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Abstract. Many real-world data sets contain a temporal component or
include transitions from state to state. For exploratory data analysis, we
can present these high-dimensional data sets in two-dimensional maps,
using embeddings of data objects under exploration and representing
their temporal relations with directed edges. Most existing dimensional-
ity reduction techniques, such as t-SNE and UMAP, disregard the tem-
poral or relational nature of the data during embedding construction,
leading to cluttered visualizations obscuring potentially interesting tem-
poral patterns. To address this issue, we introduce Directional Coherence
Loss (DCL), a differentiable loss function that we can incorporate into
existing dimensionality reduction techniques. We have designed DCL to
highlight the temporal aspects of the data, revealing temporal patterns
that might otherwise remain unnoticed. By encouraging local directional
coherence of the directed edges, the DCL produces more temporally-
meaningful and less-cluttered visualizations. We demonstrate the effec-
tiveness of our approach on a real-world multivariate time-series data
set tracking the progression of the COVID-19 pandemic in Slovenia. We
show that incorporating the DCL into the t-SNE algorithm elucidates
the time progression of the pandemic in the embedding and reveals inter-
esting cyclical patterns otherwise hidden in standard embeddings.

Keywords: Temporal-data visualization · Dimensionality reduction ·
Data visualization

1 Introduction

A common method for analyzing the structure of high-dimensional data involves
representing it in two-dimensional, point-based visualizations. We can use dimen-
sionality reduction approaches such as principal component analysis, multi-
dimensional scaling, or t-SNE to obtain such data maps. Additionally, we can
overlay these data maps with arrows indicating temporal dependence between
data points to present temporal relations between data points. This approach has
been used extensively for the visualization of dynamic graphs [4], multi-variate
time-series [1], and gene-expression data [5].
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Existing approaches for visualizing temporal data via two-dimensional
embeddings rely primarily on off-the-shelf embedding techniques, which do not
incorporate the temporal aspects of the data. Commonly-used dimensionality
reduction approaches, however, may be semantically constrained. Principal com-
ponent analysis (PCA) [10], for example, relies on the linear transformation of
attribute space and may fail to reveal complex patterns with non-linear inter-
actions of input features. Non-linear data embedding techniques, such as multi-
dimensional scaling [3], t-SNE [6], and UMAP [7], may overcome this limitation
and introduce distortions into the embedding. None of these techniques, however,
explicitly incorporates the available temporal information into the embedding
construction process, resulting in embeddings that fail to reflect or even obscure
the temporal patterns in the underlying data.

This report introduces the directional coherence loss (DCL), which integrates
available temporal information into the embedding construction process. The
result of DCL is embeddings designed to facilitate the discovery of temporal
patterns in the two-dimensional embedding space. The DCL is differentiable, and
we can incorporate it into existing dimensionality reduction techniques. Adding
the DCL to the existing data embedding approach reveals temporal patterns in
the resulting embeddings, aiding in discovering temporal patterns in the data.

2 Related Work

There are a plethora of approaches that we can use for the visualization of
high-dimensional, temporal data. Rauber et al. [11] developed Dynamic t-SNE,
which constructs a series of t-SNE embeddings and stacks them stacked along a
third dimension corresponding to time. A similar approach has been proposed
for UMAP, termed AlignedUMAP [7].

Alternatively, van den Elzen et al. [4] portray the progression of time in two-
dimensional embeddings by connecting data points with arrows. Their approach
focuses on visualizing dynamic graphs. At each point in time, the graph adja-
cency matrix is treated as a high-dimensional data point. This high-dimensional
collection of graph snapshots is subsequently embedded into a two-dimensional
visualization using an off-the-shelf embedding technique. Ali et al. [1] apply
a similar approach to multivariate time-series data, where each sliding time
window is treated as a single high-dimensional data point. In this way, they
embed temporal sequences into two dimensions, where arrows connect consecu-
tive time points. Unlike dynamic t-SNE and AlignedUMAP, which construct a
three-dimensional embedding by stacking multiple two-dimensional embeddings
along a time dimension, these approaches illustrate the entire temporal progres-
sion into two dimensions and indicate dependence using arrows.

In bioinformatics, single-cell RNA velocity [5] may accompany more standard
gene expression data and requires a different visualization approach. Each data
point corresponds to the gene expression of a single cell, characterized by tens
of thousands of genes. Then, for each cell, single-cell RNA velocity estimates the
likely transitions between different cell states, for instance, during differentiation.
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The resulting visualization typically consists of a two-dimensional embedding
constructed using t-SNE or UMAP overlaid with arrows to indicate likely cell-
to-cell transitions. This approach is conceptually similar to van den Elzen et
al. [4] and Ali et al. [1], where we deal only with a single time-step for every cell.

Another notable approach, Time Curves [2], offers general guidelines for visu-
alizing the temporal progression of a single entity. The framework may be viewed
as a generalization of the work by Ali et al. [1], allowing for arbitrary time steps
between snapshots.

3 Methods

Consider a high-dimensional data set X ∈ R
N×d, where N is the number of

data points and d is the dimensionality of each data point. Let G be a directed
graph G = (V,E), where V denotes the set of vertices vi corresponding to
individual data points xi. E is the set of edges eij representing the temporal
connections between data points i and j. When visualizing high-dimensional
data sets, our primary objective is to find a low-dimensional embedding Y ∈
R

N×2 that accurately reflects the topological features of X. In two-dimensional
visualizations, we represent the connections eij as directed line segments pij

(depicted as arrows) linking two related data points i and j in the embedding
space such that pij = [yi, yj ].

3.1 t-SNE

t-distributed stochastic neighbor embedding (t-SNE) is a non-linear dimension-
ality reduction technique commonly used to visualize high-dimensional data [6].
t-SNE aims to find a low-dimensional representation Y such that if two data
points are close in the high-dimensional space X, then they are also close in the
low-dimensional space Y.

Formally, the t-SNE algorithm aims to find a low-dimensional representa-
tion Y∗, such that the Kullback-Leibler (KL) divergence between similarities
P between data points in the high-dimensional space X and the similarities Q
between data points in the low-dimensional space Y is minimized, such that

Y∗ = argmin
Y

KL(P || Q). (1)

The similarities P = [pij ] between data points in X are obtained using the
Gaussian kernel,

pij =
pj|i + pi|j

2N
, pj|i =

exp
(−D(xi,xj)/2σ2

i

)
∑

k �=i exp (−D(xi,xk)/2σ2
i )

, pi|i = 0, (2)

where D is some distance measure and the bandwidth of each Gaussian kernel
σi is selected such that the perplexity u of each conditional distribution matches
a user-specified parameter value,

log (u) = −
∑

j

pj|i log
(
pj|i

)
(3)
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In the low-dimensional representation Y, the similarities Q = [qij ] are charac-
terized by the t-distribution,

qij =

(
1 + ||yi − yj ||2

)−1

∑
k �=l (1 + ||yk − yl||2)−1 , qii = 0. (4)

3.2 Directional Coherence Loss (DCL)

The key idea behind the directional coherence loss (DCL) is that arrows close
to one another in the embedding space should point in approximately the same
direction. Since each arrow is defined as a line segment parameterized by points
yi and yj , we can achieve this directional coherence by adjusting the positions
of points yi and yj accordingly.

Let uij be the unit vector corresponding to the line segment pij = [yi, yj ],

uij = ũij/||ũij ||, ũij = yj − yi (5)

Then, for each pair of edges eij and ekl in E, we can determine the directional
coherence of their corresponding arrows in the embedding by computing the dot
product uij · ukl = ||uij || ||ukl|| cos θ, where θ denotes the angle between the
two vectors. In our case ||uij || = ||ukl|| = 1, so their dot product simplifies to
uij ·ukl = cos θ. When uij and ukl point in the same direction, their dot product
is 1. Conversely, when uij and ukl point in opposite directions, their dot product
is −1. Therefore, to achieve good directional coherence for any pair of arrows in
E, we must maximize the dot product of their corresponding directional vectors.

To make directional coherence compatible with existing dimensionality reduc-
tion loss functions, we convert the directional coherence into a strictly positive
minimization loss. To convert the maximization into a minimization objective,
we multiply the equation with −1. To enforce strict-positivity and avoid negative
penalties, we add a +1 term to the above formulation and shift the domain from
[−1, 1] to [0, 2]. Additionally, we have found it beneficial to square the resulting
equation, leading to faster convergence and more visually appealing visualiza-
tions. The directional coherence loss between edges pair of edges eij and ekl then
becomes

DCL(pij ,pkl) = (− (uij · ukl) + 1)2 (6)

We penalize only nearby arrow pairs in order to enforce the local penalization
of the DLC. The distance between two line segments pij = [yi, yj ] and pkl =
[yk, yl] is defined as

d(pij ,pkl) = argmin
s,t

|| [s · yi + (1 − s) · yj ] − [t · yk + (1 − t) · yl] ||, (7)

where s, t ∈ [0, 1]. Intuitively, their distance corresponds to the distance between
the two closest points on these line segments. If the line segments intersect, then
their distance is 0.
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We penalize nearby arrow pairs using a Gaussian kernel on the obtained
pairwise line-segment distances,

w(pij ,pkl) =
1√
2πσ2

exp
(−d(pij ,pkl)/2σ2

)
, (8)

where σ2 is the variance of the Gaussian distribution. The variance σ2 determines
the region around each arrow where we wish the arrows to point in the same
direction. This parameter can greatly affect the final embedding, as a large value
of σ2 will enforce the DCL across the entire embedding. In contrast, small values
of σ2 will have a limited effect on the point positions. It is also worth noting
that this parameter should depend on the scale of the embeddings, which can
change during optimization and vary across different dimensionality reduction
algorithms. In our experiments, we use σ2 = 1.

Combining the directionality penalty from Eq. 6 and the weights from Eq. 8,
we obtain the final directional coherence loss,

LDCL =
1

(|E|
2

)
∑

eij∈E

∑

ekl∈E

w(pij ,pkl) (− (uij · ukl) + 1)2 , (i, j) �= (k, l). (9)

We can incorporate the DCL loss into various dimensionality reduction meth-
ods. In our case, we augment the t-SNE algorithm with the DCL loss,

L = Lt-SNE + λLDCL (10)

where λ is the trade-off parameter between the two loss functions. In our exper-
iments, we used λ = 10.

4 Results and Discussion

Below, we demonstrate the conceptual idea and expected results of our approach
using a toy example. Additionally, we include a real-world case study on the
progression of the COVID-19 pandemic in Slovenia. We conclude this section
with a discussion of the potential shortcomings and limitations of the proposed
approach.

4.1 Toy Example

We first consider a toy example to demonstrate that adding the DCL to the
t-SNE dimensionality reduction algorithm elucidates trajectories or transitions
between different clusters. This synthetic data set consists of seven distinct,
non-overlapping clusters at equal distances from one another, each contain-
ing 50 points sampled from unit-Gaussian distributions. To simulate transitions
between clusters, we connect each point from a given cluster c to a randomly
chosen point from the subsequent cluster c+1. The data points in the last cluster
from a sequence of connected clusters are connected to the data points from the
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first cluster. This toy example can be thought of as a cyclic process containing
seven distinct states where transitions are only possible between adjacent states.
This may correspond to, for instance, single-cell data containing gene expression
profiles corresponding to four different cell-cycle states in cell division.

We optimize the embedding using batch gradient descent as implemented
in pytorch [9] for 10,000 iterations using a learning rate of 10. We use
ReduceLROnPlateau to reduce the learning rate once the loss has not improved
for 3,000 iterations. We use a perplexity value of 30 in the t-SNE loss function.

Standard t-SNEa b t-SNE with DCL
t-

SN
E 

2

t-SNE 1

t-
SN

E 
2

t-SNE 1

Fig. 1. The toy example demonstrates that incorporating the directional coherence loss
(DCL) can help highlight the temporal transitions between data points. We construct
a standard t-SNE embedding in (a), which can recover the seven distinct clusters.
However, the arrows between clusters cross over one another, making it challenging to
observe the underlying cyclic pattern. Incorporating the DCL in (b) helps untangle
the crossing arrows and highlights the cyclic pattern in the underlying data set while
still recovering the seven clusters.

Figure 1a shows that while t-SNE can recover the seven distinct clusters from
the high-dimensional space, overlaying the embedding with arrows clutters the
visualization, concealing the cyclic pattern in the underlying data set. On the
other hand, augmenting the standard t-SNE loss function with the DCL untan-
gles the arrows and highlights the cyclic pattern as shown in Fig. 1b. Combin-
ing the t-SNE dimensionality reduction algorithm, which can identify the dis-
tinct clusters, with the DCL, which positions the clusters so that the transitions
between the clusters are most apparent, considerably enhances the interpretabil-
ity of the embedding and the underlying temporal pattern.

The t-SNE algorithm aims to preserve distances to a user-specified num-
ber of neighbors. However, accurately preserving distances obtained from high-
dimensional data sets in a two-dimensional embedding is only possible in some
of the most straightforward data sets. Using a perplexity value of 30, t-SNE
does its best to preserve distances to each point’s 30 nearest neighbors in the
high-dimensional space. However, t-SNE also attempts to preserve distances to
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other data points, albeit to a much lesser extent. In our synthetic data set, each
cluster comprises 50 data points, meaning that, in addition to the points in the
same cluster, t-SNE also attempts to preserve at least some distances from the
other clusters. In Fig. 1a, the purple cluster is positioned centrally to other clus-
ters, roughly at equal distances from the remaining clusters. Here, t-SNE can
preserve the distances reasonably well. On the other hand, the top-left yellow
cluster appears close to the central purple cluster and the light-green cluster
below it, suggesting that these clusters are closer to one another than to, for
instance, the right-most green cluster. However, by design, all seven clusters are
at equal distances from one another in the high-dimensional space and cannot
be accurately embedded in a two-dimensional plane. Consequently, the between-
cluster distances in all nearest-neighbor-based two-dimensional embeddings are
often meaningless and should never be taken at face value. This is a general
limitation of dimensionality reduction techniques and has been documented in
numerous reviews, e.g., by Nonato and Aupetit [8].

Note, however, that incorporating the DCL necessarily reduces the embed-
ding quality regarding the t-SNE loss function. For instance, although the dis-
tances between clusters were poorly preserved in Fig. 1a, the between-cluster
distance distortions were arguably less severe than in Fig. 1b, where each cluster
is closest to its preceding and subsequent cluster, and progressively further from
the remainder. This layout indicates that adjacent clusters are more similar than
non-adjacent ones when, in reality, all clusters are at equal distances from one
another. Nonetheless, despite this embedding being quantitatively worse at pre-
serving distances between clusters, we argue that it provides a more informative
visualization. When constructing embeddings for high-dimensional data sets, dis-
tances between clusters in the embedding should never be taken at face value,
regardless of the dimensionality reduction technique. While the spatial relation-
ships between clusters can aid in hypothesis generation, they should always be
validated using alternative techniques.

Given that the spatial relationships between clusters lack informative value
and can even mislead, it would be more sensible to position clusters in a tem-
porally coherent manner. In this way, at least, the temporal relationships are
more clearly highlighted, and the user is more directly aware of the limitations
of interpreting spatial relationships, an often overlooked limitation of non-linear
dimensionality methods. This way, the embedding algorithm can still recover
well-defined clusters of data points in the high-dimensional space. Still, we explic-
itly decide that the spatial positions will reflect the temporal component of the
embedding and not the spatial relationships between clusters.

4.2 COVID-19 Pandemic in Slovenia

We obtain Slovenian national data on the COVID-19 pandemic spanning from
the beginning of March 2020 up until the end of March 20221. Although the data

1 National Slovenian data on the COVID-19 pandemic is available at https://covid-
19.sledilnik.org/en/stats.

https://covid-19.sledilnik.org/en/stats
https://covid-19.sledilnik.org/en/stats
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includes many variables, we limit our analysis to three time-series variables: the
daily number of tests performed, the daily number of confirmed cases, and the
daily number of hospital patients. We plot the individual time series in Fig. 2a.
The line plots indicate the progression of the COVID-19 pandemic in Slovenia,
with visible distinct phases of the pandemic.

To construct a two-dimensional visualization of the pandemic progression
through time, we follow the approach from Ali et al. [1]. We first convert this
multi-variate time series into a high-dimensional data set by constructing vectors
from a sliding window with window size 7. Thus, the 160 21-dimensional data
points represent one week of the pandemic. We connect data points correspond-
ing to subsequent weeks with arrows.

We construct a t-SNE visualization of the high-dimensional data set in
Fig. 2b. While the plot indicates a clear progression through time, the plot fails
to reveal any underlying patterns in the data. Figure 2c depicts the results of our
approach. While the embedding has not changed much structurally, the visual-
ization reveals two clear cyclic patterns in the upper-right and lower regions of
the embedding space.

We investigate the top-right cyclic pattern in Fig. 2c. Inspecting the two
corresponding time spans highlighted in the original time series in Fig. 2a, it
appears that this cyclic pattern coincides with high hospitalization rates, mod-
erate levels of testing, and a moderate number of positive tests. Interestingly,
both periods occurred during the spring season, one in 2021 and one in 2022.
The first of these periods was substantially longer, lasting to the end of May,
while the second lasted only a month and a half. It is also interesting to inspect
which COVID-19 variants were prevalent in the country at that time2. During
the first period in 2021, we were dealing with the initial 20A strain. The second
period coincides with the transition from the Delta strain to the Omicron strain.
The highlighted region in Fig. 2a corresponds to the final weeks of the Delta
variant, which had higher mortality rates than the Omicron variant [12]. These
strain prevalence and dynamics may explain the subsequent peak in the positive
test cases and lower hospitalization rate following the highlighted region.

Finally, adding the DCL to the t-SNE algorithm elucidates the time progres-
sion of the time series. For instance, in Figs. 2e and 2e, we focus on a particular
region of the embedding space, where it first appears as though the standard
t-SNE embedding better highlights the temporal progression than with the addi-
tion of the DCL. Upon closer inspection, however, it is challenging to trace the
arrows denoting the temporal progression of the pandemic as the arrow seems
to veer off to the right, then cycle back, only to make another cycle back to the
originating point. It is unclear which of these cycles occurred first and which
second. With the addition of the DCL, it becomes easy to trace the temporal
progression, as indicated by the red arrow drawn on top of the arrows to facilitate
reading the embedding.

2 The prevalence of the different COVID-19 variants in different countries is available
at https://covariants.org/per-country.

https://covariants.org/per-country


212 P. G. Poličar and B. Zupan

Fig. 2. We plot the progression of the COVID-19 pandemic in Slovenia from March
2020 to March 2022. (a) depicts individual line plots of the three variables under con-
sideration. We construct a t-SNE embedding of the multivariate time series in (b) and
augment the t-SNE loss function with our directional coherence loss in (c). Individual
points correspond to one week of the time series. We indicate the chronological progres-
sion by point colors where dark, purple colors correspond to the start of the pandemic,
while lighter, yellow colors coincide with later stages of the pandemic. We connect
consecutive weeks by arrows. Incorporating the directional coherence loss uncovers
interesting temporal patterns in the visualization. We highlight one such cyclic region
in (d) and mark the corresponding time spans in the original line plots. Panels (e) and
(f) provide close-up views of regions of the original and augmented t-SNE embedding.
We clarify the time progression by superimposing a red arrow onto the plot.
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4.3 Hyperparameter and Evaluation Considerations

Incorporating the DCL into existing algorithms introduces two additional hyper-
parameters to the visualization procedure. The kernel bandwidth σ determines
the radius in which the DCL is enforced. A larger bandwidth emphasizes global
coherence, while a lower value results in more locally consistent arrows. Addition-
ally, the parameter λ determines the trade-off between the visualization loss and
the DCL. Placing a greater emphasis on temporal coherence highlights temporal
progression, enabling a clearer visualization of temporal dependencies. However,
this may obscure the underlying structure in the resulting visualization. There-
fore, finding optimal parameter settings for the DCL is crucial to achieving a
well-balanced visualization and likely varies from dataset to dataset.

We evaluate our approach using a toy dataset designed to illustrate the con-
ceptual motivation behind our method. While this example supports the validity
of our approach, real-world data may not display such straightforward temporal
patterns. For a more comprehensive evaluation, we could create other synthetic
datasets to test various scenarios and temporal patterns. While we could also
apply our approach to real-world, multivariate time-series data, the interpre-
tation of such study outcomes might be subjective. An ideal evaluation would
involve an objective measure of visualization quality. However, devising such
a quantitative metric is challenging even for non-temporal, two-dimensional
embeddings. Adding temporal coherence to this metric introduces additional
complexities and challenges.

5 Conclusion

The work presented here was motivated by the difficulties of identifying temporal
patterns in presentations of multi-variate data in a low-dimensional, non-linear
embedding. There, we may expose the temporal relations using arrows to indicate
the transitions. These visualization elements often clutter the data presentations
and obscure the underlying temporal patterns. Existing dimensionality reduction
techniques do not account for the temporal nature of the data. To this end,
we propose the directional coherence loss (DCL), which can be incorporated
into existing dimensionality reduction techniques. Uniquely, the DCL explicitly
integrates the temporal information into the embedding construction process
and produces embeddings highlighting the temporal patterns in the underlying
data more clearly.

This presented work opens up several avenues for future research. First, the
DCL enforces directional coherence by affecting the positions of the data points
in the two-dimensional embedding. While this approach is viable for simpler
data sets, such an arrangement may be difficult to achieve in the presence of
more complex patterns. Secondly, the DCL is applicable when the arrows begin
at one data point and end at another. This is not the case in data such as
those from bioinformatics that include RNA velocity, where arrows originate
from data points but end in an average position of multiple data points. The
DCL must be extended to make it applicable to this case. Thirdly, in its current
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form, the DCL exhibits quadratic scaling in the number of connections between
data points, making it unsuitable for visualizing large data sets. Due to the local
nature of the DCL, approximation schemes could be developed which would
only compute the interaction between nearby line segments. Lastly, we could
find better optimization schemes leading to faster convergence.
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source, provide a link to the Creative Commons license and indicate if changes were
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chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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