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Abstract
Dimensionality reduction techniques, such as t-SNE, can construct informative visualiza-
tions of high-dimensional data. When jointly visualising multiple data sets, a straightfor-
ward application of these methods often fails; instead of revealing underlying classes, the 
resulting visualizations expose dataset-specific clusters. To circumvent these batch effects, 
we propose an embedding procedure that uses a t-SNE visualization constructed on a ref-
erence data set as a scaffold for embedding new data points. Each data instance from a 
new, unseen, secondary data is embedded independently and does not change the reference 
embedding. This prevents any interactions between instances in the secondary data and 
implicitly mitigates batch effects. We demonstrate the utility of this approach by analyzing 
six recently published single-cell gene expression data sets with up to tens of thousands of 
cells and thousands of genes. The batch effects in our studies are particularly strong as the 
data comes from different institutions using different experimental protocols. The visuali-
zations constructed by our proposed approach are clear of batch effects, and the cells from 
secondary data sets correctly co-cluster with cells of the same type from the primary data. 
We also show the predictive power of our simple, visual classification approach in t-SNE 
space matches the accuracy of specialized machine learning techniques that consider the 
entire compendium of features that profile single cells.
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1 Introduction

Two-dimensional embeddings and their visualizations may assist in the analysis and inter-
pretation of high-dimensional data. Intuitively, two data instances should be co-located 
in the resulting visualization if their multi-dimensional profiles are similar. For this task, 
non-linear embedding techniques such as t-distributed stochastic neighbor embedding 
(t-SNE) (van der Maaten & Hinton, 2008) or uniform manifold approximation and projec-
tion (McInnes & Healy, 2018) have recently complemented traditional data transforma-
tion and embedding approaches such as principal component analysis (PCA) (Wold et al., 
1987) and multi-dimensional scaling (Cox & Cox, 2008). While useful for visualizing data 
from a single coherent source, these methods may encounter problems with multiple data 
sources. Here, when performing dimensionality reduction on a merged data set, the result-
ing visualizations would typically reveal source-specific clusters instead of grouping data 
instances of the same class, regardless of data sources. This source-specific confounding is 
often referred to as domain shift (Gopalan et al., 2011), covariate shift (Bickel et al., 2009) 
or data set shift (Quionero-Candela et  al., 2009). In bioinformatics, the domain-specific 
differences are more commonly referred to as batch effects (Butler et al., 2018; Haghverdi 
et al., 2018; Stuart et al., 2019).

Massive, multi-variate biological data sets often suffer from these source-specific biases. 
The focus of this work is single-cell genomics, a domain that was selected due to high bio-
medical relevance and abundance of recently published data. Single-cell RNA sequenc-
ing (scRNA-seq) data sets are the result of isolating RNA molecules from individual cells, 
which serve as an estimate of the expression of cell’s genes. The studies can exceed thou-
sands of cells and tens of thousands of genes, and typically start with cell type analysis. 
Here, it is expected that cells of the same type would cluster together in two-dimensional 
data visualization (Wolf et al., 2018). For instance, Fig. 1a shows t-SNE embedded data 

a b

Fig. 1  Batch effects are a driving factor of variation between the data sets. We depict a t-SNE visualization 
of two pairs of data sets. In each pair, the data sets share cell types, so we would expect cells from the refer-
ence data (blue) to mix with the cells in a secondary data sets (orange). Instead, t-SNE clusters data accord-
ing to the data source



723Machine Learning (2023) 112:721–740 

1 3

from mouse brain cells originating from the visual cortex (Hrvatin et  al., 2018) and the 
hypothalamus (Chen et al., 2017). The figure reveals distinct clusters but also separates the 
data from the two brain regions. These two regions share the same cell types and—con-
trary to the depiction in Fig. 1a—we would expect the data points from the two studies to 
overlap. Batch effects similarly prohibit the utility of t-SNE in the exploration of pancreatic 
cells in Fig. 1b, which renders the data from a pancreatic cell atlas (Baron et al., 2016) and 
similarly-typed cells from diabetic patients (Xin et al., 2016). Just like with data from brain 
cells, pancreatic cells cluster primarily by data source, again resulting in a visualization 
driven by batch effects.

Current solutions to embedding the data from various data sources address the batch 
effect problems up-front. The data is typically preprocessed and transformed such that 
the batch effects are explicitly removed. Recently proposed procedures for batch effect 
removal include canonical correlation analysis (Butler et  al., 2018) and mutual nearest-
neighbors (Haghverdi et  al., 2018; Stuart et  al., 2019). In these works, batch effects are 
deemed removed when cells from different sources exhibit good mixing in a t-SNE visuali-
zation. The elimination of batch effects may require aggressive data preprocessing which 
may blur the boundaries between cell types. Another problem is also the inclusion of any 
new data, for which the entire analysis pipeline must be rerun, usually resulting in a differ-
ent embedding layout and clusters that have little resemblance to original visualization and 
thus require reinterpretation.

We propose a direct solution of rendering t-SNE visualizations to address batch effects. 
Our approach treats one of the data sets as a reference and embeds the cells from another, 
secondary data set to a reference-defined low-dimensional space. We construct a t-SNE 
embedding using the reference data set, which is then used as a scaffold to embed the sec-
ondary data. The key idea underpinning our approach is that secondary data points are 
embedded independently of one another.

Independent embedding of each secondary datum causes the clustering landscape to 
depend only on the reference scaffold, thus removing data source-driven variation. In other 
words, when including new data, the scaffold inferred from the reference data set is kept 
unchanged and defines a “gravitational field”, independently driving the embedding of 
each new instance. For example, in Fig. 2, the cells from the visual cortex define the scaf-
fold (Fig. 2a) into which we embed the cells from the hypothalamus (Fig. 2b). Unlike in 
their joint t-SNE visualization (Fig.  1a), the hypothalamic cells are dispersed across the 
entire embedding space and their cell type correctly matches the prevailing type in refer-
ence clusters.

The proposed solution implements a mapping of new data into an existing t-SNE visu-
alization. While the utility of such an algorithm was already hinted at in recent publication 
(Kobak & Berens, 2019), we here provide its practical and theoretically-grounded imple-
mentation. Considering the abundance of recent publications on batch effect removal, we 
present surprising evidence that a computationally more direct and principled embedding 
procedure solves the batch effects problem when constructing interpretable visualizations 
from different data sources.

Our contributions are twofold: 

1. We introduce a theoretically-grounded extension of the t-SNE visualization algorithm 
that supports embedding new data points into existing reference visualizations. Our 
extension is readily incorporated into existing approximation schemes, enabling its 
applications to large data sets. We show that optimization using the default t-SNE 
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parameters is highly unstable and proposes parameter values leading to stable conver-
gence.

2. We show that the proposed t-SNE extensions can mitigate batch effects in the data sets 
and demonstrate this feature in treating single-cell gene expression data.

2  Related work

Batch effects are systematic biases between biological data sets caused by technical fac-
tors in the data collection and preparation process. It has been well documented that even 
small differences in the experimental setup of cell-dissociation, handling protocols, library-
preparation technologies, or sequencing platforms can significantly affect the resulting 
gene-expression measurements (Tung et al., 2017; Hicks et al., 2018). When performing 
downstream comparative analyses, batch effects may confound real biological variability 
and introduce spurious correlations, leading to misleading conclusions.

Due to their severity, numerous computational approaches have been proposed to 
directly remove batch effects when performing joint analysis on two or more data sets. 
Batch effect removal is typically performed as a preprocessing step. Existing approaches 
involve either modifying the original data matrix or finding a joint lower-dimensional 
space, where batch effects are removed. Current methods broadly fall into two categories: 

1. Mutual nearest neighbor-based approaches aim to identify matching populations of 
cells across the data sets, using them to either find and correct the data sets (Haghverdi 
et al., 2018) or directly construct a batch-corrected k-nearest neighbor graph used in 
downstream analyses (Park et al., 2018).

a b

Fig. 2  A two-dimensional embedding of a reference containing brain cells (a) and the corresponding map-
ping of secondary data containing hypothalamic cells (b). The majority of hypothalamic cells were mapped 
to their corresponding reference cluster. For instance, astrocyte cells marked with red on the right were 
mapped to an oval cluster of same-typed cells denoted with the same color in the visualization on the left
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2. Embedding multiple data sets into a joint lower-dimensional space, where batch effects 
are removed. Some of these approaches opt for linear dimensionality-reduction methods 
such as PCA (Korsunsky et al., 2019) or MultiCCA (Butler et al., 2018), while others 
employ non-linear techniques from deep learning (Li et al., 2020; Lopez et al., 2018). 
Still, other approaches use a combination of the two (Stuart et al., 2019; Hie et al., 2019). 
Note that these approaches bear similarity with transfer learning (Weiss et al., 2016), 
which has also been used in domain adaptation (Liu et al., 2019).

Besides computational techniques, approaches for the removal of batch effects can also 
use domain knowledge. For example, in the analysis of single-cell gene expression data, 
these approaches act on a subset of representative marker genes for a specific cell type. 
Instead of considering the entire gene-expression profile, which may be noisy and affected 
by batch effects, the idea is to profile the cells with a handful of genes that can collectively 
determine the cell type. One such procedure is scMap-Cluster, a consensus-based k-near-
est neighbor method tailored explicitly to scRNA-seq gene-expression data (Kiselev et al., 
2018). scMap-Cluster uses three correlation-based distance measures and uses a voting 
scheme to perform classification. To identify novel cell types, scMap-Cluster heuristically 
determines a distance threshold.

Our approach to batch effect removal falls into the second category, as we lose the batch 
effects through dimensionality reduction. Alongside scMap-Cluster, we also benefit from 
a standard single-cell data preprocessing pipeline that profiles the cells with representative 
genes. Unlike other batch effect removal procedures, the primary purpose of our approach 
is not classification but the visualization of the various cell-types. If required, we can apply 
a k-nearest neighbor classifier to the resulting visualizations to obtain accuracy estimates 
and compare our approach to other classification methods. However, the classification 
aspect of our approach is secondary: the primary purpose of t-SNE is to aid in scientists in 
exploratory data analysis and help them better understand the underlying data landscape.

3  Methods

We describe an end-to-end pipeline that uses fixed t-SNE coordinates as a scaffold for 
embedding new (secondary) data, enabling joint visualization of multiple data sources 
while mitigating batch effects. Our proposed approach starts by using t-SNE to embed a 
reference data set, with the aim of constructing a two-dimensional visualization to facili-
tate interpretation and cluster classification. Then, the placement of each new sample is 
optimized independently via the t-SNE loss function. Independent treatment of each data 
instance from a secondary data set disregards any interactions present in that data set, and 
prevents the formation of clusters that would be specific to the secondary data. Below, we 
start with a summary of t-SNE and its extensions (Sect. 3.1), introducing the relevant nota-
tion, upon which we base our secondary data embedding approach (Sect. 3.2).

3.1  Data embedding by t‑SNE and its extensions

Local, non-linear dimensionality reduction by t-SNE is performed as follows. Given a 
multi-dimensional data set � =

{
�1, �2,… , �N

}
∈ ℝ

D where N is the number of data 
points in the reference data set, t-SNE aims to find a low dimensional embedding 
� =

{
�1, �2,… , �N

}
∈ ℝ

d where d ≪ D , such that if points �i and �j are close in the 
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multi-dimensional space, their corresponding embeddings �i and �j are also close. Since 
t-SNE is primarily used as a visualization tool, d is typically set to two. The similarity 
between two data points in t-SNE is defined as:

where D is a distance measure. This is then symmetrized to

The bandwidth of each Gaussian kernel �i is selected such that the perplexity of the distri-
bution matches a user-specified parameter value

where H(Pi) is the Shannon entropy of Pi,

Different bandwidths �i enable t-SNE to adapt to the varying density of the data in the 
multi-dimensional space.

The similarity between points �i and �j in the embedding space is defined using the 
t-distribution with one degree of freedom

The t-SNE method finds an embedding � that minimizes the Kullback-Leibler (KL) diver-
gence between � and �,

The time complexity needed to evaluate the similarities in Eq. 5 is O(N2) , making its appli-
cation impractical for large data sets. We adopt a recent approach for low-rank approxima-
tion of gradients based on polynomial interpolation which reduces its time complexity to 
O(N) . This approximation enables the visualization of massive data sets, possibly contain-
ing millions of data points (Linderman et al., 2019).

The resulting embeddings substantially depend on the value of the perplexity param-
eter. Perplexity can be interpreted as the number of neighbors for which the distances in 
the embedding space are preserved. Small values of perplexity result in tightly-packed 
clusters of points and effectively ignore the long-range interactions between clusters. 
Larger values may result in a more globally consistent visualizations—preserving dis-
tances on a large scale and organizing clusters in a more meaningful way—but can lead 
to merging small clusters and thus obscuring local aspects of the data (Kobak & Berens, 
2019).

(1)pj∣i =
exp

�
−

1

2
D(�i, �j)∕�

2
i

�

∑
k≠i exp

�
−

1

2
D(�i, �k)∕�

2
i

� , pi∣i = 0

(2)pij =
pj∣i + pi∣j

2N
.

(3)Perplexity = 2H(Pi)

(4)H(Pi) = −
∑

i

pj∣i log2(pj∣i).

(5)qij =

�
1 + ���i − �j��2

�−1

∑
k≠l

�
1 + ���k − �l��2

�−1 , qii = 0.

(6)C = KL(� ∣∣ �) =
∑

ij

pij log
pij

qij
.
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The trade-off between the local organization and global consistency may be achieved by 
replacing the Gaussian kernels in Eq. 1 with a mixture of Gaussians of varying bandwidths 
(Lee et al., 2015). Multi-scale kernels are defined as

where L is the number of mixture components as specified by the user. The bandwidths �i,l 
are selected in the same manner as in Eq. 1, but with a different value of perplexity for each 
l. In our experiments, we used a mixture of two Gaussian kernels with perplexity values 
of 50 and 500. A similar formulation of multi-scale kernels was proposed in Kobak and 
Berens (2019), and we found the resulting embeddings are visually very similar to those 
obtained with the approach described above (not shown for brevity).

When using t-SNE on larger data sets, the standard learning rate � = 200 has been 
shown to lead to slower convergence and requires more iterations to achieve consistent 
embeddings (Belkina et al., 2019). We follow the recommendation of Belkina et al.  and 
use a higher learning rate � = N∕12 when visualizing larger data sets.

3.2  Adding new data points to reference embedding

Our algorithm, which embeds new data points to a reference embedding, consists of esti-
mating similarities between each new point and the reference data and optimizing the 
position of each new data point in the embedding space. Unlike parametric models such 
as principal component analysis or autoencoders, t-SNE does not define an explicit map-
ping to the embedding space, and embeddings need to be found through loss function 
optimization.

The position of a new data point in embedding space is initialized to the median refer-
ence embedding position of its k nearest neighbors. While we found the algorithm to be 
robust to choices of k, we use k = 10 in our experiments.

We adapt the standard t-SNE formulation from Eqs. 1 and 5 with

where � =
{
�1, �2,… , �M

}
∈ ℝ

D where M is the number of samples in the secondary data 
set and � =

{
�1,�2,… ,�M

}
∈ ℝ

d . Additionally, we omit the symmetrization step in 
Eq.  2. This enables new points to be inserted into the embedding independently of one 
another. The gradients of �j with respect to the loss (Eq. 6) are:

In the optimization step, we refine point positions using batch gradient descent. We use an 
adaptive learning rate scheme with momentum to speed up the convergence, as proposed 
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1

L
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−
1
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)
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by Jacobs (1988) and van der Maaten (2014). We run gradient descent with momentum � 
of 0.8 for 250 iterations, where the optimization converged in all our experiments. The time 
complexity needed to evaluate the gradients in Eq. 10 is O(N ⋅M) , however, by adapting 
the same polynomial interpolation based approximation, this is reduced to O(max{N,M}) . 
The time complexity can further be reduced to O(M) by exploiting the fact that the refer-
ence embedding remains fixed.

Special care must be taken to reduce the learning rate � as the default value in most 
implementations ( � = 200 ) may cause points to “shoot off” from the reference embed-
ding. This phenomenon is caused due to the embedding to a previously defined t-SNE 
space, where the distances between data points and corresponding gradients of the opti-
mization function may be quite large. When running standard t-SNE, points are initial-
ized and scaled to have variance 0.0001. The resulting gradients tend to be very small dur-
ing the initial phase, resulting in stable convergence. When embedding new samples, the 
span of the embedding is much larger, resulting in substantially larger gradients, and the 
default learning rate causes points to move very far from the reference embedding. In our 
experiments, we found that decreasing the learning rate to � ∼ 0.1 produces stable solu-
tions. Alternatively, we can employ gradient clipping to achieve similar behaviour. This 
is especially important when using the interpolation-based approximation, which places a 
grid of interpolation points over the embedding space, where the number of grid points is 
determined by the span of the embedding. Clearly, if even one point “shoots off” far from 
the embedding, the number of required grid points may grow dramatically, increasing the 
runtime substantially. The reduced learning rate suppresses this issue, and does not slow 
the convergence because of the adaptive learning rate scheme, provided the optimization is 
run for a sufficient number of steps.

4  Experiments and discussion

We apply the proposed approach to t-SNE visualizations of single-cell data. Data in this 
realm include a variety of cells from specific tissues and are characterized through gene 
expression. In our experiments, we considered several recently published data sets where 
cells were annotated with the cell type. Our aim was to construct t-SNE visualizations 
where similarly-typed cells would cluster together, despite systematic differences between 
data sources. To that end, we focus on comparing different ways of using t-SNE rather than 
differences to embeddings like PCA or MDS, which have been substantially covered before 
(van der Maaten & Hinton, 2008; Becht et al., 2019). Below, we list the data sets used in 
our experiments, and display the resulting data visualizations. Due to the unique nature 
of single-cell data, we apply a specialized single-cell pipeline for all our experiments, as 
described in Appendix A. Finally, we discuss the success of the proposed approach in alle-
viating the batch effects.

4.1  Data

We use three pairs of reference and secondary single-cell data sets originating from differ-
ent organisms and tissues. The data in each pair were chosen so that the majority of cell 
types from the secondary data set were included in the reference set (Table 1). The cells in 
the data sets originate from the following three tissues: 
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Mouse brain.  The data set from Hrvatin et al. (2018) contains cells from the visual 
cortex exploring transcriptional changes after exposure to light. This 
was used as a reference for the data from Chen et al. (2017), contain-
ing cells from the mouse hypothalamus and their reaction to food dep-
rivation. From the secondary data, we removed cells with no corre-
sponding types in the reference: tanycytes, ependymal, epithelial, and 
unlabelled cells.

Human pancreas.  Baron et al. (2016) created an atlas of pancreatic cell types. We used 
this set as a reference for data from Xin et  al. (2016), who exam-
ined transcriptional differences between healthy and type 2 diabetic 
patients.

Mouse retina.  Macosko et al. (2015) created an atlas of mouse retinal cell types. We 
used this as a reference for the data from Shekhar et al. (2016), who 
built an atlas for retinal bipolar cells.

4.2  t‑SNE transform successfully alleviates batch effects

Figures 2, 3, and 4 show the embeddings of the reference data sets and their correspond-
ing embeddings of the secondary data sets. In all the figures, the cells from the secondary 
data sets were positioned in the cluster of same-typed reference cells, providing strong evi-
dence of the success of our approach. There are some deviations to these observations; for 
instance, in Fig. 2 several oligodendrocyte precursor cells (OPCs) were mapped to oligo-
dendrocytes. This may be due to differences in annotation criteria by different authors, or 
due to inherent similarities of these types of cells. Examples of such erroneous placements 
can be found in other figures as well, but are uncommon and constitute less then 5% of the 
cells (less than 5% in brain, 1% in pancreas and 2% in retina secondary data).

Notice that we could simulate the split between reference and secondary data sets using 
one data set only and perform cross-validation, however this type of experiment would not 
incorporate batch effects. We want to remind the reader that handling batch effects were cen-
tral to our endeavor and that the disregard of this effect could lead to overly-optimistic results 

Table 1  Data sets used in our experiments

The first data set in each pair (Hrvatin et al., Baron et al., and Macosko et al.) was used as a reference. We 
relied on the quality control and annotations from the original publication and report the number of cell 
types after preprocessing. The cell annotations were made consistent to annotations from the Cell Ontology 
(Bard et al., 2005). Notice that different RNA sequencing protocols were used to estimate gene expressions

Study Organism/tissue Protocol Cells Cell types Sparsity (%)

Hrvatin et al. Mouse brain inDrop 48,266 9 94
Chen et al. Drop-seq 14,437 6 93
Baron et al. Human pancreas inDrop 8569 9 91
Xin et al. SMARTer 1492 4 86
Macosko et al. Mouse retina Drop-seq 44,808 12 97
Shekhar et al. Drop-seq 27,499 5 96
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a b

Fig. 3  Embedding of pancreatic cells from Baron et  al. (2016) and cells from the same tissue from Xin 
et al. (2016). Just like in Fig. 2, the vast majority of the cells from the secondary data set were correctly 
mapped to the same-typed cluster of reference cells

a b

Fig. 4  An embedding of a large reference of retinal cells from Macosko et al. (2015) (a) and mapping of 
cells from a smaller study that focuses on bipolar cells from Shekhar et al. (2016) (b). We use colors con-
sistent with the study by
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and data visualizations strikingly different from ours. For example, compare the visualizations 
from Figs. 1a and 2b, or Figs. 1b and 3b.

4.3  Construction of a reference embedding

We use a number of additional, recently proposed modifications to enhance the t-SNE visu-
alization of the reference data set. Kobak and Linderman have shown that the global consist-
ency of embeddings produced by popular visualization algorithms are largely dependent on 
their initialization (Kobak & Linderman, 2021). By utilizing PCA-based initialization, t-SNE 
is able to achieve more meaningful layouts of the resulting clusters (Fig. 5b) as opposed to 
using randomly initialized embeddings (Fig. 5a). Another important extension is the use of 
multi-scale similarities, which, in addition to considering short range interactions, also models 
wider point neighborhoods. Coupled with PCA-based initialization, this produces even more 
meaningful visualizations where clusters form interpretable structures. For instance, consider 
Fig. 5c, which reveals two meaningful subgroups of GABAergic neurons, corresponding to 
their developmental origin, as discussed in Tasic et al. (2018), while this division is less appar-
ent when using PCA-based initialization alone in Fig. 5b.

We also observed the important role of gene selection in crafting the reference embedding 
spaces. We found that when selecting an insufficient number of genes, the resulting visualiza-
tions display overly-fragmented clusters. When the selection is too broad and includes lowly 
expressed genes, the subclusters tend to overlap. These effects can all be attributed to sparse-
ness of the data sets and may be intrinsic to single-cell data. In our studies, we found that 
selection of 3000 genes yields most informative visualizations (Fig. 6).

a b c

Fig. 5  A comparison of standard and multi-scale t-SNE on data from the mouse neocortex (Tasic et  al., 
2018). a Standard t-SNE using random initialization places clusters arbitrarily. The resulting clustering 
structure is not globally consistent, as clusters of the same type of cells are dispersed throughout the land-
scape. Non-Neuronal clusters, for instance, are mixed with clusters of GABAergic and Glutamaergic neu-
rons. b By utilizing a globally consistent initialization for t-SNE, the clusters are organized in a more mean-
ingful layout, where clusters of cells of the same type appear closer together. c Augmenting t-SNE with 
multi-scale similarities and using proper initialization provides a more meaningful layout of the clusters. 
Non-Neuronal and Endothelial cell types are now placed in the same region of the embedding. There are 
two clear sub-groups of GABAergic neurons corresponding to their developmental origins, which was not 
as apparent when using clever initialization alone
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4.4  Optimization is crucial to producing meaningful point embeddings

In principle, our theoretically-grounded embedding of secondary data into the scaffold 
defined by the reference embedding could be simplified with the application of the 
nearest neighbors-based procedure. For example, while describing a set of tricks for 
t-SNE (Kobak & Berens, 2019) proposed positioning new points into a known embed-
ding by placing them in the median position of their 10 nearest neighbors, where 
the neighborhood was estimated in the original data space. Notice that we use this 
approach as well, but only for the initialization of positions of new data instances that 
are subject to further optimization. Despite both nearest-neighbors search and t-SNE 
optimization can be computed in linear time, the former dominates the runtime (mouse 
retina example; 44,808 reference, 26,830 secondary cells, 9min NN-search, 13  s 
optimization).

Fig. 7 demonstrates a case where nearest neighbor-based positioning alone is insuf-
ficient. We construct a reference embedding using only neurons from Hrvatin et  al. 
(2018) (Fig. 7a) and use that to position neuronal cells from the data set from Camp-
bell et al. (2017). We utilize the weighted mean and median positions to initialize point 
positions from the secondary data set, as shown in Fig. 7b, c . After initialization, we 
optimize point positions using the procedure described above for 500 iterations. The 
resulting visualizations from both initializations are visually very similar, indicating 
stable convergence. We show one of the resulting visualizations in Fig. 7b.

Notice that both neighbor-based initialization schemes generally position data 
points such that their classification is unclear. Median-based initialization produces a 
sort of grid-like structure, while median based initialization positions the points almost 
continuously across the embedding space. Optimization reveals strong correspondence 
of several points to reference-defined clusters, while other points from the secondary 
data set are pushed away from their initial clusters, possibly indicating dissimilarity.

a b c

Fig. 6  Gene selection plays an important role when constructing the reference embedding. a Using too few 
genes results in fragmented clusters. b Using an intermediate number of genes reveals clustering mostly 
consistent with cell annotations. c Including all the genes may lead to under-clustering of the more special-
ized cell types. In our example, the neuronal subclusters are more clearly defined in (b)
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4.5  On requirement of a complete reference set

Our approach assumes that all cell types from the secondary data set are present in the 
reference. Intuitively, using t-SNE in such a way is conceptually similar to classification 
via k-nearest neighbor classifiers and is similarly limited. The method may fail to reveal 
unseen cell types in the secondary data set, likely positioning them arbitrarily close to 
unrelated clusters. In some instances, unknown cell types may be sufficiently different from 
the reference data that t-SNE will repel them from existing clusters. However, we caution 
that this approach is unreliable and depends heavily on the chosen preprocessing pipeline.

We illustrate this with Fig. 8, where we first fit create a reference embedding contain-
ing only neuronal cells from Hrvatin et al. (2018). We then select only non-neuronal cells 
from Campbell et  al. (2017) and add them to the reference embedding in Fig.  8b. The 

a b

dc

Fig. 7  Comparison of different initialization schemes for positioning new data points onto reference embed-
dings. a We construct a reference embedding using only neuronal subtypes from Hrvatin et al. (2018). b We 
position neuronal cells from Campbell et al. (2017) using the median initialization scheme from Kobak and 
Berens (2019) and run optimization for 500 iterations. Compare the optimized embedding with the initial 
median initialization (c) or by using a simple weighted mean initialization (d)
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non-neuronal cells from Hrvatin et  al. are scattered somewhat arbitrarily around several 
clusters in the reference embedding. Interestingly, the secondary data points form a “ring” 
around one of the clusters, indicating that these data points are very different from the 
cells in this cluster. Notice also that the points from the secondary data set exhibit little to 
no clustering and the different cell types seem to be mixed among each other. We hypoth-
esize that this effect is due primarily to the single-cell preprocessing pipeline and not the 
limitations of our procedure itself, as the informative genes selected to create the reference 
neuronal embedding likely do not differentiate supportive glial cells from the secondary 
data set. This effect is similar to procedures such as scMap-Cluster, a consensus k-nearest 
neighbor method, which heuristically determines a distance threshold to identify unknown 
cell types (Kiselev et al., 2018).

Our procedure is, therefore, asymmetrical in the choice of reference and secondary data 
set. In practice, however, newly produced secondary data would be embedded into previ-
ously-prepared reference landscapes. Large collections of data e.g. the Human Cell Atlas 
initiative (Rozenblatt-Rosen et al., 2017) make it possible to scale up our approach to wider 
sets of cell types. Identifying potential failure cases where rare cell-types may still be miss-
ing from constructed reference embeddings is a problem that plagues the bioinformatics 
community and is an active area of research.

4.6  Comparison to other similar batch‑effect methods

To quantitatively evaluate the predictive accuracy of the described procedure, we fit k-near-
est neighbors classifiers on each reference t-SNE embedding from Figs. 2a, 3a and 4a and 

a b

Fig. 8  A reference embedding must contain all the cell types in the secondary embedding to produce relia-
ble results. a We construct a reference embedding containing only neuronal cells from Hrvatin et al. (2018). 
b We select only non-neuronal cells from Campbell et al. (2017) so that no overlap exists between the cell 
types between the data sets. Conceptually, t-SNE behaves similarly to a k-NN classifier and places the 
non-neuronal cells to their most similar points in the reference. In some instances, the non-neuronal cells 
are sufficiently different from the neuronal cells so that they are repelled from the reference clusters. Such 
behavior results in the “ring” seen on the right-hand side of the embedding
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use them to predict the cell types for the secondary data set embeddings from Figs. 2b, 3b 
and 4b. The accuracy measures are reported in Table 2. Our procedure of embedding new 
data points into two-dimensional t-SNE plane results in similar accuracy to approaches like 
random forests that use full compendium of cell-characterizing features. The results indi-
cate that positioning of new cells onto a cell visualization plane is not only indicative but 
also an accurate instrument for cell type characterization.

We compare our approach to two machine learning techniques, namely a k-nearest 
neighbor classifier (KNN) and a random forest ensemble, and scMap-Cluster (Kiselev 
et al., 2018). For scMap-Cluster, we disable the distance threshold heuristic for identifying 
novel cell types, as our secondary data sets were chosen such that there is complete overlap 
between cell-types. For the two machine learning approaches, we apply the typical single-
cell preprocessing pipeline described in Appendix A, i.e., library-size normalization, log-
transformation, and select 1000 most informative genes. Similarly to scMap-Cluster, we 
use the cosine distance to find the 5 nearest neighbors in the KNN model. We used 100 
trees in the random forest ensemble. The models were fit on the reference data set, and no 
hyper-parameter tuning was performed.

Surprisingly, both the random forest and k-nearest neighbor models outperform scMap-
Cluster, which is specifically tailored to scRNA-seq data. However, these results may be 
skewed, as, in our examples, all the cell-types from the secondary data set were present in 
the reference data set. One of the core features of scMap-Cluster is the detection of novel 
cell types, which none of the other methods support. In other words, the other three meth-
ods would always assign a cell-type to a given cell, regardless of cell origin. Addition-
ally, scMap-Cluster was primarily designed and tested on data sets produced by full-length 
sequencing protocols, which tend to detect a much higher number of molecules than other, 
sequencing protocols based on unique molecular identifiers (UMI). These two classes of 
sequencing protocols produce data sets with different sparsity and variance characteris-
tics. This is consistent with the results in Table 2, as only the data sets from the human 

Table 2  We compare our 
approach (t-SNE) to three other 
methods, evaluating performance 
using classification accuracy and 
the adjusted rand index (ARI)

Notice that while the proposed approach classifies cells only based on 
their position on the two-dimensional plane, it performs comparably to 
other methods that use full compendium of features (gene expressions) 
that characterize the cells
Bold  indicates the methods with the highest scores, which is pretty 
standard

Tissue Method Accuracy ARI

Mouse brain t-SNE 0.96 0.93
KNN 0.96 0.93
Random forest 0.98 0.96
scMap-cluster 0.66 0.70

Human pancreas t-SNE 0.99 0.99
KNN 0.99 0.98
Random forest 0.96 0.89
scMap-cluster 0.95 0.93

Mouse retina t-SNE 0.99 0.94
KNN 0.99 0.96
Random forest 0.99 0.99
scMap-cluster 0.88 0.59
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pancreas, were produced using a full-length sequencing protocol, where scMap-Cluster 
achieves reasonably high accuracy.

The aim of t-SNE is to construct embeddings, in which neighborhoods are preserved, 
therefore it is unsurprising that the accuracy of our t-SNE based approach is largely con-
sistent with the k-nearest neighbors model. While our approach is comparable to the other 
models in terms of accuracy, we emphasize that the goal of t-SNE embeddings is to serve 
as visual aids in exploratory data analysis. Therefore, it is surprising that our simple pro-
cedure performs competitively to specialized classification methods. Therefore, our pro-
cedure, in addition to providing the end-user with a cell-type prediction, allows the user 
to examine the low-dimensional embedding space, which may provide richer insight and 
interpretation of the resulting predictions.

5  Conclusion

Almost all recent publications of single-cell studies begin with a two-dimensional visu-
alization of the data that reveals cellular diversity. While many dimensionality reduction 
techniques are available, different variants of t-SNE are most often used to produce such 
visualizations. Single-cell studies enable the exploration of biological mechanisms at a 
cellular level, and their publications in the past couple of years are abundant. One of the 
central tasks in single-cell studies is the classification of new cells based on findings from 
previous studies. Such transfer of knowledge is often difficult due to batch effects present in 
data from different sources. Addressing batch effects by adapting and extending t-SNE, the 
prevailing method used to present single-cell data in two-dimensional visualization, moti-
vated the research presented in this paper.

The proposed approach uses a t-SNE embedding as a scaffold for the positioning of 
new cells within the visualization, and possibly for aiding in their classification. The three 
case studies incorporating pairs of data sets from different domains but with similar clas-
sifications demonstrate that our proposed procedure can effectively deal with batch effects 
to construct visualizations that correctly map secondary data sets onto an embedding of 
the data from an independent study that possibly uses different experimental protocol. 
We quantitatively evaluate the predictive accuracy of our approach by fitting a k-nearest 
neighbors model on the resulting two-dimensional embeddings and compare its predic-
tive accuracy to other machine learning methods that use the entire compendium of gene 
expressions that characterize the cells. Experiments show that our approach is successful in 
predicting cell types and performs comparably to other methods. This encouraging result 
indicates that by using our procedure, scientists can quickly and accurately determine the 
composition of new data by merely visualizing and inspecting resulting visualizations. 
While we focused here on reference visualizations constructed using t-SNE, this approach 
can be applied using any existing two-dimensional visualization.
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6  Availability and implementation

The procedures described in this paper are provided as Python notebooks that are, together 
with the data, available in an open repository.1 The described methods were implemented and 
incorporated into openTSNE, our open-source, extensible t-SNE library for Python (Poličar 
et al., 2019).

Appendix A: Single‑cell data preprocessing pipeline

Due to the specific nature of single-cell data, additional steps must be taken to properly apply 
t-SNE. We use a standard single-cell preprocessing pipeline, consisting of the selection of 
3,000 representative genes (see Appendix B), library size normalization, log-transformation, 
standardization, and PCA-based representation that retains 50 principal components (Stu-
art et al., 2019; Wolf et al., 2018). To obtain the reference embedding, we apply multi-scale 
t-SNE using PCA initialization (Kobak & Berens, 2019). Due to high-dimensionality of the 
preprocessed input data we use cosine distance to estimate similarities between reference data 
points (Domingos 2012). When adding new data points from the secondary data set to the ref-
erence embedding, we select 1000 genes present in both data sets and use the cosine similarity 
to estimate the similarities between the secondary data item and reference data points. We 
note that similarities are computed using the raw count matrices. The preprocessing stages are 
detailed in accompanying Python notebooks (Sect. 5).

Appendix B: Gene selection

Single-cell data sets suffer from high levels of technical noise and low capture efficiency, 
resulting in sparse and noisy expression matrices (Islam et al., 2014). A common occurrence 
in these data sets is “dropout”, where an expressed gene is not measured, and its correspond-
ing matrix entry is set to zero. To address this problem, we use a specialized feature-selection 
method, which exploits the mean-dropout relationship of expression counts as recently pro-
posed by Kobak and Berens (2019). In this context, we will refer to all genes with matrix 
entries set to zero as dropouts. Intuitively, if a gene has high mean expression over all cells, but 
is detected in only a handful of them (i.e. has high mean dropout rate), then this gene is likely 
specific to a specific cell-type and will serve as a good feature for any subsequent analysis 
where we wish to discriminate between cell types.

More formally, given an expression matrix � ∈ ℝ
N×G where N is the number of cells and 

G is the number of genes in the data set, we compute the fraction of cells where a gene g was 
not expressed i.e. its dropout rate

where I is the indicator function. The mean log2 expression of gene g considers only cells i 
in which gene g was expressed

(11)dg =
1

N

∑

i

I
(
Xig = 0

)
,

1 https:// github. com/ biolab/ tsne- embed ding.

https://github.com/biolab/tsne-embedding
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All genes expressed in less than ten cells are discarded. In order to select a desired number 
of Ĝ genes, we use binary search to find a parameter value of b such that

In this way, we are able to select a desired number of genes Ĝ , which appear discriminative 
between cell types for the given gene-expression data set.
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