other words, the resulting hierarchy correctly represents the target concept.
Similarly as MONK1, the MONK2 learning problem [8] uses the same set

of input features but defines the concept: xi = 1 for exactly two choices of
i ∈ {1, 2, . . . , 6}. The dataset contains 172 (of 435 possible) distinct learning
examples. Although the discovered structure (Figure 4) does not directly cor-
respond to the original concept definition, it correctly reformulates the target
concept by introducing features that count the number of ones in their argu-
ments. Also note that all input features that use more than two values are
replaced by new binary features.

Figure 4: The feature hierarchy discovered for MONK2. Each node gives a
name of the feature and cardinality of its set of values.

For a real-world example, consider a HOUSING dataset from a manage-
ment decision support system for allocating housing loans. This system was
developed for the Housing Fund of Slovenia and used since 1991 in 13 floats of
loans with a total value of approximately 90 million ECU. Basically, its task is
to rank applicants into one of nine priority classes based on 12 input features.
The system uses a hierarchical decision model.

For this experiment, we wanted to assess the ability of decomposition to
reconstruct the system’s model given a random selection of classified cases.
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Figure 5: The feature structure discovered for housing loan allocation problem.
Each node gives a name of the feature and cardinality of its set of values.
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Figure 6: Averaged classification accuracy of HINT and C4.5 for 10 experiments
with learning sets consisting of a random sample of p percents of the housing
problem space.
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First, it was observed that in most cases when HINT was given 8000 or more
learning examples (4% coverage of problem space), it discovered the same fea-
ture hierarchy (Figure 5). When presented to a domain expert, the discovered
features were found meaningful. For instance, the feature c4 represents the
present housing status of the applicant. Features c2, c6, and c8 respectively
specify the way of solving the housing problem, applicant’s current status, and
his/her social and health conditions. Thus, the structure of the original model
was successfully reconstructed. This reconstruction takes about 2.5 minutes
of processor time on a HP J210 Unix workstation.

The quality of the functions discovered for housing problem was then as-
sessed by classification of the remaining examples that completely cover this
domain but were not included in the learning set. The generalization of HINT
was assessed as a learning curve (Figure 6) and compared to that of the state-
of-the-art learning tool C4.5 [9] that induces decision trees. For this domain,
HINT generalizes well as it achieves 100% classification accuracy by using learn-
ing sets that cover 3 or more percents of the problem space.

Housing problem domain can be viewed as a typical representative of prac-
tical domains in the field of decision making that HINT was tested on. Similar
tests and experimental conclusion were for instance obtained by re-discovery
of hierarchical decision models for nursing school applications, job application
evaluation, and performance evaluation of public enterprises [6].

5 Feature construction

Function decomposition can also be used for feature construction. This is
defined as a process of augmenting the feature space by inferring or creating
additional features. We here show how the single-step decomposition can be
used both for finding appropriate combinations of original features and using
them to construct new features which are then added to the original dataset.
Again, the new features that use small number of values are preferred.

For example, consider again the dataset from Table 1. Suppose we want to
augment it with a single new feature. For this purpose, single-step decomposi-
tion examines all pairs of original input features and for each pair derives a new
feature. A new feature that has the fewest values is preferred. Such feature is
c = H(x2, x3), and is defined by the example set from Figure 2. Function H
can now be used for each example from Table 1 to obtain the corresponding
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x1 x2 x3 c y
lo lo lo 1 lo
lo lo hi 1 lo
lo med lo 1 lo
lo med hi 2 med
lo hi lo 1 lo
lo hi hi 3 hi
med med lo 1 med
med hi lo 1 med
med hi hi 3 hi
hi lo lo 1 hi
hi hi lo 1 hi

Table 2: A dataset from Table 1 augmented with a new feature c = H(x2, x3).

value for c; such augmented dataset is shown in Table 2.
Obviously, an original dataset can be augmented with more than just a sin-

gle new feature. We propose a schema where, using the single-step decompo-
sition, m new features are added to a dataset: a candidate set of combinations
of the original features are examined, and corresponding m new features that
have the fewest values are selected. Ties are resolved arbitrarily. Only original
features are used to generate new features. Note also that in the process no
hierarchy of features is constructed. The feature construction and correspond-
ing augmentation of the original dataset results in a new dataset which may
then be further used by some machine learning algorithm.

We evaluate this schema on the above-mentioned domains. For new fea-
tures, only those that depend only on two original input features are consid-
ered. For MONK1 and MONK2 domains, the benefit of adding new features
was assessed by a 10-fold cross validation. For HOUSING, 10 experiments
were performed with a learning set consisting of a random sample of 1% of
the problem space, while the test set consisted of the remaining 99%. Each
learning set was first augmented with m new features as described above, and
then given to C4.5 [9] which was used to induce the target concept from the
augmented dataset. The induced decision tree was then tested on a test set,
which was also augmented by the same set of new features, i.e., using their
definition as derived from the learning set.

In all the cases, a considerable increase of classification accuracy (Figure 7)
and considerable decrease of the sizes of induced decision trees (Figure 8) occur
when new features are added. In other words, adding new features improves

10



0 2 4 6 8 10 12 14
50

60

70

80

90

100

�

� � �
� �

� � �
� �

� � � � �

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.......................................

............
............
...........
...........
..................................

........
........
........
........
........
........
........
..........................................

............
.............
.............
...................

...................
............
................................................................................................

◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
......................................................................................................................................................................................................................................................................................................................

m

MONK1

MONK2

CA [%]

0 4 8 12 16 20 24 28
80

85

90

95

100

•
•••••

••••
••
•••••

•••
•
••••••••••

.........
.........
.........
...............................

................
.............
............
.............................

.............
............
............
.........................................

............
.........
..........
.........
.........
..........
.........
......................

...........
.........
.........
............
..............................................................................................

m

HOUSING

CA [%]

Figure 7: Classification accuracy of C4.5 as a function of number of new fea-
tures m added to MONK1 and MONK2 (a) and housing loans dataset (b).
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both the classification accuracy and the transparency of decision trees. The
results indicate that function decomposition discovers features that are relevant
for these domains. It is further interesting to note how well a simple feature
selection criterion based on the number of new feature’s values performs in
terms of yielding augmented datasets that enable C4.5 to derive classifiers
with high classification accuracies.

6 Further work

In the framework of feature transformation, function decomposition is a promis-
ing approach to discover and construct new features that are either added to
the original dataset, or transform this dataset to a hierarchy of less complex
datasets. The function decomposition algorithm in HINT performs a kind of
generalization, so it can also be viewed as a machine learning algorithm. The
approach described in this article is limited to consistent datasets and nom-
inal features. It is therefore desired to extend the approach to discover new
features from noisy data, and from data that uses continuous features.

To handle noisy data, a minimal-error decomposition was recently pro-
posed [6]. It is based on a representation of learning examples with class
distributions and uses successive column merging of partition matrix, so that
the expected error of classification is minimized. So far, the method was eval-
uated only as a machine learning tool, while further work is needed to assess
its appropriateness for feature transformation problems.
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tories at Jožef Stefan Institute and the University. He is the chairman of ISSEK,
International School for the Synthesis of Expert Knowledge. He has conducted
research in machine learning, knowledge-based systems, qualitative modeling, intel-
ligent robotics, heuristic programming and computer chess. His main interests in
machine learning have been in learning from noisy data, combining learning and
qualitative reasoning, and various applications of machine learning and Inductive
Logic Programming, including medicine, ecological modeling and control of dynamic
systems. He is the author of widely adopted text PROLOG Programming for Arti-
ficial Intelligence (Addison-Wesley 1986, second edition 1990). He co-edited (with
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sity of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia; janez.demsar@fri.uni-lj.si;
http://ai.fri.uni-lj.si/janezd.

14


