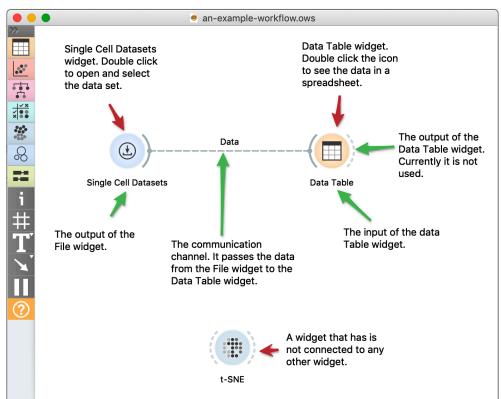


Single-Cell Gene Expression Analysis

Working notes for the course on Functional Genomics and Proteomics, University of Ljubljana

These notes include orange workflows and visualizations we will construct during the course.

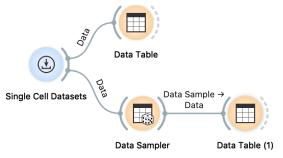
These notes were written by Blaž Zupan with a huge help from the members of the Bioinformatics Lab in Ljubljana that develop and maintain orange. In part, we have reused lecture notes for Orange and orange workshops as designed by the same group. Welcome! We have designed this workshop for biomedicine students interested in interactive single-cell gene expression data analysis. You will see how you can accomplish single-cell data mining tasks without programming. We will use Orange, it's bioinformatics, and single-cell add-ons to construct reproducible, shareable, and visual data mining workflows.


If you haven't already installed Orange, please download the installation package from <u>https://orange.biolab.si</u>, install Orange, and then install the add-ons for Bioinformatics and Single-Cell Data Analysis.

Attribution-NonCommercial-NoDerivs CC BY-NC-ND

Lesson 1: Workflows in Orange

Before we dive into single-cell analysis, let us get familiar with the tool that we will be using. Orange is a machine learning and interactive data visualization platform, where data analysis pipeline are designed as workflows. Orange workflows consist of components that read, process and visualize the data. We call the components "widgets". Widgets are placed on a drawing board (the "canvas"). Widgets communicate by sending information along a communication channel. Output from one widget is used as input to another.

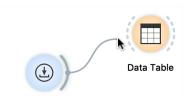


We construct workflows by placing widgets onto the canvas and connecting them by drawing a line from the transmitting widget to the receiving widget. The widget's outputs are on the right and the inputs on the left. In the workflow above, the File widget sends data to the Data Table widget.

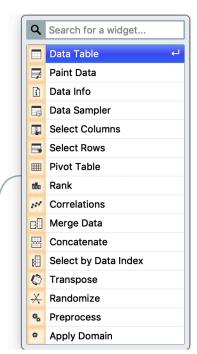
A simple workflow with two connected widgets and one widget without connections. The outputs of a widget appear on the right, while the inputs appear on the left. Workflow with a Single Cell Datasets widget that reads the data from orange's single cell data repository. The Data Table renders the data in a spreadsheet, while the Data Sampler samples the data. Sampled data is sent to another Data Table widget.

۹	data
£	Datasets
	Data Table
	Paint Data
i	Data Info
	Data Sampler
œ₿	Merge Data
ß	Select by Data Index
Β	Save Data
6	Load Data
٢	Single Cell Datasets 🔶 🗸
Ð	Align Datasets
	Databases Update
660	GEO Data Sets

Let us start by constructing a workflow that consists of a *Single Cell Datasets* widget, two *Data Tables*, and a *Data Sampler* widget:


There are several ways to add widgets to the canvas. Try adding a file widget with a right click on the empty part of the canvas, start writing the name of the widget (like "data") in a widget list and then select Single Cell Datasets by pressing return or clicking on appropriate line. We can add the data table in the same way: right click on the empty canvas, write "data" in the search box, press

down arrow key until we hit a line with the Data Table, and then press return. Once the two widgets are on the canvas, we can connect them by clicking on the right "ear" of the *File* widget and releasing a mouse on the line that says Data Table.


Another quick way to add a widget is to simply drag a connection from the sending widget, release the mouse somewhere on the empty canvas, and then in the menu with a list of widgets selecting the receiving widget.

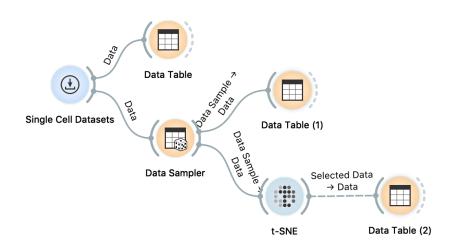
Single Cell Datasets

Single Cell Datasets

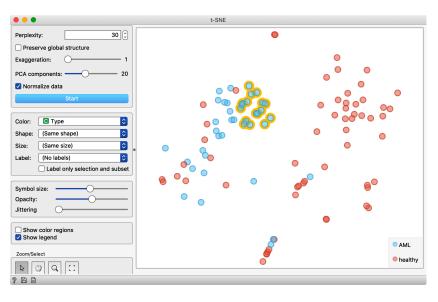
The *Single Cell Datasets* reads the data from the server. Open the *Single Cell Datasets* widget by double-clicking its icon. The window shows a list of available data sets. Let us choose a smaller dataset with bone marrow mononuclear cells from, a sample of the data from Zhang et al. (2017). After selecting the line with this data set, press "Send Data" to instruct the widget to send the data to its output.

۲	Title	Size	Cells	Genes	Organisn
9	Bone marrow mononuclear cells with AML (sample)	345.0 KB	1000	1000	Human
	Bone marrow mononuclear cells with AML	2.7 MB	8390	1000	Human
	AML patient bone marrow day 0	6.0 MB	2328	27899	Human
	AML patient bone marrow day 15	3.7 MB	1203	27899	Human
	AML patient bone marrow day 31	3.7 MB	1452	27899	Human
0.00	cription	0			
	ne marrow mononuclear cells with AML (sample) (ne expressions in bone marrow mononuclear cells from althy donors used as controls. The data includes a san	m a patient with a	cute myeloid leul		two

Orange is machine learning tool, and stores data items in rows. In single cell genomics, our objects of interest are cells. The cell expression profiles are therefore stored in rows. Every column refers to a gene.


Several columns contain meta information on the cells. Our example data includes type, replicate id and some other information. After loading the data, open the *Data Table* to see the data we have just loaded in the spreadsheet. Single cell data sets includes many dropouts, and many of the corresponding data entries have a value of zero: the gene was either not expressed or, more likely, its expression was not detected.

Entrez ID	Туре	Replicate	ID	Barcode	HBG1 3047	HBG2 3048
1	healthy	1	6681b0788f	ACGGGAGA	0	0
2	AML	1	7c1e27874a	GAACAGCT	0.982504	0.573322
3 healthy		2	b9d78fbc8b	TCTTACGAA	0	0
4	healthy	1	841c0e79f0	CGAGCCGA	0	0
5	healthy	2	08c51bbdc6	GCAAACTG	0	0
6	AML	1	6f99d49280	AACTCACT	0	0.664177
7	healthy	1	b5d9cd219b	ACCTGGCT	0	0
8	healthy	2	38da407f1d	TACCGAGA	0	0
9	healthy	2	fe11cf3f4781	GAAAGATG	0	0
10	healthy	2	2ffcd36fa8f	CACGCTAC	0	0


April 2024

🔴 🔿 🔿 Data San	npler					
Information						
1000 instances in input dataset. Outputting 100 instances.						
Sampling Type						
Fixed proportion o	of data:					
• Fixed sample size						
Instances:	100 (Ĵ					
Sample with respectively.	eplacement					
O Cross validation						
Number of folds:	10					
Selected fold:						
Bootstrap						
Options						
Replicable (detern	, , ,					
Sample I	Data					
2 🖹						

Let us now sample a 100 cells from the data. We will use *Data Sampler* widget for this task. Now, augment our workflow to visualize the data in a small plot using *t-SNE* visualization (more about this widget a bit later). We will also add another Data Table at the output of *t-SNE*.

Open the *t-SNE* widget and select few data points by drawing the rectangle around them. Now open the *Data Table* (2) to observe how the data on selected cells are passed to the output of *t-SNE*. In Orange, most of the widgets are interactive, and send out the data upon any change in selection or any change of parameters of the widget.

Lesson 2: Loading Your Own Dataset

The datasets we have worked with in the previous lesson come from the server. Orange can read the data from spreadsheet file formats which include tab and comma separated and Excel files. Let us prepare a toy dataset in Excel and save it on a local disk.

F2	F2 $\stackrel{A}{=} \times \checkmark f_X$ 52 \checkmark										
	A	В	С	D	E	F	G	н	I		
1	Cell ID	Type	BCL2	CCR5	CD4	CD8	IL2	IL10			
2	TGATGATT	damaged	6	31	76	52	8	96			
3	TTAAGGCC	normal	24	16	20	19	78	50			
4	CCGGAATT	damaged	72	47	20	67	9	24			
5	CGCGAGTG	damaged	71	25	11	38	65	2			
6	GTAGCGTG	normal	0	90	46	40	69	21			
7	CGTAGCTG	normal	9	6	95	36	46	13			

In Orange, we can use the File widget to load this dataset.

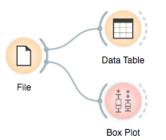
			File	
F	ile: my-data. JRL:	xlsx		C C Reload
Info				\
6 ii		iture(s), 1 meta a variable.	ttribute(s)	
Col	umns (Double click	(to edit)		
	Name	Туре	Role	Values
1	Туре	C categorical	feature	damaged, normal
2	BCL2	N numeric	feature	
3	CCR5	N numeric	feature	
4	CD4	N numeric	feature	
5	CD8	N numeric	feature	
6	IL2	N numeric	feature	
7	IL10	N numeric	feature	
8	Cell ID	S text	meta	
	Browse documen	tation datasets		Apply
<u>۳</u>]			

Looks good. Orange has correctly guessed that cell IDs are character strings and that this column in the dataset is special, meant to provide additional information and not to be used for any kind of modeling. All other columns are numeric features except

Orange reads data from Excel, comma- and tab-separated files and urls. Try constructing a spreadsheet in Excel or in Google Sheets. If using Google Sheets, copy a shareable link and paste it into the File widget. Press Enter to load the data. for the type, which is a categorical feature. This is also the feature we would not like to include in the profile of the cell and should rather consider it as a cell's class. Double-click on the "feature" in the *Role* column and change the role of the feature type to "target". Then click the *Apply* button.

It is always good to check if all the data was read correctly. We can connect our *File* widget with the *Data Table* widget,

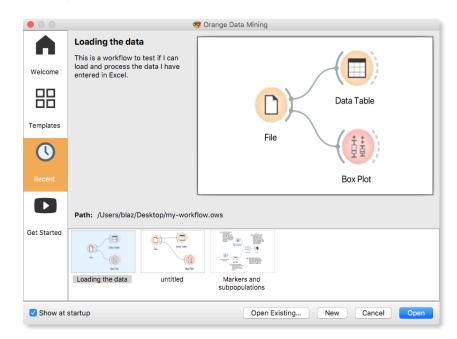
and double-click on the *Data Table* to see the data in the spreadsheet format.


• • •				Data Table					
Info									
6 instances (no missing values)		Туре	Cell ID	BCL2	CCR5	CD4	CD8	IL2	IL10
6 features (no missing values)	1	damaged	TGATGATT	6.0	31.0	76.0	52.0	8.0	96.0
Discrete class with 2 values (no	2	normal	TTAAGGCC	24.0	16.0	20.0	19.0	78.0	50.0
missing values)	3	damaged	CCGGAATT	72.0	47.0	20.0	67.0	9.0	24.0
1 meta attribute (no missing	4	damaged	CGCGAGTG	71.0	25.0	11.0	38.0	65.0	2.0
values)	5	normal	GTAGCGTG	0.0	90.0	46.0	40.0	69.0	21.0
	6	normal	CGTAGCTG	9.0	6.0	95.0	36.0	46.0	13.0
Show variable labels (if present) Visualize numeric values Color by instance classes Selection									
Select full rows									
Restore Original Order									
Send Automatically									
2 🖺									

Instead of using Excel, we could also use Google Sheets, a free online spreadsheet alternative. Then, instead of finding the file on the local disk, we would enter its URL address to the File widget 's URL entry box. Nice, everything is here.

There is more to input data formatting and loading. We can define the type and kind of the data column, specify that the column is actually a web address of an image, and more. But enough for now. If you would really like to dive in for more, check out the <u>documentation page on Loading your Data</u>, or <u>a video</u> on this subject.

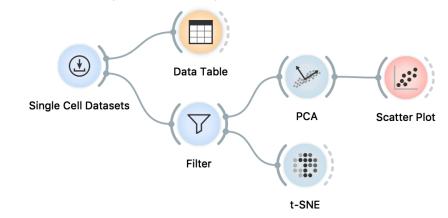
Lesson 3: Saving and Sharing Your Work


Add a box plot to your workflow from the previous lesson. Your workflow should now look like this:

8

i

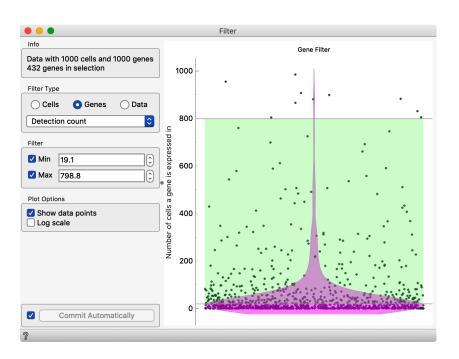
T ∖ Orange can save your workflow to a file. Use Save or Save As from the File menu and save your work to your desktop. Before saving, you can describe your workflow on the information page using "i" icon for the toolbar. We have named the file as *my-workflow* and Orange would add a suffix to it. Now exit Orange and rerun it. Select *Recent* in the welcome screen and choose from one of the recently saved workflows.


You can email workflow files or share them with your colleagues. Note though that the data, unless stored on the web, has to be sent separately. Single Cell Datasets connects to orange's data server that contains examples of datasets.

You have to be connected to a network for this widget to work

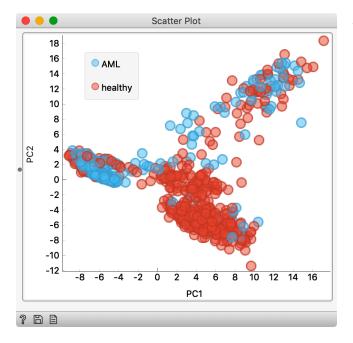
correctly.

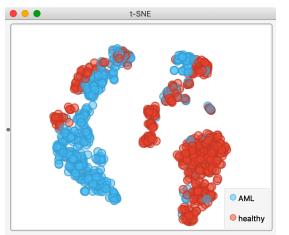
Lesson 4: Single-Cell Landscapes


Let us load some single-cell gene expression data and organize the cells in two-dimensional visualizations. We will use the following workflow, and within it, compare two popular data visualization approaches, principal component analysis and t-distributed stochastic neighbor embedding.

From a list of examples in *Single Cell Datasets*, let us choose the data on mononuclear cells from bone marrow (Zheng et al., Nat Comm 2017). This data sets has already been preprocessed (to some degree) and comes with a selection of 1,000 genes.

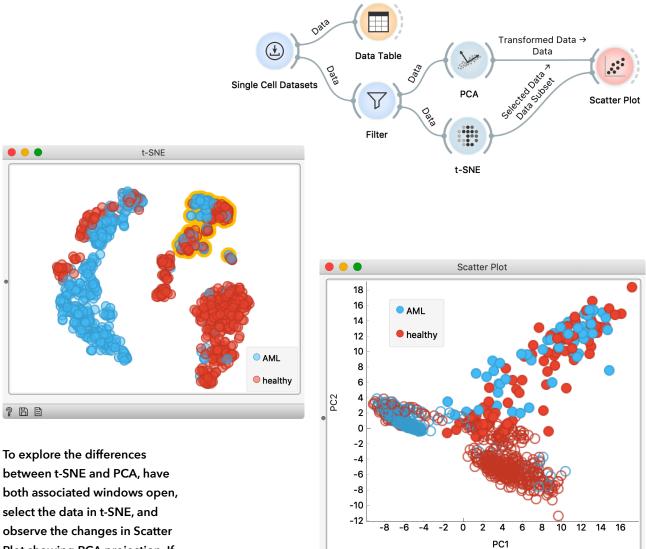
	Single Cell Datasets									
Info	Filter									
33 datasets	aml									
4 datasets cached	▼ Title	Size	Cells	Gen	es					
	Bone marrow mononuclear cells with AML (s	sample)	345.0 KB	1000	1000					
	Bone marrow mononuclear cells with AML		2.7 MB	8390	1000					
	AML patient bone marrow day 0		6.0 MB	2328	27899					
	AML patient bone marrow day 15		3.7 MB	1203	27899					
	AML patient bone marrow day 31		3.7 MB	1452	27899					
	Description	Description								
Send Data	Bone marrow mononuclear cells with AML (sa Gene expressions in bone marrow mononuclear and two healthy donors used as controls. The da the highest dispersion. This is a sample data tha	cells from a pata includes a	atient with acute n sample of 1000 ce	nyeloid leukem ells and 1000 g	enes with					
?										


Inspection of this data set in the *Data Table* reveals that for specific cell many of the genes have not been expressed, that is, their expression is zero. We can use the Filter widget to observe the number of cells in which the genes have been expressed.


In the *Filter* widget, we have decided to filter genes based on detection count. We can drag

t-SNE widget does not include axis. In fact, axis in t-SNE make no sense. Why?

lines that define the selection in green to filter out genes that have been expressed in too few or too many cells. Check the With a Filter widget, we can select the genes that have been detected at the "appropriate" number of cells, filtering out the genes that have been expressed in very few cells. We pass the data to PCA with the scree diagram, a chart that shows how much of the variance is explained with a first few components. PCA transforms our data to a new coordinate system defined by principal components, where the components are orthogonal to each other and where the transformation is constructed so that the first component explains most of the variance, then second-most of the remaining variance, and so on.


A conceptually very different technique to PCA is t-SNE, which embeds the data into twodimensions so that cells with similar expression stay together.

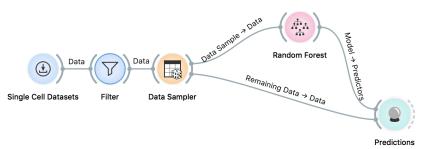
10

? 🖹 🗎

PCA and t-SNE are two popular visualizations of single-cell gene expression data. Their visual depictions are often very different. PCA is a linear transformation that aims to be "more faithful" to the original data, while t-SNE aims to expose the clustering structure and focuses on preserving local similarities. We can compare the layout of the two visualizations by adding a connection from *t-SNE* widget to the *Scatter Plot* showing the PCA projection. With it, a subset of cells selected in the *t-SNE* will be exposed in the PCA plot.

? 🖹 🗎

Plot showing PCA projection. If Orange canvas window is getting in your way, use "Bring Widgets to the Front" command from the View menu.


April 2024

This lesson is a detour. Predicting the phenotype of the cell is indeed interesting, but our higher interest (in the following lecture) will be on cell type discovery and prediction. But since the cells that we are working on already have labels, we could not resist to invoke some machine learning, the techniques we will also use later in the workshop.

Lesson 5: Classification, A Detour

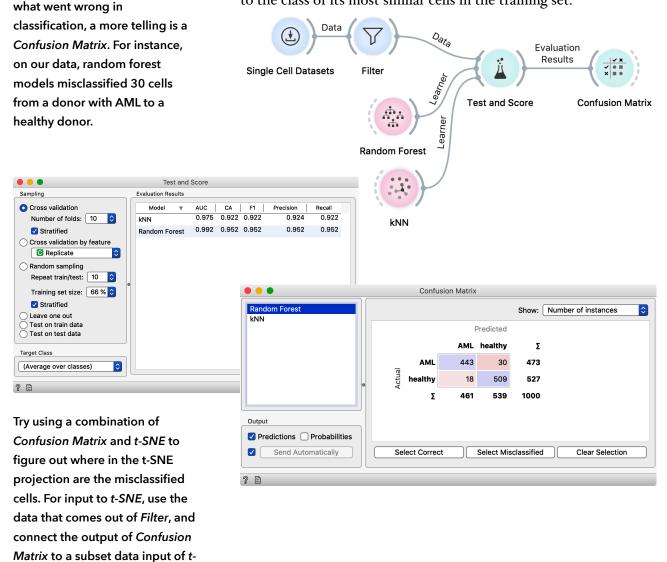
You most likely noticed that the data we are using comes from several donors. The cells are from two healthy individuals and one with acute myeloid leukemia. Visualizations from the last lesson somehow separate the diseased from the normal cells, but not entirely. Can we build a model to predict the origin (healthy, AML) of the cells? And if, how accurate this model is?

We are actually addressing the problem of prediction. We would like to build a model on a set of phenotype-labeled cells, and the use it to predict the phenotypes of the "new" cells. We here use quotes as we will not deal with an additional data set, but rather split the data that we have and use a sample to train the model, and out-of-sample cells for prediction. Here goes the workflow (we left the first two widgets from the workflow in the previous lesson, and remove everything else).

Comparing predictions of the random forest and the true type of the cell shows that the model did well, with classification accuracy of 0.957.

•		•	Prediction	าร				
ſ		Random Forest	Туре	Replicate	ID			
	105	0.00 : 1.00 → healthy	healthy	2	tceta8a7126	GTT		
Ĵ	106	0.00 : 1.00 → healthy	healthy	2	da7b61bc1df	СТС		
ĺ	107	0.17 : 0.83 → healthy	healthy	2	a1ac54e626	TAA		
j	108	0.40 : 0.60 → healthy	AML	1	7a60ff273d	TCA		
j	109	1.00 : 0.00 → AML	AML	1	f0ca1b387c	ATT		
•	110	0.57 : 0.43 → AML	AML	1	6a33ea59ca	TCA		
j	111	0.00 : 1.00 → healthy	healthy	2	26a89d2291	ATA		
j	112	$0.05: 0.95 \rightarrow \text{healthy}$	healthy	2	b6f35add32	AAA		
		Model AUC	CA F1	Precision Re	call			
	Random Forest 0.957 0.957 0.957 0.146 0.952							

Test & Score reports numerical


accuracy. To actually see if and

estimates of classification

SNE widget.

Accuracy, as reported above, depends on the particular split of the data to training and testing. Try opening *Data Sample* and pressing "Sample Data" button to see this. In machine learning, the accuracies of modeling methods are estimated through repeating sampling, training, testing procedures and reporting the average accuracy across many such iterations. Random sampling is often replaced by a procedure called cross-validation, that split the data to k samples of approximately similar size, and in each iteration uses on fold for testing and all other for training.

The widget that implements cross-validation is *Test & Score*. Cross-validated accuracy of random forest is about 0.95 (high). In the workflow, we compared it to the accuracy of k-nearest neighbor, another machine learning technique that classifies cells according to the class of its most similar cells in the training set.

Data

Test and Score

Lesson 6: Classification Accuracy in Embedding Space

If the cells are labeled, as is the case with the data we have been analyzing so far, we could use cross-validation and k-nearest neighbors to assess the quality of visualization. In this case, we need to ignore expression data and cross-validate the model only on the data of positions of cells in the visualization, that is, position in the embedding (for t-SNE) or projection (for PCA) space.

Data

Data

Select Columns

kNN

with separation of cells with different labels. Single Cell Datasets Filter t-SNE 00 🥶 Edit Links Selected Data Data Data \bowtie Features t-SNE Select Columns Clear All Cancel

Our t-SNE widget can output coordinates of cells in the embedding space. We need these for entire data set, so we need to rewire the outgoing connection from t-SNE to include entire data.

The accuracy of kNN on embedding positions of cells is about 0.94. We can experiment with different threads set in the Filter widget to see if the quality of t-SNE position degrades with more strict filtering in terms of phenotype classification.

We could use a similar workflow to evaluate the PCA projection,

projection to t-SNE embedding.

comparison is concerned only

or even to compare PCA

Note, though, that this

The composition of the data is set in Select Columns widget. We removed the gene expression features and included only embedding positions as predictive features.

Filter	Up Filter
N HBG1	N t-SNE-x
N HBG2	< N t-SNE-X
N S100A9	
N LYZ	Down
N HBA1	
-	Target Variable
N HLA-DRA	Up SType
N CA1	>
	Down
N CD74	
N AHSP	Meta Attributes
N CA2	Up C Replicate
N HLA-DPA1	> C Selected
N LTB	
N IL32	Down B Barcode

April 2024

Score Cells widget has two inputs: the data and a set of marker genes. Since both inputs are data tables, how does it know which one is which? Double-click on any of the edges connecting the widgets to see the actual wiring. You can rewire the connections there.

Genes widget needs to be set correctly. Genes in our marker file were not stored as features, but instead in a data column Gene (there will be time when this widget will do this automatically).

Lesson 7: Cell Types and Marker Genes

Gene markers are one of the standard methods for discovering cell populations, determining cell states (e.g. cell cycle) and more. Here, we will continue to use a sample of the data on bone marrow mononuclear cells from previous lessons. We will score the cells according to gene markers, and observe the scored cells in the t-SNE visualization. We will assume, as it is often the case, that marker genes are keyed-in from some publication. We will only later resort to a list of marker genes from a public database..

So, we start with the marker genes. We picked a few that are contained in our data. Here they are, keyed-in in Excel.

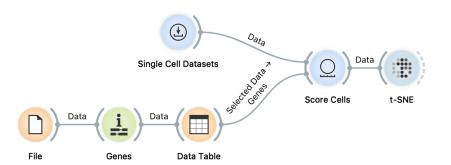
For Excel, we can save this list in, say, genes.xlsx, and load it with File widget.

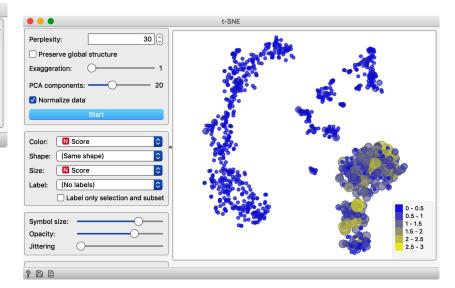
•	• • • •	• >> 🛍 🔍 Se	earch Sheet
Hor	ne Insert Page	e Layout Formulas	; >> ≜+ Share ∨
	А	В	С
1	Gene	Cell Type	
2	CD3e	T Cell	
3	CD8	T Cell	
4	CD19	B Cell	
5	CD235a	Erythrocyte	
6			
	Sheet1 +		
Rea	ady	▦ ▣ 罒 -	 + 203%

Notice that we have used the only names of the genes, and not any official codes. Orange deals with genes through NCBI's IDs, and we add them using Genes widget. This widget will also tell us if the names of the genes have been resolved correctly.

		(Genes					
Info	Filter:							
4 genes in input data 4 genes match Entrez database								
0 genes with match conflicts	Input ID	▼	Entrez ID		Name	[Description	Synonyms
	CD3e		916	CD	03E	CD	3e molec	IMD18, T3E,
	CD8		925	CD	08A	CD	8a molec	CD8, Leu2, p
Organism	CD19		930	CD	019	CD	19 molec	B4, CVID3
Homo sapiens	CD235a		2993	GY	'PA	gly	cophorin	CD235a, GP
Stored in data column								
Exclude unmatched genes					•			
 ✓ Replace feature IDs with gene names 			IDs from the inp	out data	a without co	rrespon	ding Entrez ID	
Commit Automatically								
?								

		•	Data Table	
		Gene	Entrez ID	Cell Type
li	1	CD3e	916	T Cell
li	2	CD8	925	T Cell
٩İ	3	CD19	930	B Cell
li	4	CD235a	2993	Erythrocyte
2	· [


The output of the widget is a table that includes a gene name and cell type, both as specified in the input file, and Entrez ID.


The idea is now that we would select the gene(s) from the data table, and then score the cells according to the mean expression of selected genes. Widget *Score Cells* assigns a numerical score to each cell that is proportional to an average expression of the marker genes at the input of the widget. The score is added as

a meta attribute to the cell data on the output of *Score Cells*. Check this using the *Data Table*! We can now feed this data into *t-SNE* and set the color and size of the points to the cell score.

We should be curious how Score Cells actually works and what is on its output. Use Data Table to check this out: connect it to the output of Score Cells and find the column Score.

•		•	Data Table	
ſ				
		Gene	Entrez ID	Cell Type
	1	CD3e	916	T Cell
	2 CD8		925	T Cell
•	3	CD19	930	B Cell
	4	CD235a	2993	Erythrocyte
0		_		
S				

Notice that with any change in the selection of marker genes, we find a group of cells in t-SNE plot where these genes are expressed. Looks like T cells are in the bottom right cluster, B cells somewhere in the middle, and erythrocytes in the left cluster. Did we say cluster? Oh, we are not there yet... assigned cluster labels accordingly.

Lesson 8: Cell Clustering

A typical task with a single cell data is to find clusters of cells. An advanced method that does this is Louvain clustering. Given the

expression matrix, Louvain clustering creates a network of cells

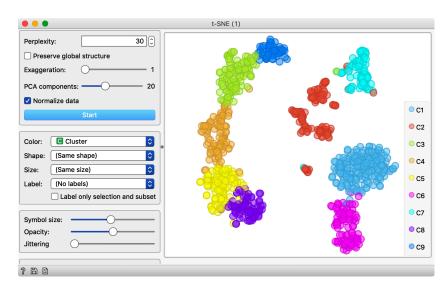
communities — the parts of the network that are more strongly

interconnected than expected by chance (think of friendships on

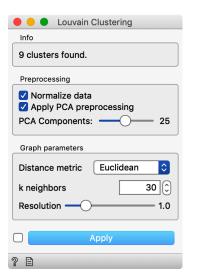
social networks). Each local community is a cluster, and genes are

based on pairwise distances. Then, it searches for local

April 2024


We will again use a sample from Bone marrow mononuclear cells with AML with 1000 cells that contain 1000 most variable genes.

t-SNE


In Orange, Louvain clustering is in its own widget that appends a column of cluster labels to the cell data. Quite neatly, the number of clusters is determined automatically. Let us construct a workflow that displays the results of the clustering in the t-SNE plot and that examines the frequency of the cells in each of the clusters. Let us observe the t-SNE plot first.

Distributions

We have colored the points (cells) in t-SNE according to the cluster membership. Notice a nice separation of the clusters in the t-SNE plot. It looks like the cells are also well-separated in the original space of features (genes). A common mistake would be to compute the data projection first and then cluster the projected points. Obviously, then, the clusters would be separated perfectly and there would be no overlap.

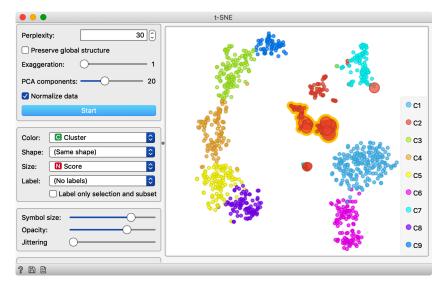
Louvain Clustering has a number of parameters. Here, we will stay with defaults, but you can experiment, change them and see the effect in t-SNE visualization.

• • •	Distributions	
Variable	200 AML	
С Туре		
C Replicate	180 healt	ıy
C Cluster		
N HBG2	160 -	
N \$100A9	140	
N S100A8		
N GNLY N LYZ	120	
Distribution		
Bin width O	80	
Fitted distribution Kernel density Image: Comparison of the second seco		
Smoothing 14	60	
Show cumulative distribution		
Columns	- 40 -	
Split by C Type	20	
✓ Stack columns		
Show probabilities		
	C1 C2 C3 C4 C5 C6 C7 C8 C9	
Apply Automatically	Cluster	
? 8 8		

We can now use *Distributions* widget to observe the frequency of the cells within each cluster.

Nice, the clusters are well represented and there is no need for any filtering at this stage. Notice also that some of the clusters mix healthy and diseased cells, and while this could be interesting, we will refrain to explore this aspect in this workshop.

We now need to find out what are these clusters, that is, what types of cells are specific to the clusters. There are many ways to do this, and time permitting, we will explore the one that uses our marker genes and t-SNE visualization.

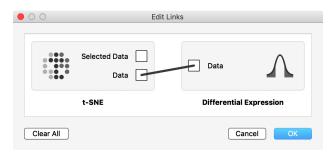

Most visualizations in Orange are interactive. In Distributions, you can click on the on the bar to select the associated data. Try connecting Distribution to t-SNE widget to explore where are the regions in the embedding space of each cluster.

Lesson 9: Cluster Exploration & Discovery of Markers

Here, we aim to discover "new" marker genes for B cells. We use quotes, of course, because it is likely that all markers for these cell types are already known. All we can do here is to rediscover some of them. But even that is great (at least for a computer scientist who is writing these notes). The workflow we will use is our most complex one so far.

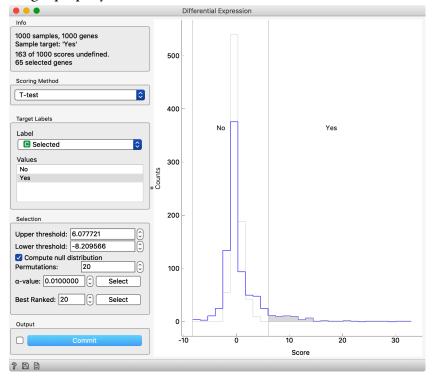
We are already familiar with its part until t-SNE. In *Data Table*, we select one marker we have for B cells, CD19. Then, in t-SNE, we select a subset of cells of the red cluster in the center of the graph.

We want to find genes that are expressed in the selected cells, but not expressed in all the other cells. We thus need to get all the data out from t-SNE, not just the selection and have a column that tells us if the cells were included


Double click on the connection between *t-SNE* and *Differential Expression* widget and instead of Selected Data, connect the Data channel of the t-SNE. You are

Genes

Data Table


File

in the selection. Whereas the default output of t-SNE is "Selected Data," the output called Data of the t-SNE widget has all the data required, and we should rewire the connection.

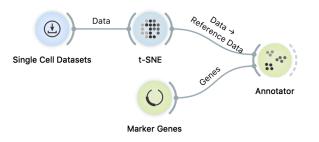
We have set the scoring method to *T-test*, set the *Label* to *Selected*, and marked that Yes is our target value. *Differential Expression* can also compares the observed distribution of changes to the null-distribution – the thin grey line – where data cells in each row are randomly permuted. Click on *Compute null distribution* to switch on the visualization of null-distribution.

The distribution marked with grey line shows the *null distribution*, the distribution of genes scores under the arbitrary selection of target genes. Differential expression shows the distribution of the differences of gene expression in selected and all other cells. We have to set this widget properly.

Differential Expression widget outputs the data with genes that are in extremes of the distribution. That is those, for which the difference in selected and non-selected cells is the largest. Genes that are most differentially expressed, lie on the left and on the right side of the two vertical splitters and their score value belongs to the shaded part of the distribution. Move the two vertical splitters such that there are only about 60 selected genes which are highly expressed in the selected group.

So, where are the genes that are selected in the *Differential Expression* widget? In the output of the widget. We can observe the output dataset and analyze the set of selected genes with widgets that we connected to *Differential Expression*. Observe the data in the *Data Table*, a list of selected genes in *Gene Info* and the results of analysis of Gene Ontology term enrichment in *GO Browser*. From all these choices, our workflow shows only the *GO Browser*, but you are welcome to explore other widgets as well. In GO Browser, we find that our differentially expressed genes are characteristically present in several Gene Ontology terms. That is, several GO terms are enriched with our selection of genes.

Input Filter Se	ect	GO term	Clu	ster	Refere	p-value		
nfo		 immune system process 	34	(53.12%)	3068	(14.97%)	1.3e-12	
		positive regulation of immune system process	20	(31.25%)	1083	(5.29%)	5.9e-11	
4 unique genes on input		regulation of immune system process	22	(34.38%)	1564	(7.63%)	8.9e-10	
8 (90.6%) genes with knowr	annotations	activation of immune response	15	(23.44%)	644	(3.14%)	1.1e-09	
Ontology/Annotation	nfo	 antigen processing and presentation 	9	(14.06%)	221	(1.08%)	3.2e-08	
		antigen processing and presentation of pept	9	(14.06%)	101	(0.49%)	3.7e-11	
eference		antigen processing and presentation of p	9	(14.06%)	100	(0.49%)	3.4e-11	
Entire genome		antigen processing and presentation	9	(14.06%)	97	(0.47%)	2.6e-11	
Reference set (input)		peptide antigen assembly with MHC c	2	(3.12%)	3	(0.01%)	4.3e-05	
Reference set (input)		antigen processing and presentation of exo	9	(14.06%)	176	(0.86%)	4.6e-09)
spect		antigen processing and presentation of e	9	(14.06%)	174	(0.85%)	4.2e-09	
		antigen processing and presentation	9	(14.06%)	97	(0.47%)	2.6e-11	
Biological process		antigen processing and presentation of pept	9	(14.06%)	188	(0.92%)	8.1e-09	
) Cellular component		antigen processing and presentation of p	9	(14.06%)	100	(0.49%)	3.4e-11	
Molecular function		antigen processing and presentation of e	9	(14.06%)	174	(0.85%)	4.2e-09	
		peptide antigen assembly with MHC prot	2	(3.12%)	5	(0.02%)	1.2e-04	
		nantida antigan assambly with MI IO	2	(0 100/)	2	(0.019/)	1 20 05	
		GO term		ster	Refere		p-value	
		antigen receptor-mediated signaling pathway	13	(20.31%)	223	(1.09%)	2.4e-13	
		immune system process	34	(0011210)	3068	(14.97%)	1.3e-12	
		immune response-activating cell surface receptor		(21.88%)	399	(1.95%)	2.2e-11	
		antigen processing and presentation of exogenous		(14.06%)	97	(0.47%)	2.6e-11	
		positive regulation of immune response		(28.12%)	806	(3.93%)	3.2e-11	
		antigen processing and presentation of peptide ant		(14.06%)	100	(0.49%)	3.4e-11	
		antigen processing and presentation of peptide or	9	(14.06%)	101	(0.49%)	3.7e-11	
		unigen processing and presentation of peptide of				(5.29%)	5.9e-11	
		positive regulation of immune system process		(31.25%)	1083			
		positive regulation of immune system process immune response-regulating cell surface receptor			1083 434	(2.12%)	6.5e-11	
		positive regulation of immune system process		(21.88%)				
		positive regulation of immune system process immune response-regulating cell surface receptor	14	(21.88%) (23.44%)	434	(2.12%)	6.5e-11	
		positive regulation of immune system process immune response-regulating cell surface receptor immune response-activating signal transduction	14 15 15	(21.88%) (23.44%)	434 566	(2.12%) (2.76%)	6.5e-11 1.8e-10	
		positive regulation of immune system process immune response-regulating cell surface receptor immune response-activating signal transduction immune response-regulating signaling pathway	14 15 15 15	(21.88%) (23.44%) (23.44%)	434 566 602	(2.12%) (2.76%) (2.94%)	6.5e-11 1.8e-10 4.3e-10	
		positive regulation of immune system process immune response-regulating cell surface receptor immune response-activating signal transduction immune response-regulating signaling pathway lymphocyte activation	14 15 15 15 22	(21.88%) (23.44%) (23.44%) (23.44%)	434 566 602 624	(2.12%) (2.76%) (2.94%) (3.05%)	6.5e-11 1.8e-10 4.3e-10 7.0e-10	
		positive regulation of immune system process immune response-regulating cell surface receptor immune response-activating signal transduction immune response-regulating signaling pathway lymphocyte activation regulation of immune system process	14 15 15 15 22	(21.88%) (23.44%) (23.44%) (23.44%) (34.38%) (23.44%)	434 566 602 624 1564	(2.12%) (2.76%) (2.94%) (3.05%) (7.63%)	6.5e-11 1.8e-10 4.3e-10 7.0e-10 8.9e-10	
		positive regulation of immune system process immune response-regulating cell surface receptor immune response-activating signal transduction immune response-regulating signaling pathway lymphocyte activation regulation of immune system process activation of immune response	14 15 15 15 22 15	(21.88%) (23.44%) (23.44%) (23.44%) (34.38%) (23.44%) (15.62%)	434 566 602 624 1564 644	(2.12%) (2.76%) (2.94%) (3.05%) (7.63%) (3.14%)	6.5e-11 1.8e-10 4.3e-10 7.0e-10 8.9e-10 1.1e-09	

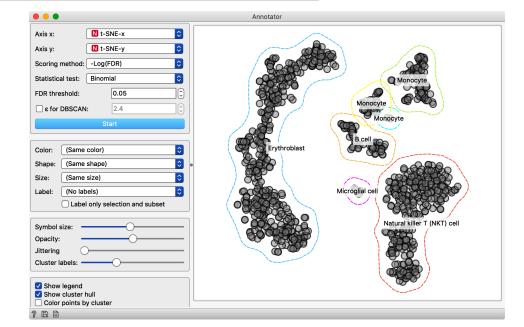

Interestingly, one of the most enriched terms is immune system process, with 34 genes from our differential expression set. Selecting this term, we get the data on these genes on the output of *GO Browser*, and we can check them out in the *Genes* widget.

•				Genes (1)		
	Filter:					
	Input ID	Entrez	z ID Name	Description	Synonyms	Other IDs
	BLK	640	BLK	BLK proto-o	MODY11	MIM: 191305, HGNC: HGN
	CD19	930	CD19	CD19 molec	B4, CVID3	MIM: 107265, HGNC: HGN
Ĭ	CD22	<u>933</u>	CD22	CD22 molec	SIGLEC-2, SI	MIM: 107266, HGNC: HGN
	CD38		CD38	CD38 molec	ADPRC 1, AD	MIM: 107270, HGNC: HGN
	CD74	<u>972</u>	CD74	CD74 molec	DHLAG, HLA	MIM: 142790, HGNC: HGN
	CD79A	<u>973</u>	CD79A	CD79a mole	IGA, MB-1	MIM: 112205, HGNC: HGN
	CD79B	974	CD79B	CD79b mole	AGM6, B29,	MIM: 147245, HGNC: HGN
				۰		
9	2					

Among the list of genes, there are also CD22 and CD38. "CD" stands for cluster of differentiation. Googling it, we find that two CD22 and CD38 are markers for B-cells. Oh, what a rediscovery!

Lesson 10: Visual Annotation of Cell Types

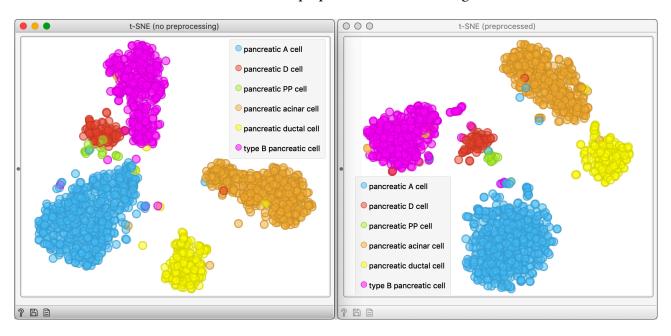
There is a neat widget in orange that can analyze two-dimensional cell maps and can annotate the clusters in such visualizations. The widget is called *Annotator*, and it requires on the input the data set with two features that define the positions of the cells in two-dimensional embedding, and a set of marker genes with associated cell type. We use the following workflow to get all these.

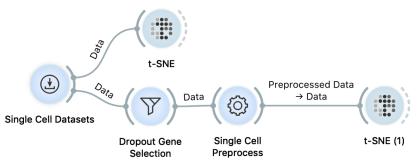


Marker Genes uses a large collection of markers from an open marker gene database. If nothing is selected, the widget will output

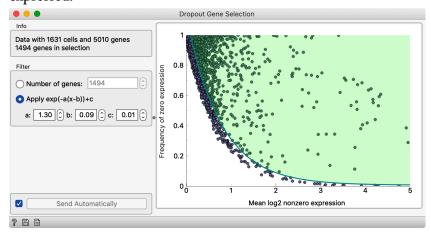
•••			Marker Ger	nes
Database	Filter			
CellMarker	Name	▼	Entrez ID	Cell Type Function Reference
	ALPI		248	Proximal tub alkaline phos 9263997
Organism	SYP		6855	Ito cell (hepa synaptophysin 10595912
Human	CEACAM1		634	Trophoblast carcinoembr 10751340
	DDX4		54514	Primordial g DEAD-box h 10920202
	KLF6		1316	Epithelial cell Kruppel like f 12407152
	FGF10		2255	Cytotrophob fibroblast gr <u>15950061</u>
	ALCAM		214	Periosteum activated leu 15977065
	PTPRC		5788	Periosteum protein tyros 15977065
Commit Automatically	CD9		928	Periosteum CD9 molecule 15977065
	ed: 0			

all the genes from the list, just what we need at this stage.


The Annotator has to be set to use t-SNE-x and t-SNE-y to position each cell, but once this is set, the display is cute and perhaps quite relevant.


Some rewiring is required to get this workflow work right. Notice that *t-SNE*'s output channel is Data, and that *Marker Genes* output goes to Genes channel of the *Annotator*. Also, make sure that Marker Genes outputs the genes for human (not mouse, as We here change the data set and use "Pancreas cells in human (sample)" from the *Single Cell Datasets* widget.

Lesson 11: Data Preprocessing


Consider the two t-SNE plots below. Both show a sample of human pancreas cells (Baron *et al.*, Cell Systems, 2016), but for the left t-SNE the input were raw count data, whereas for the right the data was preprocessed. The main difference between the two plots is that in the visualization of preprocessed data, pancreatic polypeptide cells got its own cluster. If you agree with us that this is substantial, read on. (If you disagree, read on just the same: we need the preprocessed in the coming lessons).

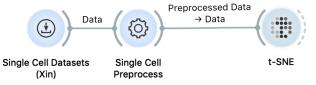
We will use two preprocessing steps. In the first one, we will select genes according to their dropout rates, and in the second we will use a quite standard pipeline for normalization and standardization of the count data.

Dropout gene selection approach was recently proposed by Kobak and Berens (biorxiv, 2018) and neatly select genes based on the interplay of mean expression across the cells and and frequency of dropouts, that is, proportion of cells where gene was not expressed.

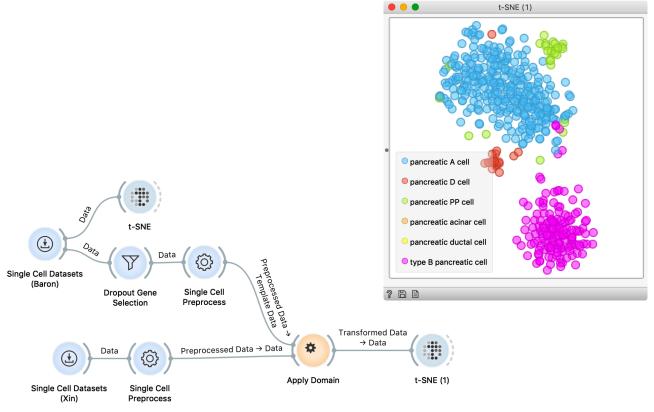
Notice that in our data there are many genes with large dropout, where we get rid of those with low mean expression in cells where the genes were expressed.

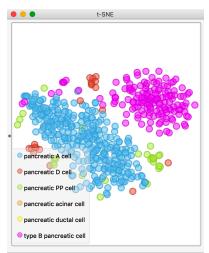
Single Cell Preprocess offers a set of standard preprocessing steps for the count data. We have configured it as shown.

	Single Cell Preprocess
Preprocessors	Normalize Samples
Logarithmic Scale Binarize Expression Normalize Samples Standardize Genes Select Most Variable Genes	Counts per million Median Cell Groups: Class
	Logarithmic Scale
	Logarithm Base: 🛛 e (Natural Logarithm) 🔷
	Standardize Genes
	Clipping
Output	
Send Automatically	Upper Bound: 10 C
2 🗎	


Notice that we first normalize the cell data with the median expression, transform the counts with the logarithm function, and standard the resulting expression to zero mean and standard deviation of I.

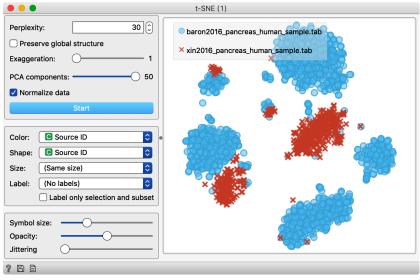
We have slightly changed the default parameters of Dropout Gene Selection to slightly alter the selection boundary.


Lesson 12: Batch Effects


All our analysis so far considered the data from a single provider, or even single experiment. But in single cell analysis, we often deal with the data from several different source. With present batch effects, we often find that such data are not compatible and need to be aligned.

We will consider another data set from human pancreas cells (Xin *et al.*, Cell Metabolism, 2016), from where we have selected cells that share labels from the Baron et al. data from the previous lessons. Let us examine Xin et al. data alone first.

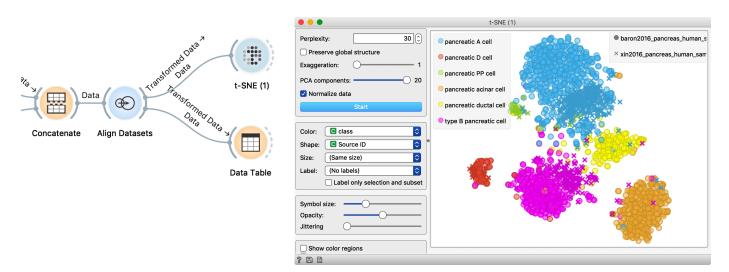
We have used the same preprocessing as introduces in the previous lesson. The t-SNE display is not as great, and the reason is that the gene selection is missing. With a widget called *Apply Domain* we can request Orange to select the genes from the post-processed Baron et al. data, and then get a much better t-SNE.


? B B

Now for the real thing. We will concatenate the two data sets, that is, the data from Baron at al. and the data from Xin et al., and plot a t-SNE. The workflow uses Concatenate widget, so that the Baron et al. data is used as a primary source, therefore removing all genes from Xin et al. that are not present in Baron et al. We also augment the data to include meta feature with the data set name.

When there is no primary table, the domain should be: O Union of attributes appearing in all tables Intersection of attributes in all tables								
will have a class only if there is no nput classes.								
urce IDs								
Source ID								
Meta attribute								
atically Apply								

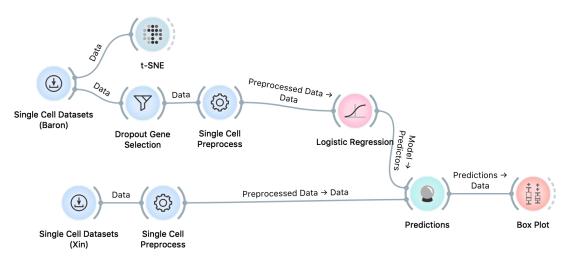
Calify Calify	
t-SNE	
Single Cell Datasets	
(Baron) Dropout Gene	Single Cell
Selection	Preprocess
	Preprocessed Data preprocessed Data preprocessed Data Concatenate
	Preprocessed Data Preprocessed Data Additional Data Concatenate
Data O	
	t-SNE (1)
Single Cell Datasets Single Cell (Xin) Preprocess	


And the resulting t-SNE plot? Bad. The cells from one and the other data source don't mix and there is very little overlap. If we were to assign cell types of Xin et al. using t-SNE and join visualization with Baron et al., this procedure would fail.

Lesson 13: Dataset Alignment

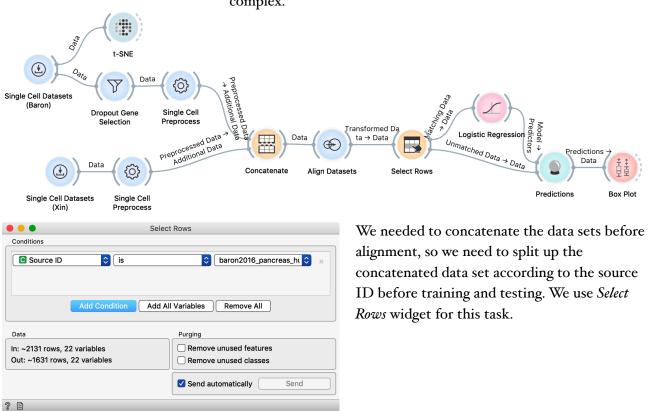
There are different approaches to align data sets and remove batch effects. orange currently implements two, one through t-SNE visualization (see Policar et al., biorxiv 2019), and the other, more standard, through canonical correlation. This approach seeks the transformation of data so that the correlations of expression vector across the two data sets are maximized.

We will continue with the workflow from the previous lesson, use Align Datasets widget that implements canonical correlation analysis, and then plot the resulting data in the t-SNE.



The cells from the two data sources are better aligned, and even more importantly, the cells of the same type but from a different data source cluster together.

Lesson 14: Cell Type Classification


Our aim here is to use pancreas cell data from Baron et al., train a cell type classification model, and then for testing its accuracy apply it to data from Xin et al. We can perform such classification with and without data alignment, expecting, of course, that the removal of batch effects with alignment should lead to better classification accuracy.

We start with a brute force approach with no alignment.

We use logistic regression here, as it performs well on this data set. The result is, despite low expectation, encouraging. Accuracy is high (FI=0.84, classification accuracy at 98.8%), but Box Plot with misclassifications showing misclassification of all pancreatic polypeptide cells.

	Box	Plot									
Variable											
class Logistic Regression Logistic Regression (pancreatic A		pancrea	tic A c	ell						panc	
Order by relevance	pancreatic A cell										
Subgroups	pancreatic D cell		reatic	D cell							
None		panc	pa	ncreati	c acina	ar cell		par	ncreati	c duct	al
C class	 pancreatic PP cell 										
C Logistic Regression	type B pancreatic cell	type B	pancre	atic ce	II						
Display Stretch bars Show box labels Sort by subgroup frequencies		0 10	20	30	40	50	60	70	80	90	100
2 8 8											

The workflow with alignment before classification is slightly more complex.

After the *Select Rows*, the selected data (Baron et al.) as sent to *Logistic Regression*, and the remaining data (Xin et al.) to *Predictions* to assess classification accuracy of constructed model. Box plot with misclassifications reveals substantial improvement of this classifier. Notice also good performance on pancreatic polypeptide cells. Data set alignment helped.

•••		Box Plo	ot									
Variable												
C class												
Order by relevance	pancreatic A cell		creatic	A cell								
Subgroups			creatic	D cell								
None	pancreatic D cell		creatic	pan	creatic	PP cell					ра	
C class	pancreatic PP cell											
C Source ID		ty	pe B p	ancrea	tic cell							
	type B pancreatic cell											
Display												
Stretch bars		0	10	20	30	40	50	60	70	80	90	100
Show box labels												
Sort by subgroup frequencies												
? B B												

For the End

Our single-cell Orange Data Mining workshop ends here. We covered quite many topics, but just scratched the surface of a large field of single-cell analytics. This three-hour workshop, of course, was only an introduction. There are many advanced topics that we left out. These include imputation, other batch effect removal techniques, inference of cell development trajectories and pseudotime, and cell tissue structure reconstruction. Our goal was to expose you to various aspects of data science and to show you how to do data analysis through interactive visualizations and construction of workflows. We hope you have enjoyed the course.