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Abstract

Motivation: We learn more effectively through experience and reflection than through passive reception

of information. Bioinformatics offers an excellent opportunity for project-based learning. Molecular data is

abundant and accessible in open repositories, and important concepts in biology can be rediscovered by

reanalyzing the data.

Results: In the manuscript, we report on five hands-on assignments we designed for master’s computer

science students to train them in bioinformatics for genomics. These assignments are the cornerstones of

our introductory bioinformatics course and are centered around the study of the SARS-CoV-2 virus. They

assume no prior knowledge of molecular biology but do require programming skills. Through these assignments

students learn about genomes and genes, discover their composition and function, relate SARS-CoV-2 to

other viruses, and learn about the body’s response to infection. Student evaluation of the assignments

confirms their usefulness and value, their appropriate mastery-level difficulty, and their interesting and

motivating storyline.

Availability: The course materials are freely available on GitHub at https://github.com/IB-ULFRI.

Contact: pavlin.policar@fri.uni-lj.si

Key words: Bioinformatics Education, Project-Based Learning, Bioinformatics Algorithms, Coding in Python,

SARS-CoV-2 Genome, COVID-19 Data Analysis

Introduction

While considerable attention has been devoted to structuring

bioinformatics courses for life scientists (Mangul et al., 2017;

Carey and Papin, 2018; Madlung, 2018), less attention has

been paid to how to structure these courses for computer

scientists (LeBlanc and Dyer, 2004; Oesper and Vostinar, 2020),

especially those without a background in molecular biology.

However, bioinformatics is an inherently interdisciplinary field

and can be well approached from a computer science perspective.

Skills in programming in Python or R, familiarity with databases,

open access to information, and knowledge of data processing,

visualisation, and machine learning, not only provide an excellent

entry point into bioinformatics (LeBlanc and Dyer, 2004) but

also provide wonderful opportunities for hands-on, project-based

learning (Emery and Morgan, 2017; Sauter et al., 2022). The role

and benefits of project-based learning are well documented in the

literature (Blumenfeld et al., 1991).

We propose a set of homework assignments and a corresponding

syllabus for our Introduction to Bioinformatics course developed

for master’s students in Computer Science. The course assumes

a solid background in Python programming and is designed to

introduce students with no prior knowledge of biology to the

tools and analyses commonly performed in bioinformatics for

genomics. In each of the five assignments presented here, we

focus on a specific aspect of bioinformatics. We guide students

through each topic through the theory and implementation of

bioinformatics algorithms and their application to real-world data

to solve practical problems. The construction of problem- and

data-driven learning was also our main challenge in designing the

problems in the exercises.
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The assignments and the associated bioinformatics course we

present here are designed to simulate the process of exploring the

SARS-CoV-2 virus. As this course was originally developed during

the initial COVID-19 lockdowns of 2020, we felt that this would

be a particularly motivating example, as students would gain

hands-on experience working with a virus that was, at the time,

disrupting everyday life. The course begins with the assumption

that the students have no prior knowledge of the SARS-CoV-2

virus, its structure, or its inner workings. Throughout the

assignments, students progressively uncover different properties

of SARS-CoV-2, which can then be validated against published

scientific findings. In essence, students take on the role of scientists,

immersing themselves in the discovery process to gain a deeper

understanding of the virus over the course of the semester.

Below, we first present the didactic approach in designing the

assignments. We then detail each of the five assignments, their

associated learning objectives, and the problems that students

will need to solve. We also discuss possible extensions and

bonus problems for each assignment. Our proposed material was

implemented at the Faculty of Computer and Information Science

at the University of Ljubljana and evaluated by master’s students

enrolled in the course. We present the results of this evaluation in

a separate section. We conclude the manuscript with an overview

of the achieved goals, providing information on the availability of

the assignment text, code, and related resources.

Didactic Approach

The assignments and the associated bioinformatics course were

originally developed during the 2020 COVID-19 lockdowns, when

in-person lab work was made difficult and project-based homework

assignments were preferred. The bioinformatics course we designed

(Fig. 1) is delivered in five cycles of about three weeks each,

where in each cycle, students attend two to three lectures to learn

theoretical concepts, followed by a practical homework assignment

that reinforces the learned material. Each assignment focuses on

a particular aspect of the bioinformatics workflow, implementing

and applying these algorithms to real-world problems related to

the SARS-CoV-2 pandemic. The text of the assignments is released

in the middle of each cycle so that students can observe the

problem they will have to solve, and the instructor can refer

to the material during lectures. This interweaving of lectures

and labs ensures that the students had a solid understanding of

both the theory and applications of the presented bioinformatics

algorithms.

The main objective of the course is to familiarize computer

science students with the key concepts of molecular biology and

bioinformatics. The lectures cover motivation and theory, and the

homework assignments offer a practical opportunity for students

to cement their knowledge by applying their skills in programming

and data science algorithms. To assess the achievement of the

learning outcomes, we administer a final examination at the end

of the semester. While the focus of this manuscript is to describe

the developed assignments, we are pleased to report that student

pass rates have been excellent in all iterations of the course. We

largely attribute this to the knowledge gained through practical

work and the proposed project-based learning.1

1 For more information on the course structure and link to

the Moodle page, see the instructor notes available at https:

//github.com/IB-ULFRI/instructor-notes.

Introduction to Molecular Biology

The First Look at the Genome
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Gene Set Enrichment Analysis
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Week

Assignment 1
• ORF Identification
• Precision/Recall/F1 Curve
• Protein Translation

Assignment 2
• Global Alignment
• Local Alignment

Assignment 3
• Phylogenetic Analysis
• Neighbor-Joining Trees
• Recombination

Assignment 4
• Variant Classification
• Genetic Distance
• Speed of Mutation

Assignment 5
• Read Mapping
• Gene Expression Analysis
• GO Term Enrichment Analysis

Fig. 1: The course schedule for the winter semester of 2023/24

iteration of the Introduction to Bioinformatics course. Each

numbered dot represents one week, with its associated lecture on

the left. Lectures crucial to the completion of the corresponding

homework assignment are indicated with red-colored dots and

associated with the assignment with a blue outline.

Each assignment consists of about four mandatory problems

that follow our main investigative storyline of the SARS-CoV-2

virus, as well as optional problems that allow students to earn

bonus points. These optional problems are meant to complement

the mandatory problems and typically require additional analysis

that serves as a point of interest or an alternative use or

extension of a particular algorithm. For each assignment,

students are required to submit a Python script containing

their implementations of the required algorithms and a Jupyter

notebook report describing the steps, results, and interpretation

of their analysis. Assignments are submitted through GitHub

Classroom, an online classroom platform that allows instructors

to create and manage assignments, distribute them to students,

and receive submissions through GitHub. In their solutions,

students were encouraged to use standard Python libraries for data

access, analysis, and visualization, including biopython, pandas,

matplotlib, and seaborn.

Project-based learning and coding to solve problems in

bioinformatics primarily address the upper levels of Bloom’s

Taxonomy (Bloom et al., 1956) – a framework for categorizing

learning outcomes into levels of cognitive complexity – which

involve higher-order thinking skills such as applying, analyzing,

evaluating, and creating. Implementing algorithms in Python

and applying them to practical problems of SARS-CoV-2 virus

analysis facilitates the application of theoretical knowledge to real-

world scenarios. As students immerse themselves in the discovery

process, they are likely to evaluate the effectiveness of different

algorithms and methods in uncovering information about the

virus. Through the assignments, students synthesize different

pieces of information and techniques to uncover known scientific

facts about the virus. This creative process of simulating real

https://github.com/IB-ULFRI/instructor-notes
https://github.com/IB-ULFRI/instructor-notes
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scientific discovery requires a higher level of cognitive processing

because students are not just learning existing knowledge, they

are discovering it from the data.

Course Assignments

The proposed course consists of five assignments that gradually

introduce both molecular biology and fundamental concepts of

bioinformatics to students of computer science.

Assignment 1: A First Look at the Genome

In the first assignment, students are familiarized with the basic

concepts of genomics, including the roles of DNA and RNA,

the differences between nucleic acids and amino acids, and the

conceptual and functional grouping of some regions of DNA into

genes. The problem set guides students through the process

of finding and accessing genomic data from publicly available

repositories, locating and filtering open reading frames (ORFs),

and applying a naive classification scheme to identify ORFs

corresponding to putative transmembrane proteins.

Learning Outcomes

In this assignment, students will:

• Acquaint with the biopython library to retrieve genomic

records from the NCBI database and manipulate these records

for further analysis.

• Implement an open reading frame (ORF) finding algorithm and

use on a obtained nucleotide sequence.

• Examine the results to distinguish likely candidate ORFs from

noise.

Assignment Tasks

In this assignment, we will be working with two different

organisms: SARS-CoV-2 and Escherichia Coli (E. Coli). Our

primary goal will be to develop an algorithm for identifying ORFs.

However, using our developed algorithm without proper validation

cannot give us confidence in our results. Therefore, we will first

validate our approach on the well-annotated E. Coli genome. Once

we’ve confirmed that our procedure produces reasonable results,

we can then apply it to the SARS-CoV-2 genome.

Before tackling the assignment, students must first install the

biopython library and use it to download the NCBI E. Coli record.

The SARS-CoV-2 genome is provided in a separate FASTA file.

The assignment is then comprised of four problems:

1. Implement an ORF finding algorithm and apply it to the

E. Coli genome.

2. Using a permutation test, determine a filtering threshold to

remove short ORFs likely appearing at random. Evaluate the

reasonableness of this threshold by examining its precision,

recall, and F1 metrics. We can compute these metrics by

obtaining the ground truth genes from the NCBI E. coli

record.

3. Having verified that the permutation test produces a

reasonable threshold, apply the same treatment to the

SARS-CoV-2 genome. Find all ORFs on the SARS-CoV-2

genome, and, using a permutation test, filter them down to

only the most likely gene candidates.

4. Having identified the ORFs that likely correspond to true

genes, we next implement a simple classification scheme to

identify putative transmembrane proteins. Transmembrane

proteins are typically comprised of a larger proportion of

hydrophobic amino acids than non-transmembrane proteins.

Therefore, by comparing the average hydrophobicity of the

proteins corresponding to the ORF candidates against a

background distribution of proteins from a known, annotated

organism, we can infer likely transmembrane proteins.

Translate each ORF identified in the third problem into its

amino acid sequence and compute its average hydrophobicity.

Using the hydrophobicity values of true proteins from E. coli,

determine which of these SARS-CoV-2 ORFs most likely to

correspond to transmembrane proteins.

Bonus Problems

At this stage, students can also create a visualization of the

identified ORFs, showing their positions on the viral genome and

marking which ORFs are on the positive and negative strands.

They can determine whether SARS-CoV-2 is a large virus or

not by downloading the metadata of all viruses in the NCBI

virus database and comparing the lengths of the viral genomes.

Alternatively, they can consider only RNA viruses.

Summary

The first assignment guides students through the process

of downloading, reading, and parsing genetic records. By

implementing a simple ORF finding algorithm, students learn

to work with genetic sequences and learn the importance of

validating their algorithms against previously published findings.

The aim of this assignment is to identify potential genes in

the SARS-CoV-2 genome and hint that we can computationally

determine their function, providing additional motivation for the

second assignment.

A particularly interesting result from this assignment comes

from the bonus problem in which students construct a visualization

of their identified ORFs on the SARS-CoV-2 genome shown in

Fig. 2. From this plot, students observe almost no ORFs on the

negative strand, a consequence of the single-stranded nature of the

SARS-CoV-2 virus.

Assignment 2: Decoding Gene Function

In the first assignment, we identified ORFs corresponding to

potential gene candidates in the SARS-CoV-2 virus. However,

the nucleotide sequences alone provided little insight into the

function of the potential downstream proteins. In this assignment,

we develop a BLAST-like tool for the functional annotation of

genes based on homologous genes. Using the Needleman-Wunsch

algorithm for global alignment (Needleman and Wunsch, 1970),

we first identify closely related viruses and compile a database

of annotated reference gene sequences. Then, using the Smith-

Waterman algorithm for local alignment (Smith and Waterman,

1981), we examine a selection of promising ORFs identified in the

first assignment, verifying their correspondence to true genes and

determining their protein function.

Learning Outcomes

In this assignment, students will:

• Examine the concept of homologous genes to infer gene

function in related organisms.
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Candidate ORFs of SARS-CoV-2 ssRNA(+) virus

Fig. 2: The ORFs identified by our naive ORF finding approach in the SARS-CoV-2 genome. Note that using our naive approach, we

are able to recover only 10/12 functional ORFs due to frame-shift on ORF1ab (Naqvi et al., 2020). We highlight four of the identified

ORFs corresponding to structural SARS-CoV-2 proteins.

• Implement and apply the Needleman-Wunsch algorithm for

global alignment.

• Implement and apply the Smith-Waterman algorithm for local

alignment.

Assignment Tasks

We provide students with 20 NCBI accession codes of related

viruses from the Coronaviridae family, of which SARS-CoV-2 is a

prominent member. We will first identify the most closely related

viruses, then use their annotated genes to determine the gene

functions of a handful of ORFs we found in the previous homework

assignment. The assignment is comprised of four problems:

1. Implement the Needleman-Wunsch algorithm for global

alignment.

2. From the 20 provided sequences of related viruses, use your

implementation of global alignment to find the three most

closely related to SARS-CoV-2.

3. Implement the Smith-Waterman algorithm for local alignment.

4. In the first homework assignment, we identified several ORFs

from SARS-CoV-2 which likely correspond to true genes. We

will attempt to determine the function of five of these ORFs

using local sequence alignment. Using the three most closely

related viruses you identified in the second problem, compile a

database of the true, reference genes along with their name

and function from their annotated NCBI record. Use your

implementation of local alignment to find the best matching

reference gene in your database for each of the five ORFs from

SARS-CoV-2. Determine the quality of the match and report

your predicted protein function.

Bonus Problems

Our analysis reveals that the SARS-CoV-2 virus is closely related

to the SARS-CoV virus which caused the SARS outbreak between

2002-2004. In 2019, Xia et al. proposed a broad-spectrum human

coronavirus inhibitory drug for the treatment of SARS (Xia et al.,

2019). The drug works by binding to a specific motif of consecutive

amino acid types in the spike protein of the coronaviruses,

preventing binding and entry to human cells, thereby blocking

infection. Since the SARS-CoV-2 virus is closely related to SARS-

CoV, could the same treatment work on SARS-CoV-2? Use local

alignment and adapt the scoring matrix to identify potential

medication target binding sites in the SARS-CoV-2 spike protein.

Summary

In this assignment, students implement two sequence alignment

algorithms, learn to identify related organisms, and infer protein

functions from similar sequences of related organisms. We provide

students with five ORFs identified in the first exercise, one of

which does not correspond to an actual gene. By planting a false

ORF, students need to reason about the results of the alignment

procedures and identify the false ORF. The bonus problem shows

an alternate use of the alignment algorithms and demonstrates

that, by designing clever scoring functions, alignment algorithms

can also be used for more complex tasks.

Assignment 3: Mapping the Family Tree

In the second assignment, we used global alignment to determine

the similarities between viruses to facilitate the functional

annotation of putative genes. In this assignment, we will use these

alignments and use the neighbor-joining algorithm (Saitou and

Nei, 1987) to construct a phylogenetic tree of the Coronaviridae

family of viruses. Using this phylogenetic tree, students explore

and hypothesize about the evolutionary path of SARS-CoV-2. We

also introduce the notion of recombination and investigate the role

it may have played in the evolution of SARS-CoV-2.

Learning Outcomes

In this assignment, students will:
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• Implement the neighbor-joining algorithm.

• Implement a drawing function for plotting phylogenetic trees.

• Construct a phylogeny for provided viral sequences abd

evaluate the importance of selecting an appropraite outgroup.

• Investigate potential recombination events.

Assignment Tasks

In this exercise, we provide students with 30 coronavirus and one

other viral sequence. The nucleotide sequences are pre-aligned

using multiple-sequence alignment. The assignment is comprised

of four problems:

1. Implement the neighbor-joining algorithm (Saitou and Nei,

1987).

2. Implement a drawing function for plotting the resulting

phylogenetic trees.

3. Using your implemented algorithms, construct and plot the

phylogenetic tree of the 31 viral sequences. First, align the

sequences using global alignment. Use the Hamming distance

to calculate pairwise distances between the aligned sequences.

Infer a phylogenetic tree and reroot it using the provided

rerooting algorithm, using the unrelated Breda virus as the

outgroup. The Coronaviridae family is comprised of four

subgroups, which are contained within the NCBI records.

Color each viral sequence according to its membership in each

of these four subgroups.

4. Following the study from Lam et al. (Lam et al., 2020),

investigate the potential recombination event between the bat

and pangolin viruses. Using their sliding window approach,

determine whether particular regions of SARS-CoV-2 are more

similar to the pangolin virus than the bat virus.

Bonus Problems

When constructing our phylogenetic trees, we inferred the single,

most likely tree for our data. However, we do not know how robust

this tree is and whether certain tree structures arise due to chance

or reflect some true, underlying phenomenon. To estimate our

uncertainty, we perform bootstrapping to assess the reliability of

our trees. Implement phylogenetic tree bootstrapping and rerun

your analysis. When drawing the resulting phylogenetic trees,

we implemented standard, horizontal dendrograms. However,

dendrograms come in all different shapes and sizes. Implement

tree drawing using radial dendrograms as described in Bachmaier

et al. (Bachmaier et al., 2005).

Summary

In this assignment, students use the neighbor-joining algorithm

to construct a phylogenetic tree of the Coronaviridae family of

viruses. Although the procedure produces an unrooted tree, we

root the final tree to facilitate tree drawing. To compute distances

between viral sequences, students use their implementation of

global alignment from the previous assignment. Fig. 3 shows the

resulting dendrogram of this assignment. Upon closer inspection,

students can observe that the dendrogram branches closely

correspond to the four major sub-groups of the Coronaviridae

family.

Assignment 4: Tracking Viral Evolution

In the third assignment, we considered viral evolution at a

macro-level, mapping the evolutionary tree of the Coronaviridae

0 5,000 10,000 15,000 20,000 25,000

genetic distance calculated with
neighbour joining algorithm [nt]
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 HCoV-229E 
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 Ty-BatCoV_HKU4 
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 BatCoV 
 Human-SARS-CoV-2 

Phylogenetic tree of the Coronaviridae family

Alphacoronavirus
Betacoronavirus
Gammacoronavirus
Deltacoronavirus
Non-Coronavirus

Fig. 3: A phylogenetic tree of the Coronaviridae family of viruses

obtained using the neighbor-joining algorithm. Leaves are colored

according to their subgroup membership.

family. In this assignment, we narrow our focus and investigate

mutations within the SARS-CoV-2 virus species itself. Due to

the unprecedented global response to the SARS-CoV-2 pandemic,

timestamped SARS-CoV-2 sequences are abundant, allowing us

to track the virus’s mutations through time in remarkable detail.

The goal of the students in this assignment is three-fold. First,

to estimate the speed of mutation of the SARS-CoV-2 virus and

compare it to the speed of mutation in other viruses. Secondly,

learn about the differences between synonymous and non-

synonymous mutations and their implications. Lastly, students

must categorize different SARS-CoV-2 sequences into distinct viral

variants based on each viral sequence’s observed single nucleotide

variants (SNVs). This classification allows us to analyze and plot

the prevalence of these variants through time, offering a dynamic

view of the virus’s evolution.

Learning Outcomes

In this assignment, students will:

• Calculate the speed of mutation and evaluate the impact of

correction procedures like the Jukes-Cantor and the Kimura

two-parameter correction models on mutation rate estimates.

• Differentiate between synonymous and non-synonymous

mutations to assess their implications on genetic variation and

evolutionary pressure.

• Classify viral sequences into variants.
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Assignment Tasks

We provide students with 212 timestamped SARS-CoV-2

nucleotide and protein sequences gathered in Slovenia from the

period between 2019-2022. Each sequence is pre-aligned to the

NCBI reference sequence from 2019. Similarly, we provide pre-

aligned nucleotide sequences for the unrelated Ebola and Zika

viruses. Additionally, we provide variant classifications for a

handful of Alpha and Delta variant SARS-CoV-2 sequences. The

assignment is comprised of four problems:

1. Based on the NCBI reference sequence, calculate the number

of mutations for each of the given SARS-CoV-2 sequences and

apply the Jukes-Cantor correction (Jukes and Cantor, 1969).

Plot the estimated number of mutations as a function of time.

Determine the slope using linear regression and discuss how

this relates to the speed of mutation.

2. Determine whether SARS-CoV-2 mutates quickly or slowly.

To answer this question, repeat the same procedure as above

on the Ebola and Zika viral sequences and compare the speed

of mutation between the three viruses.

3. As the virus evolves, it accumulates mutations, and variants

emerge. Compare the mutations on the sequences of Alpha and

Delta viral variants. Plot the nucleotide mutation rates for four

genes and identify the most common mutations. Determine if

any mutations are shared between the two variants and look

for evidence showing that the Delta variant evolved from the

Alpha variant.

4. Determine which variant each of the 211 SARS-CoV-2

sequences belongs to. Develop a classification scheme to

categorize viral protein sequences into variants based on the

presence or absence of particular mutations2. Then, plot

the timeline of the emergence and prevalence of different

SARS-CoV-2 variants in Slovenia throughout the COVID-19

pandemic.

Bonus Problems

Students may additionally implement the Kimura two-parameter

correction model (Kimura, 1980) and observe the changes in the

analysis results if we instead use this model for genetic distance

correction.

Summary

In this assignment, students learn about viral mutation and

the emergence of variants. They learn to estimate the speed

of mutation and to compare these speeds among viruses. The

difference between the speed of mutation at the nucleotide

level and the genome level is of particular importance. The

SARS-CoV-2 genome spans 30kbp and is longer than the other

two Ebola and Zika virus genomes spanning 18kbp and 10kbp,

respectively. Comparing mutation rates at the genome level

suggests that SARS-CoV-2 mutates faster than Ebola and Zika.

However, a per-nucleotide comparison reveals that, in fact, the

speed at which SARS-CoV-2 mutates is comparable to Ebola and

is actually slower than Zika. Students also learn to categorize

viral sequences into variants as defined by the broader scientific

community. Students then construct a timeline of the prevalence

of different variants in Slovenia, which clearly shows the emergence

and decline of different variants (see Fig. 4).

2 The mutations and their associated variants are collected from
https://covariants.org.
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Fig. 4: Emergence of variants in Slovenia between March 2020 and

June 2022. Variants were sampled from the total sequences and

smoothed with a moving average over 3 months.

Assignment 5: The Immune Response

So far, we have primarily concerned ourselves with the intrinsic

aspects of the SARS-CoV-2 virus itself, including its structure,

origins, and evolutionary path. However, it is important to

recognize that viruses cannot function autonomously and require

host cells to replicate. Therefore, any investigation of the

SARS-CoV-2 virus is incomplete without also considering its

interaction and influence on its host cells.

To investigate the effects of SARS-CoV-2 on the human body,

we now turn our attention to human gene expression data.

By examining the differences in the gene expression between

healthy and infected human cells, we can determine which

cellular processes are disrupted by the virus and reason about its

implications for the host cells. The problem set guides students

through a standard single-cell RNA-seq analysis involving the

construction of count matrices, data normalization, differential

expression analysis, and gene enrichment analysis. This approach

provides a more comprehensive picture of the inner workings of

the SARS-CoV-2 virus and reveals its broader biological impact

on the human body.

Learning Outcomes

In this assignment, students will:

• Implement the construction of gene expression matrices.

• Execute a standard gene expression data-analysis pipeline by

performing dimensionality reduction, conducting clustering,

visualizing data patterns.

• Appraise the results by identifying differential expressions, and

analyzing enriched Gene Ontology (GO) terms to elucidate

biological significance.

Assignment Tasks

This assignment is comprised of two sections. In the first section,

students learn to construct gene expression count matrices from

synthetic reads using the algorithms developed in Assignment

2. In the second section, we conduct a full-fledged single-cell

RNA-seq analysis on real-world data, characterizing the effects

of SARS-CoV-2 infection on the human body.

Section 1. We provide students with 605 noisy, synthetic

short reads corresponding to different chunks of the SARS-CoV-2

genome in FASTQ format and gene annotations for the

SARS-CoV-2 genome in GFF format. The count matrix

construction is then comprised of four steps:

https://covariants.org
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1. From each read, extract the barcode and mRNA fragment.

2. Using local alignment, align each mRNA fragment to the

SARS-CoV-2 genome.

3. If the fragment aligns to a region corresponding to a gene,

update the matrix entry corresponding to the gene and

associated cell barcode.

4. Apply basic matrix filtering based on the number of detected

mRNA fragments for each cell and gene.

Section 2. In this section, we conduct a typical single-cell

RNA-seq analysis using real-world data characterizing the human

immune response to SARS-CoV-2 infection (Wilk et al., 2020).

The data contains single-cells obtained from healthy and infected

donors. Additionally, we provide a subset of Gene Ontology (GO)

terms along with their associated genes.

The analysis then follows four steps:

1. Report the number of genes detected in each cell as well as

the number of cells each gene was detected in. Based on their

distributions, determine filtering thresholds for cells and genes.

2. Perform counts-per-million (CPM) library-size normalization

to account for sequencing depth and log normalization for

variance stabilization.

3. Identify genes that are differentially expressed between healthy

and infected donors. Perform comparisons between genes using

the t-test followed by the Benjamini-Hochberg False Discovery

Rate (FDR) correction to account for multiple comparisons.

Compute gene log-fold changes and plot your results in a

volcano plot.

4. Having obtained a list of differentially expressed genes, we

next perform gene enrichment analysis, which may help us

make sense of the genetic programs activated by the infection.

Based on the list of differentially expressed genes, use the

hypergeometric test to identify enriched GO terms. Inspect

the identified GO terms and determine their relevance to the

SARS-CoV-2 infection.

Bonus Problems

The differential expression analysis we performed above is one of

the most common types of tasks in gene expression data analysis.

However, gene expression data can be used in a myriad of other

ways. For instance, one common task is the characterization

of different cell types. These kinds of analyses typically involve

dimensionality reduction, clustering, and visualization. In this

exercise, we will use the scanpy Python library (Wolf et al., 2018).

This exercise walks through these four different steps:

1. Run principal component analysis (PCA) (Jolliffe, 2002) on

the gene expression matrix and extract the top 50 principal

components. Visualize the first two components in a scatter

plot.

2. Identify characteristic subpopulations of cells using a graph-

based clustering algorithm of your choice.

3. Use t-distributed stochastic neighbor embedding (t-SNE)

(Van der Maaten and Hinton, 2008) or Uniform Manifold

Approximation and Projection (UMAP) (McInnes et al., 2018)

to construct a visualization of the data. Color the data points

based on their cluster membership.

4. As before, perform differential expression analysis, this time

finding differences between the different clusters of cells.

Create a scatter plot of the t-SNE/UMAP embedding, this

time coloring points according to the expression levels of the

most highly differentially expressed genes.

Summary

In the final exercise, we examine the impact of SARS-CoV-2

on the human body through the lens of gene expression data.

First, students learn to construct gene expression matrices from

synthetic reads, giving them a thorough understanding of this

data modality. We then move on to a realistic example, where

students follow the typical steps in a single-cell RNA-seq analysis.

Through their analysis, students observe that infected individuals

have a heightened immune response compared to their healthy

counterparts. By experimenting with the protocol parameters,

students discover that minor changes in the analysis parameters

can result in different analysis results and findings. This

underscores the importance of critically evaluating computational

findings and the need for experimental validation.

Student Evaluation

To evaluate the success of our course, we asked students to

complete short, anonymous surveys after completing each of the

five homework assignments. We report student participation rates

in Table 1. We asked about each assignment’s interestingness,

difficulty, time required to complete, clarity of instructions,

and any suggestions for improvement for future homework

assignments. Students also rated the complete set of assignments

on these dimensions at the end of the course.

Table 1. We collected anonymous feedback from the 110 enrolled students

attending the 2023/24 iteration of the course. We here report the number

of students who provided feedback for surveys corresponding to each of

the five homework assignments, as well as the final course feedback survey.

HW1 HW2 HW3 HW4 HW5 Final

67 47 45 40 34 34

Fig. 5 summarizes student feedback. For each of the three

reported plots, we use the Kruskal-Wallis test to determine if

there are significant differences between the independent groups,

followed by Dunn’s post-hoc test with False Discovery Rate

correction for multiple comparisons to identify specific pairs of

groups with statistically significant differences in their ratings.

Below, we report only those differences where p < 0.05.

Fig. 5.a shows that students overwhelmingly found the

assignments interesting. This confirms the many positive

comments we received in the unstructured part of the feedback

surveys. Of the assignments, students found the last assignment

the least interesting. These ratings are largely consistent with the

final rankings assigned to each assignment at the end of the course,

where students assigned higher rankings to Assignments 4 and 3

with average final rankings of 3.8 and 3.5, respectively, and lower

rankings to Assignments 1, 2, and 5 with average final rankings

of 2.7, 2.7, and 2.3, respectively. Interestingly, students rated

Assignments 1 and 2 highly upon completion but ranked them

lower than Assignments 3 and 4 at the end of the course.

Fig. 5.b shows that, on average, students found the problems

somewhat challenging. The difficulty of the problems may correlate

with the algorithmic complexity of the tasks. For example,

students rated Assignment 3 as the most difficult. This assignment
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Not at all interesting Very interesting
100% 75% 50% 25% 0% 25% 50% 75% 100%

Assignment 1

Assignment 2

Assignment 3

Assignment 4

Assignment 5

μ = 4.18

μ = 4.09

μ = 4.27

μ = 4.17

μ = 3.53

a How interesting did you find the assignment?

3 hours or lessmore than 2 days
2 days 6 hours to 1 day 3 - 6 hours

100% 75% 50% 25% 0% 25% 50% 75% 100%

Assignment 1

Assignment 2

Assignment 3

Assignment 4

Assignment 5

μ = 2.13

μ = 2.40

μ = 2.00

μ = 2.70

μ = 2.94

c How long did you need to complete the assignment?

100% 75% 50% 25% 0% 25% 50% 75% 100%

Assignment 1

Assignment 2

Assignment 3

Assignment 4

Assignment 5

μ = 2.37

μ = 2.60

μ = 1.89

μ = 2.90

μ = 2.56

b How difficult did you find the assignment?

Very difficult Not at all difficult

Fig. 5: Student feedback. We plot the distributions of student

responses related to assignment interestingness, difficulty, and

time spent to complete the assignment. Each distribution is

centered to the neutral response. To facilitate comparisons

between the different assignments, we mark the distribution

means, which are obtained by assigning 1 to the red option and 5

to the green option, and the intermediate options accordingly.

requires students to implement the neighbor-joining algorithm,

which is perhaps the most algorithmically challenging of the

programming tasks. Several students reported struggling with

its implementation in the unstructured feedback. Conversely,

the fourth assignment, which requires very little algorithmic

programming, was rated as easier than Assignments 1 and 3. These

ratings are largely consistent with the final rankings assigned to

each assignment at the end of the course, where students ranked

Assignment 4 as the easiest with an average final ranking 2.4,

Assignments 1, 2, and 5 as similarly difficult with average final

rankings 3, 2.8, and 2.9, respectively, and Assignment 3 as the

most difficult of all with an average final ranking of 3.9.

Our Introduction to Bioinformatics course is allocated 6

European Credit Transfer and Accumulation System (ECTS)

credits, which corresponds to 150 working hours per semester.

Divided among the five assignments with roughly six hours of

accompanying lectures, each assignment should take about 24

working hours to complete. Fig. 5.c shows that most students

completed the assignments within two full days, indicating that

the assignments are roughly in line with this target. Assignment

1 took longer than tasks 2 and 3. Oddly, Assignment 5 typically

took less time than the other assignments. This may be explained

by our particular course logistics, where students only need to

accumulate enough points to pass the course and do not need

to complete all the assignments. Going into the final assignment,

many students had likely already gathered sufficient points from

previous assignments and invested less time.

We note here that the clarity of the instructions undoubtedly

also affects the interestingness, difficulty, and time required to

complete the tasks. For example, instruction clarity was positively

correlated with interestingness (Spearman correlation ρ = 0.34)

and negatively correlated with time to complete (ρ = 0.15).

Interestingly, although the instruction clarity also negatively

affected task difficulty (ρ = 0.12), its p value of 0.06 did not meet

our significance threshold. These results suggest that although the

clarity of instructions is essential for student engagement, it does

not appear to have a significant effect on assignment difficulty.

In the unstructured section of the surveys, students shared

overwhelmingly positive feedback, highlighting how much they

enjoyed the structure and real-world nature of the assignments.

They praised the engaging nature of the storyline, in which each

assingment connects to the previous ones. Two students wrote:

“I liked the guided building of the homework and the story that

came with each task”, and “It feels like it’s actual work that

could be done by scientists working on the field.” Some students

commented on the applied nature of the assignments: “The guided

building of the task and doing something that produced real-world

results”, “The story behind what we were doing, didn’t feel like

pointless algorithms”, and “Comparing real life examples together

to give a feeling of actually working on something “real”.”

Students’ criticisms centered on the clarity of the assignment

instructions and the lack of unit tests for the programming

assignments. For example, “Maybe more examples/tests for the

functions we have to write. Some of the exercise descriptions

could have been clearer.”. Since we have been collecting student

feedback for all four iterations of the course and are constantly

working to improve the assignments, we find it encouraging

that the number of students who cited the instructions as a

source of confusion decreases year over year. While we were

initially reluctant to provide students with comprehensive unit

tests to verify the correctness of their algorithms, assuming that

their absence would encourage students to think about how to

verify their implementations on their own, in practice, we now

believe that providing unit tests is an overall benefit to students.

Moving forward, we will likely provide accompanying unit tests in

future installments of the course, allowing students to verify their

implementations before moving on to the application exercises.

Conclusion

Project-based learning can be a great joy for both teachers and

students. Here, we proposed a series of assignments in which

computer science students learn about molecular biology through

the implementation and application of bioinformatics algorithms.

The assignments were designed to lead students through the

discovery of the structure and function of the SARS-CoV-2 virus,

where the teacher’s role was to introduce the algorithms, while

students used them to find genes and their functions, reason

about the origin of the virus, and think about the human immune
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response triggered by the presence of the virus. The tasks were

designed as breadcrumbs that lead students through the story

of SARS-CoV-2, allowing them to piece together the intricate

puzzle of life’s mechanisms and apply their computational skills

to real-world biological challenges.

We, the authors, with much help from our students, have spent

over three years adapting and refining the assignments proposed

above. Every year, we collect student evaluations and opinions

on each of the five assignments. Based on this feedback, we have

been able to improve both the assignments and related lectures.

According to the student evaluations, we have done well: students

find the assignments interesting, engaging, and – to the delight

of us instructors – sufficiently challenging. However, one of our

greatest successes remained almost hidden: through project-based

training and data-driven problem-solving, students learn about the

world, the importance of data, apply critical thinking, and behave

like true scientists. Next to training bioinformaticians, this is our

most important achievement.

Material Availability

We provide free and open access to all materials reported in the

manuscript, including instructor notes, assignment instructions,

and related data. These can all be found on GitHub at https://

github.com/IB-ULFRI. For each assignment, we provide template

repositories, which can be used in conjunction with the GitHub

Classroom platform for course implementation. We can share

assignment solutions privately with colleague instructors upon

request.
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assignments. P.G.P., M.Š., and B.Z. wrote and reviewed the

manuscript. T.C. reviewed the manuscript.

Acknowledgments

This work was supported by the grants from Slovenian Research

and Innovation Agency grants P2-0209 and L2-3170.

References

C. Bachmaier, U. Brandes, and B. Schlieper. Drawing

phylogenetic trees. In X. Deng and D. Z. Du, editors, Algorithms

and Computation, pages 1110–1121, Berlin, Heidelberg, 2005.

Springer Berlin Heidelberg. ISBN 978-3-540-32426-3.

B. S. Bloom, M. D. Engelhart, E. J. Furst, W. H. Hill,

and D. R. Krathwohl. Taxonomy of educational objectives:

The classification of educational goals, volume Handbook I:

Cognitive domain. David McKay Company, Philadelphia,

Pennsylvania, United States, 1956.

P. C. Blumenfeld, E. Soloway, R. W. Marx, J. S. Krajcik,

M. Guzdial, and A. Palincsar. Motivating project-based

learning: Sustaining the doing, supporting the learning.

Educational Psychologist, 26(3-4):369–398, 1991. doi: 10.

1080/00461520.1991.9653139. URL https://doi.org/10.1080/

00461520.1991.9653139.

M. A. Carey and J. A. Papin. Ten simple rules for biologists

learning to program. PLOS Computational Biology, 14(1):1–

11, 01 2018. doi: 10.1371/journal.pcbi.1005871. URL https:

//doi.org/10.1371/journal.pcbi.1005871.

L. R. Emery and S. L. Morgan. The application of project-

based learning in bioinformatics training. PLOS Computational

Biology, 13(8):1–8, 08 2017. doi: 10.1371/journal.pcbi.1005620.

URL https://doi.org/10.1371/journal.pcbi.1005620.

I. T. Jolliffe. Principal Component Analysis. Springer, 2002. doi:

https://doi.org/10.1007/b98835.

T. H. Jukes and C. R. Cantor. Evolution of protein molecules.

In H. N. Munro, editor, Mammalian Protein Metabolism,

volume 3, pages 21–132. Academic Press, Cambridge,

Massachusetts, United States, 1969.

M. Kimura. A simple method for estimating evolutionary rates

of base substitutions through comparative studies of nucleotide

sequences. Journal of molecular evolution, 16:111–120, 1980.

T. T. Y. Lam, N. Jia, Y. W. Zhang, M. H. H. Shum, J. F. Jiang,

H. C. Zhu, Y. G. Tong, Y. X. Shi, X. B. Ni, Y. S. Liao, W. J.

Li, B. G. Jiang, W. Wei, T. T. Yuan, K. Zheng, X. M. Cui,

J. Li, G. Q. Pei, X. Qiang, W. Y. M. Cheung, L. F. Li, F. F.

Sun, S. Qin, J. C. Huang, G. M. Leung, E. C. Holmes, Y. L.

Hu, Y. Guan, and W. C. Cao. Identifying SARS-CoV-2-related

coronaviruses in Malayan pangolins. Nature, 583(7815):282–

285, Jul 2020. ISSN 1476-4687. doi: 10.1038/s41586-020-2169-0.

URL https://doi.org/10.1038/s41586-020-2169-0.

M. D. LeBlanc and B. D. Dyer. Bioinformatics and computing

curricula 2001: why computer science is well positioned in a

post-genomic world. SIGCSE Bull., 36(4):64–68, jun 2004.

ISSN 0097-8418. doi: 10.1145/1041624.1041659. URL https:

//doi.org/10.1145/1041624.1041659.

A. Madlung. Assessing an effective undergraduate module

teaching applied bioinformatics to biology students. PLOS

Computational Biology, 14(1):1–15, 01 2018. doi: 10.

1371/journal.pcbi.1005872. URL https://doi.org/10.1371/

journal.pcbi.1005872.

S. Mangul, L. S. Martin, A. Hoffmann, M. Pellegrini, and E. Eskin.

Addressing the digital divide in contemporary biology: Lessons

from teaching unix. Trends in Biotechnology, 35(10):901–903,

2017. ISSN 0167-7799. doi: https://doi.org/10.1016/j.tibtech.

2017.06.007. URL https://www.sciencedirect.com/science/

article/pii/S0167779917301567.

L. McInnes, J. Healy, and J. Melville. UMAP: Uniform Manifold

Approximation and Projection for Dimension Reduction. ArXiv

e-prints, 2018.

A. A. T. Naqvi, K. Fatima, T. Mohammad, U. Fatima,

I. K. Singh, A. Singh, S. M. Atif, G. Hariprasad, G. M.

Hasan, and I. Hassan. Insights into sars-cov-2 genome,

structure, evolution, pathogenesis and therapies: Structural

genomics approach. Biochimica et Biophysica Acta (BBA)

- Molecular Basis of Disease, 1866(10):165878, 2020. ISSN

0925-4439. doi: https://doi.org/10.1016/j.bbadis.2020.165878.

URL https://www.sciencedirect.com/science/article/pii/

S092544392030226X.

S. B. Needleman and C. D. Wunsch. A general method applicable

to the search for similarities in the amino acid sequence

of two proteins. Journal of Molecular Biology, 48(3):443–

453, 1970. ISSN 0022-2836. doi: https://doi.org/10.1016/

https://github.com/IB-ULFRI
https://github.com/IB-ULFRI
https://doi.org/10.1080/00461520.1991.9653139
https://doi.org/10.1080/00461520.1991.9653139
https://doi.org/10.1371/journal.pcbi.1005871
https://doi.org/10.1371/journal.pcbi.1005871
https://doi.org/10.1371/journal.pcbi.1005620
https://doi.org/10.1038/s41586-020-2169-0
https://doi.org/10.1145/1041624.1041659
https://doi.org/10.1145/1041624.1041659
https://doi.org/10.1371/journal.pcbi.1005872
https://doi.org/10.1371/journal.pcbi.1005872
https://www.sciencedirect.com/science/article/pii/S0167779917301567
https://www.sciencedirect.com/science/article/pii/S0167779917301567
https://www.sciencedirect.com/science/article/pii/S092544392030226X
https://www.sciencedirect.com/science/article/pii/S092544392030226X
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