
Constructing Intermediate Concepts by

Decomposition of Real Functions

Janez Dem�sar1, Bla�z Zupan2, Marko Bohanec2, Ivan Bratko1;2

1 Faculty of Computer and Information Sciences, 1000 Ljubljana, Slovenia

fjanez.demsar, ivan.bratkog@fri.uni-lj.si
2 Jozef Stefan Institute, 1000 Ljubljana, Slovenia

fblaz.zupan, marko.bohanecg@ijs.si

Abstract. In learning from examples it is often useful to expand an attribute-vector

representation by intermediate concepts. The usual advantage of such structuring of the

learning problem is that it makes the learning easier and improves the comprehensibility

of induced descriptions. In this paper, we develop a technique for discovering useful

intermediate concepts when both the class and the attributes are real-valued. The

technique is based on a decomposition method originally developed for the design of

switching circuits and recently extended to handle incompletely speci�ed multi-valued

functions. It was also applied to machine learning tasks. In this paper, we introduce

modi�cations, needed to decompose real functions and to present them in symbolic

form. The method is evaluated on a number of test functions. The results show that the

method correctly decomposes fairly complex functions. The decomposition hierarchy

does not depend on a given repertoir of basic functions (background knowledge).

1 Introduction

A learning problem can often be formulated as the problem of reconstructing a

function f of a number of arguments x = x1; x2; : : : from a given set of example

points f(x
j
). In the usual machine learning terminology, x1; x2; : : : are called

attributes, and f is called the class. The usual induction algorithms reconstruct

f by considering all the attributes at the same time. However, often it is bene�cial

to �nd useful \intermediate" concepts which would allow a decomposition of the

learning problem. Hopefully, f would be easier to express in terms of suitable

intermediate concepts, and in turn, these would be easy to express in terms of the

original attributes or further intermediate concepts. It is generally believed that

such a structuring of the learning domain would also lead to more comprehensible

description of the learned concepts.

In this paper, we develop a technique for discovering useful intermediate

concepts when both the class and the attributes are real-valued. It is based

on function decomposition that results in a hierarchy of intermediate functions

which can be illustrated by a kind of data
ow diagram (Fig. 1). The technique

works bottom-up by selecting a subset of the original attributes, say fx2; x3g, and
constructing a function �1 so that it would succesfully replace the two attributes

x2; x3. As a result of this step, a new attribute �1 is constructed and the process

recursively combines the attribute set fx1; �1; x4; x5g.

mx1 mx2 mx3 mx4 mx5
�
��3
�
�� 6

@
@I

Q
QQk

f

6

Original \
at" function

mx2 mx3
�
��

@
@I

mx1 m�1
�
��

@
@I

mx4 mx5
�
��

@
@I

m�2 m�3
�
�
��*

H
H

HHY
m�4
6

Decomposed function

Fig. 1. \Flat" and decomposed function

Functional decomposition is a method which, given a tabular representation

of a function, discovers a hierarchy of appropriate subfunctions and variables.

The output of the algorithm is a decomposition tree or, generally, a directed

acyclic graph with input variables as leaves and subfunctions as internal nodes.

A decomposition algorithm was originally developed in late 1940's and 1950's by

Ashenhurst [1] and Curtis [2] to be used for decomposition of boolean functions

in switching circuits design. However, the method was rarely used in practice,

mostly because of its computational intractability. Much later, the interest in

the algorithm has been renewed. Perkowski et al. [5] improved the original

algorithm to handle incompletely speci�ed functions, and Luba [4] proposed to

decompose multi-valued functions by representing a multi-valued variable by a

set of Boolean variables. Zupan and Bohanec [7] developed an algorithm that

induces a hierarchy of multi-valued variables without the need to represent them

as Boolean. Also, their work shows that the algorithm is applicable in fairly

complex machine learning tasks.

Not much work has been done to extend the algorithm to decomposition

of real-valued functions. Ross [6] discusses the possible use of the method for

functions with real valued outputs and inputs but he does not propose any

algorithm for general use.

In this paper, we extended the algorithm to handle continuous variables and

functions. The proposed method not only discovers a suitable function hierarchy

but enables symbolic representation of the discovered function, using a prede-

�ned set of basic functions, like sin; cos; exp or ln :

The paper is organized as follows. Section 2 introduces the real function

decomposition method, which is experimentally evaluated in Section 3. Section

4 concludes the paper and outlines possible directions of further work.

2 Method

This section �rst introduces the basic algorithm for functional decomposition of

nominal functions. Then, it focuses on the changes of this algorithm that are

needed to perform the decomposition of real function.

2.1 The Basic Decomposition Algorithm

The input for algorithms that are based on Curtis' function decomposition al-

gorithm [2] is a function f(X), \sampled" in a �nite number of points, where

X is an argument vector. The function is presented as a table of attribute-value

vectors, each consisting of values of input variables x
k
and a function value

z
k
= f(x

k
). In the usual machine learning terminology, each row of this table

corresponds to an example. The basic step of the decomposition consists of two

substeps:

{ �nd a suitable partition of the set of input variables (X) into \free" (A) and
\bound" (B) sets, A [B = X ,

{ �nd appropriate functions F and � such that f(X) = F (A; �(B)).

The basic step is then recursively repeated on functions F and �.

The partition can be selected using heuristic methods [5]. Alternative ap-

proach is to investigate all possible partitions and choose the one that induces

the best functions � and F according to some criterion. Often, we speed up the

partition selection by examining only disjunctive splits, A \ B = ;, and/or de-
compositions with only two bound variables, jBj = 2. However, there are cases

when such restrictions prevent the algorithm from discovering an appropriate

function hierarchy or even from discovering any hierarchy at all.

Function � is not uniquely de�ned by the set of bound variables. The algo-

rithm �rst determines which combinations of values of input variables from B
must not yield the same value of �. It does so by �nding all pairs of examples

f(x
j
) = z

j
, f(x

k
) = z

k
with pairwise equal values of free variables, a

j
= a

k
, and

di�erent function value, z
j
6= z

k
. The intermediate function � must have di�er-

ent values for b
j
and b

k
, otherwise there would not exist any function F such

that F (a
j
; �(b

j
)) = z

j
and F (a

k
; �(b

k
)) = z

k
. This fact can be easily proved by

contradiction; if a
j
= a

k
and we set �(b

j
) = �(b

k
) then if F existed, it would

obviously have the same value for both examples, F (a
j
; �(b

j
)) = F (a

k
; �(b

k
)),

which leads to z
j
= z

k
.

Pairs (b
j
;b

k
) that must not give the same value of � are called incompati-

ble. The incompatibility relation is presented in the form of the incompatibility

graph. By coloring the graph (or by �nding the maximum clique on its comple-

ment, the compatibility graph), possible inputs for �, vectors bj, are divided into

M subsets; members of the same subset M
i
yield the same value �(b

j
) = m

i
.

The intermediate function � therefore maps each b
j
to the corresponding set

M
i
. The value of induced variable m

i
is added to each rule to replace variables

from B nA.

For purposes of switching circuits design, the algorithm was �rst used on

Boolean functions. An extension of this approach to handle nominal functions

with more than two di�erent output values is presented in [7].

2.2 Algorithm for Real-Function Decomposition

The basis of our method is the decomposition algorithm described in the previous

section, limited to disjunctive splits, A \ B = ;, with two bound variables,

jBj = 2. When adapting it for decomposition of real functions, several problems

have to be dealt with.

First, since each variable generally has an in�nite domain, it is practically

impossible that the learning set contains any instances with pairwise equal values

of free variables which are needed to show the incompatibilities of bound values.

The next problem is the interpretation of intermediate function �: the original
algorithm de�nes values of � to serve as indices to sets M

i
. The function � is

nominal rather than ordinal and since the algorithm was developed for the design

of switching circuits where the interpretation is unnecessary, it does not intend

to present the discovered function in the symbolic form, i.e. to recognize it as, for

example, an and function. Instead, functions � and F are left in tabular form.

As shown in [7], the interpretation of a discrete function � can be done manually

provided that its input and output variables have only small number of possible

values. When using the algorithm to learn the function of real values, rule tables

that are constructed by the original algorithm are normally very large, and the

search for a symbolical form of the intermediate functions cannot be left to the

expert.

Interpretation of an intermediate function is also important because it ensures

that the learned function is not de�ned only on points that appear in the rule

table.

Discretization of examples. One possible way to generate incompatible pairs

is to discretize the examples. After the discretization, some pairs of examples

might have pairwise equal values of all the arguments. A straightforward dis-

cretization of function values may assign di�erent discrete function values to

such pairs. This way, the function would become ambiguous. To avoid this, the

function value is \granulized": all pairs of examples with the same discretized

values of variables x0

j
= x

0

k

are examined and the maximal di�erence of their

function values g = max
j;k

jf(x
j
)�f(x

k
)j is used for the size of the grain. Func-

tion values z
j1

and z
j2

are considered di�erent if jz
j1
� z

j2
j > g. This approach

works optimally for functions f with a constant gradient over the whole de�-

nition area. If this is not the case, the discretized learning examples accurately

describe the areas with larger gradient, but underrepresents all other areas. The

consequences and solutions of the problem shall be discussed later.

A crucial problem of discretization is determining the most suitable number of

intervals. Coarse discretization can signi�cantly lower the accuracy of constants

in derived functions or even cause an incorrect decomposition. On the other

hand, a �ner discretization results in a sparser coverage of the domain of the

function. As a consequence, the incompatibility graph has low connectivity and

bears almost no information on intermediate function � since there exist many

di�erent optimal colorings, yielding many di�erent functions.

The interpretation of the intermediate function. The result of coloring

the incompatibility graph is a division of the bound variables' space into the

areasM
i
with points which will yield the same value of �, i.e. M

i
= f(x

i;j
; y

i;j
) :

�(x
i;j
; y

i;j
) = c

i
g. In other words, the coloring proposes contour lines { or,

because of discretization, contour strips { of the real function �. Unfortunately,
it provides neither the numerical values c

i
nor the di�erence between function

values on neighbouring contour strips (the gradient of �). The symbolic form of

� has to be obtained from the shape of the strips.

First, consider a linear function �. Its contour strips are straight lines. If

we plot a colored graph of a discretized linear function in a coordinate system,

contour strips are visible as strips of the same color. The function � that we are

looking for is of the form

�(x; y) = k1(ax+ y) + k2 (1)

Coe�cients k1 and k2 cannot be determined at this stage since they do not have

any impact on the shape of the strips. They should be determined in further

steps of decomposition and incorporated in the intermediate function at the

parent node.

The coe�cient a is derived from the slope of the strips. Ideally, all the points

(x
i;j
; y

i;j
) 2M

i
would lie on the same line ax+ y = c

i
. Because of discretization

and, possibly, noise, the points are actually scattered around this line. As the

measure of �t we choose the sum of squared Euclidean distances from the line,

E
i
(a; c

i
) =

niX
j=1

�
ax

i;j
+ y

i;j
� c

ip
a2 + 1

�2
(2)

with (x
i;j
; y

i;j
) 2 M

i
and n

i
= jM

i
j. To obtain the optimal a, the total sum of

squared distances is minimized using the partial derivative

@E(a; c)

@a
=

@
P

M

i=1
E
i
(a; c

i
)

@a
= 0 (3)

Solution of this equation for a gives the optimal value of a. The quality of the

approximation can be measured by Pearson's correlation coe�cient r which, in

its original form

r =

P
j

(x
j
� x)(y

j
� y)qP

j

(x
j
� x)2

qP
j

(y
j
� y)2

(4)

measures the linear correlation between variables x
j
and y

j
. Since we deal with

more than one group of points, the Pearson's coe�cient must be generalized to

r
g
=

P
i;j

(x
i;j
� x

i
)(y

i;j
� y

i
)qP

i;j

(x
i;j
� x

i
)2
qP

i;j

(y
i;j
� y

i
)2

(5)

where x
i
= 1

ni

P
ni

j=1
x
i;j

and y
i
= 1

ni

P
ni

j=1
y
i;j
. In this form, the coe�cient is

still normalized to be between -1 and 1, with jr
g
j = 1 meaning the maximum

linearity of the strips and jr
g
j = 0 no linearity.

Other, non-linear functions are sought by transformation to a linear function.

For example, contour strips of �(x; y) = xay are same as those of �(x; y) =

a ln(x) + ln(y) or �(x; y) = aX + Y where X = ln(x) and Y = ln(y). Our
algorithm searches for all the functions of the form �(x; y) = ag(x) + h(y) and
�(x; y) = [g(x)]

a

h(y) by using transformations x
i;j

! g(x
i;j
), y

i;j
! h(y

i;j
) and

x
i;j

! a ln g(x
i;j
), y

i;j
! lnh(y

i;j
), respectively. Functions g and h are from a

prede�ned set of basic functions, for example fId; sin; exp; lng. All the possible

functions are evaluated and the one with the greatest jr
g
j is chosen.

The root of the decomposition tree. The decomposition process stops when

the free set of attributes is empty. The values of the decomposed function F are

not necessarily equal to the values of the original function f . However, for an
analyticaly expressible function f , if the algorithm �nds the correct decomposi-

tion and there is no noise, the method guarantees that the value of f(x) can be

reconstructed from F (x). Our program tries to �nd a function g and constants

a and n, such that f(x) = ag(F (x)) + n. The function g is from the same set of

basic functions as mentioned above. For each function, a and n are found by the

classical least-squares method and the di�erence between f(x) and ag(F (x))+n
is measured by corrected relative error [3]. The most accurate function is added

to the decomposition tree as the root's parent.

Discarding invalid contour strips. Besides the noise in the data, the algo-

rithm also encounters the noise caused by discretization of variables and gran-

ulation of function value. The noise of variables is partially reduced by robust

statistic methods used for deriving �. A more serious problem occurs as a con-

sequence of the granulation of function value which a�ects the graph coloring,

especially when function's gradient strongly changes across the de�nition area.

Areas with small gradient are covered with much wider contour strips than areas

with larger gradient; in some cases they also di�er in shape.

A simple and e�ective method that can overcome this problem calculates

Pearson's r for each strip and discards all the strips with jrj signi�cantly lower

than the average jrj.

The problem of similar functions. Another problem that the algorithm has

to cope with is the problem of distinguishing between similar functions. For ex-

ample, when the width of discretization interval is 0.1 and jxj < 0:75, functions

x and sin(x) are indistinguishable. One of possible solutions of this problem is

to use non-equidistant discretization, which is, however, di�cult to perform. A

di�erent solution is to introduce the cost for each function used. This way, the

program is given background knowledge of which functions are expected and

which are less likely to occur. The cost of the function is subtracted from the

absolute value of the correlation coe�cient when comparing di�erent candidates

for function �. Even more complex background knowledge can be given by for-

bidding or penalizing the function within certain contexts. For example, when

observing some physical phenomena, we shall allow functions sin and ln but

strongly penalize combinations sin+ ln and sin � ln.
The third and the safest way to deal with similar functions is to involve an

expert which intervenes when the algorithm has to decide between functions

with a similar correlation coe�cient.

2.3 Complexity of the Algorithm

A single step of decomposition consists of discretizing the attribute (time com-

plexity is O(N)), sorting the rule table (O(N logN)), deriving the incompatibil-

ity graph (O(Nk)), coloring it (O(k2)) and interpreting the coloring (O(Ns2)),
where N is the number of examples. k is the number of combinations of dis-

cretized bound variables values, which is at most equal to the product of number

of discretization intervals. s is the number of basic functions. To select a parti-

tion when decomposing a function of l variables, l(l � 1)=2 possible partitions

must be considered, which gives the complexity of

O
�
l2(N +N logN +Nk + k2 +Ns2)

�

Since the decomposition algorithm induces a binary tree, the step above must

be repeated l� 1 times, therefore the total complexity is

O
�P

i=l

i=2
i2(N +N logN +Nk +Ns2 + k2)

�

= O
�
l3(N +N logN +Nk +Nk2 +Ns2)

�

Empirical tests show that sorting is far slower than other operations even for

relatively small number of examples, so we can estimate the time complexity as

O
�
l3N logN

�
.

This result shows the main advantage of this method in comparison with

some existing methods of function discovery, such as GoldHorn [3], which per-

forms an exhaustive search over the space of functions it can represent. We can

note that GoldHorn's complexity increases exponentially with the depth of func-

tion and number of subfunctions but linearly in the number of examples, while

our algorithm's complexity is practically independent of the number of basic

functions.

3 Experimental Evaluation

The algorithm was tested on several functions specially chosen to explore its

advantages and drawbacks. All the functions were within the program's search

space, i.e. their hierarchical decomposition did not require any basic functions

that were unknown to the program.

f(x; y) = x+ 2y + 3. This simple linear function is used to roughly measure

the number of examples that the algorithm needs to discover the correct form of

the function and derive accurate coe�cients. The program was run 10 times for

each number of randomly chosen examples for the function (x; y 2 [0; 10]). The
results are shown in Table 1.

#examples correct � a �a

20 2 2.041 0.164

25 3 1.862 0.160

30 6 1.980 0.132

40 7 2.024 0.064

50 10 2.032 0.044

100 10 2.049 0.032

500 10 2.053 0.016

1000 10 2.000 0.014

Table 1. Decomposing function f(x; y) = x+2y+ 3: Accuracy and correctness of the

form of the discovered function

f(x; y; z) = 2:5xy + 0:5z. This function illustrates some di�culties due to

equidistant discretization and granulation. The program is expected to decom-

pose it as shown in Figure 2.

mx my
%

%%

e

ee

�1(x; y) = xy mz
e

ee

%

%%

�2(z; �1) = 0:2z + �1

F (�2) = 2:5�2

Fig. 2. Function f(x; y; z) = 2:5xy + 0:5z: The decomposition tree

If x; y; z 2 [0; 10], the gradient of �1 = xy is greater for larger than for

smaller x and y. Since granulation is the same over the whole area, the area

with the low function's gradient is colored as a wide strip (the left-bottom strip

on the Figure 3). Its shape clearly di�ers from other areas. It cannot be used to

determine the slope of the (linearized) functions so the program, after comparing

its r with the average, chooses to ignore it.

0.0 10.0
0.0

10.0

x

y

Fig. 3. Function f(x; y; z) = 2:5xy + 0:5z: Contour strips of the �rst step of the de-

composition when decomposing by B = fx; yg.

On the other hand, other strips do not adequately represent the goal function

and the Table 2 shows that there are other functions with almost equal r
g
coe�-

cient. The reason for high ranking of functions of type ln+Id and Id+ Id is that

the most representative contour strips are merged in a single strip and ignored,

while the rest of strips are already close to linear without any transformation.

After the �rst step of the decomposition is made, �1 is introduced that di-

rectly depends on x and y and has values between 0 and 100, so 2:5�1 2 [0; 250].
The other remaining variable z is between 0 and 10, 0:5z 2 [0; 5], hence it is neg-

ligible in comparison with �1. If both variables are discretized using the same

number of intervals, the algorithm discovers functions like 0:001z + �1 and the

measure of quality r
g
is very low (< 0:07). If we (manually) increase the number

of intervals for z, the algorithm detects its role in the function and chooses the

correct type of intermediate function (see Table 3).

function rg

x
1:00

y 0.9505

5:09 ln(x) + y 0.9368

0:19x+ ln(y) 0.9276

1:00x+ y 0.8918

ln(x)5:92ey 0.8348
...

Table 2. Function f(x; y; z) = 2:5xy + 0:5z: Candidates for intermediate function �1

when decomposing by B = fx; yg

function rg

0:19z + �1 0.8513

0:54 ln(z) + �1 0.7254

z
0:54

e
�1 0.7254
...

Table 3. Function f(x; y; z) = 2:5xy + 0:5z: Candidates for intermediate function �2

when decomposing by B = fxy; zg

f(x; y) = xy. The ordinary product xy with x; y 2 [0; 1] is an example of a

function where discretization almost causes the wrong decomposition due to the

similarity of functions, as shown in Table 4.

function rg

xy 0.9712

sin1:08(x)y 0.9702

x
0:91 sin(y) 0.9701

sin(x)0:99 sin(y) 0.9688
...

Table 4. Function f(x; y) = xy: Candidates for intermediate function �.

The quantitative error of wrong decision would be small since sin(x) � x but

an expert may be unable to interpret the resulting decomposition.

f(x; y;w; z) = x+ sin(y + ln(wz)). The program expresses the discovered

function in a variety of di�erent ways, which can presumably help an expert to

interpret the meaning of derived functions.

Function f(x; y; w; z) = x+sin(y+ln(wz)) can be rewritten as f(x; y; w; z) =
x + sin(y + lnw + ln z)). In the �rst step, some of the best ranking candidates

for �1 are as shown in Table 5. Besides functions �1(w; z) = wz, �1(y; w) =

y + ln(w) and �1(y; z) = y + ln(z), the program also proposes �1(y; z) = eyz
and �1(y; w) = eyw. These can be used later in �2(y; w; z) = ln(�1(y; z)) +
ln(w) or �2(y; w; z) = ln(�1(y; w)) + ln(z), respectively, or even in �2(y; w; z) =
w�1(y; z) or �2(y; w; z) = z�1(y; w) to write the function as f(x; y; w; z) =

x + sin(ln(wyey)). The last form is, however, not in algorithm's search space if

the set of basic functions does not contain the composed function sin � ln.

function rg

w
0:97

z 0.7901

(0:99y + ln(z)) 0.7630

e
0:99y

z 0.7630

0:99y + ln(w) 0.6640

e
0:99y

w 0.6640
...

Table 5. Function f(x; y; w; z) = x+ sin(y + ln(wz)): Candidates for an intermediate

function � when decomposing by B = fx; yg.

f(x; y;w; z) = x+ln(y+ln(w+z)). This experiment shows the algorithm's

ability to decompose complex nested functions. It also proves that the number of

graph's colors and r
g
are not necessarily correlated and that the latter is much

more accurate criterion for selecting the appropriate partition. Table 6 lists all

possible partitions, number of colors, the best intermediate functions, and their

r
g
for the �rst step of decomposition.

Among three possible partitions for the next step, the algorithm again chooses

the right one, A = fxg; B = fy; �1g and �2 = y + ln(�1), as shown in Table 7.

In the last step, the only possible partition is A = fg, B = fx; �2g and the

program correctly interprets the colored graph as �3 = 0:98x+ln(�2). Thus, the
discovered function is 0:98x+ ln(1:09y + ln(1:02w + z)).

f(x; y) = sin(x + y) . For x; y 2 [0; 7], this function is non-injective and

the program is unable to decompose it, as shown in Table 8. The reason is in

repeating colors of contour strips, as already explained and shown on Figure 4.

bound variables # colors function rg

w; z 19 1:02w + z 0.8673

y;w 14 2:27y + ln(w) 0.7924

y; z 13 11:17y + z 0.7794

x; z 19 32:09x+ z 0.7127

x;w 11 28:63x+ w 0.6935

x; y 6 1:13ex + sin(y) 0.5134

Table 6. Function f(x; y; w; z) = x+ ln(y+ ln(w+ z)): Possible partitions, number of

colors, the best intermediate function and its linearity for the �rst step of decomposi-

tion.

bound variables # colors function rg

y; �1 26 1:09y + ln(�1) 0.9317

x; �1 19 2:72x+ ln(�1) 0.9030

x; y 17 2:22x + sin(y) 0.8898

Table 7. Function f(x; y; w; z) = x+ln(y+ln(w+z)): The second step of decomposition

with �1 = w + z.

4 Conclusion

The experiments presented in this paper indicate that the proposed method is

able to correctly decompose relatively complex functions and can be successfully

used to discover a symbolic representation of a tabulated function. On the other

hand, the accuracy of constants appearing in the symbolic representation is low

due to the discrete nature of the method. However, as described in [3], the accu-

racy can be further improved by the simplex method. Since discretization and

granulation also cause other di�culties, like indistinguishable similar functions

and ignoring of variables with small impacts on the value of the function, future

function rg

0:00ex + sin(y) 0.2869

0:26 ln(x) + cos(y) 0.2674

�3:52 cos(x) + ln(y) 0.2656

2139:49 sin(x) + e
y 0.2455

0:05x+ cos(y) 0.2389
...

Table 8. Function f(x; y) = sin(x+ y): Candidates for an intermediate function �.

0.0 7.0
0.0

7.0

x

y

Fig. 4. Function f(x; y; z) = f(x; y) = sin(x+ y): Contour strips.

research should address the design of method that avoids the use of discrete

structures.

An interesting question is what happens if the algorithm misses the right

intermediate function, for example, if it chooses �(x; y) = x sin(y) or �(x; y) =
x + y instead of �(x; y) = xy. If the wrong decision is made because of the

similarity of functions in the de�nition area (like Id and sin), the mistake should

not a�ect the upper layers of decomposition tree. When the wrong decision is a

consequence of discarding some contour strips, our decomposition can go astray

completely. The algorithm should therefore be improved not to rely on local

decisions but to perform a beam search, where several candidate intermediate

functions are chosen and later discarded if they show to be unusable.

Classical coloring algorithms are appropriate for graphs with vertices that

correspond to nominal values. If they are used on ordinal values, they obviously

ignore the information about the position of vertices in the space of bound at-

tributes. In our case, ignoring the location of vertices may cause the discrepancy

between coloring and the next phase of the process, the interpretation of colors.

Classical graph coloring heuristics that try to minimize the number of colors

used are suitable for the decomposition of nominal functions, where the number

of colors in
uences the cardinality of the intermediate function and the criterion,

used to choose the partition, normally chooses the partition with less colors. For

decomposition of ordinal and real functions, the functions and partitions are

evaluated using quite a di�erent criterion, the r
g
coe�cient, which in some cases

even encourages non-optimal colorings. Hence, the standard coloring method

should be replaced by an alternative method that tries to make the areas of

same color continuous and linear, thus optimizing r
g
rather than the number of

colors.

Non-injective functions produce an incompatibility graph in which, after it is

linearized, the strips of the same color are repeated in a pattern that depends on

the type of a function. The problem of decomposing such function is not solved

yet.

Another unsolved problem is the decomposition of functions with more than

one occurrence of the same variable, for example f(x; y) = x + sin(x + y). The
method presented in this paper fails to give any meaningful result. However,

the methods to support such decompositions do exist for Boolean and multi-

valued functions [5, 7]. We are working on extension of these methods to handle

real-valued functions as well.

The most important problem that is yet to be solved is the problem of co-

e�cients k1 and k2 in (1) when they are to appear in non-linear functions such

as sin(k1(ax+ y) + k2). We are currently investigating a promising method that

decomposes such functions by using splits with one bound variable.

In comparison with some existing methods for function discovery, for example

GoldHorn [3], we can conclude that our method is able to reconstruct relatively

complex functions but with low accuracy of coe�cients, while GoldHorn o�ers

high accuracy on functions of limited complexity. The time complexity of our

method is low, since all the slow phases (like graph coloring) can be replaced

by faster, yet e�cient heuristic algorithms. GoldHorn performs an exhaustive

search of all possible functions to a given depth. This grows exponentially with

the depth and the number of basic functions (background knowledge). On the

other hand, our functional decomposition uses a \divide and conquer" approach

which signi�cantly improves the e�ciency. Also it should be noted that the

complexity in our case is relatively low. The time complexity of the algorithm is

cubic in the number of attributes, at most O(N lnN) in the number of examples,

and practicallly independent of the number of basic functions (size of background

knowledge).

References

1. R. L. Ashenhurst (1952): The Decomposition of Switching Functions, Technical

report, Bell Laboratories BL-1(11), 541-602

2. H. A. Curtis (1962): Design of Switching Circuits, D. Van Nostrand Company

3. V. Kri�zman (1993): Noise handling in dynamic system modelling Master thesis (in

Slovene), University Ljubljana, Faculty of Computer and Information Science

4. T. Luba (1995): Decomposition of Multiple-valued Functions, 25th Intl. Symposium

on Multiple-valued Logic, 256-261, Bloomington, Indiana.

5. M. A. Perkowski et al. (1996): Uni�ed Approach to Functional Decomposi-

tion of Switching Functions, Unpublished technical report, Wright Laboratory

WL/AART-2, Ohio

6. T. D. Ross et al. (1994): On the Decomposition of Real-valued Functions, 3rd

International Workshop of Post-Binary VLSI Systems

7. B. Zupan, M. Bohanec (1996): Learning Concept Hierarchies from Exam-

ples by Function Decomposition, Technical Report, J. Stefan Institute, URL

ftp://ftp-e8.ijs.si/pub/reports/IJSDP-7455.ps

This article was processed using the LATEX macro package with LLNCS style

