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Knowledge-based analysis of microarray gene
expression data by using support vector machines

Michael P. S. Brown*, William Noble Grundy**, David Lin*, Nello Cristianinis, Charles Walsh Sugnet”, Terrence S. Furey*

Manuel Ares, Jr.%, and David Haussler*

ter for Molecula

umbia Univers

Edited by David B n, Stanford Uniy

We introduce a method of functionally classifying genes by using
gene expression data from DNA microarray hybridization experi-
ments. The method is based on the theory of support vector
machines (SVMs). SVMs are considered a supervised computer
learning method because they exploit prior knowledge of gene
function to identify unknown genes of similar function from
expression data. SVMs avoid several problems associated with
unsupervised clustering methods, such as hierarchical clustering
and self-organizing maps. SVMs have many mathematical features
that make them attractive for gene expression analysis, including
their flexibility in choosing a similarity function, sparseness of
solution when dealing with large data sets, the ability to handle
large feature spaces, and the ability to identify outliers. We test
several SVMs that use different similarity metrics, as well as some
other supervised learning methods, and find that the SVMs best
identify sets of genes with a common function using expression
data. Finally, we use SVMs to predict functional roles for unchar
acterized yeast ORFs based on their expression data.

NA microarray technology provides biologists with the
ability to measure the expression levels of thousands of
s in a single experiment. Initial experiments (1) suggest that
res of similar function yield similar expression patterns
icroarray hybridization experiments. As data from such exper-
iments accumulates, it will be essential to have accurate means
for extracting biological significance and using the data to assign
functions to genes.
Currently, most approaches to the | t alysis of gene

ta attempt to learn f 1t classifica-

tions of genes in an A learning methe
considered unsupervisec I he absence of a teacher
al. Unsupervised gene expression analysis methods begin with

definition of similarity (or a measure of distance) between
expression patterns, but with no §
functional classes of the genes. Genes are then grouped by using a
clustering algorithm such as hierarchical clustering (1, 2) or se

2 maps (3)
Support vector machines (SVMs) (4-6) and mhu supervised

techniques use a training se : advance which

for components of the proteasome addition, a separate set of
genes that are known not to be members of the functional class is
pecified. These two sets of genes are combined to form & of
training exan \|\\ in which t enes are labeled positively if they
are in the func class a atively if they are
own not I« nction A set of training examples
erature and database sources. Usii
learn to discriminate between t

can easily be .munl»
this trz aning sct
bers and non-members of functional class based on
expression data. H p learne ] n features of class
the SVM could recognize new genes as me 1S Or as non
bers of the class based on t expression data. The SVM
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d approved Ne

could also be reapplied to the tr entify outliers
nay have previously bee class in the
training set. Thus, an SVM wou b

the investigator’s training set to determine what expression features

al information in

characte

mation to decide wh

f the group

SVMs offer two primary advantages \uIIx respect to previously
proposed methods such erarchical clustering and self-
organizing ns. First, alth all three methods employ distance
(or similarity) functions to compare gene expression me
ments, SVMs are capable of using a larger varicty of such
Specifically, SVMs can employ distance functions that ¢
extremely 1-dimensional feature spaces, as descrit
detail below lh s ability allows the SVMs implicitly to take into

ns betwe ene expression measurements. Sec

ond, supervised methods like SVMs take advantage of prior
knowledge (in the form of training data labels) in making distinc-
tions between one type of gene and another. In an unsupervised
method, when related es end up far apart accord to the
distance function, th nethod has no way to know that
related

We describe here the use of SVMs to classify g
expression. We ze expression data fr
budding yeast Saccharomyces cerevisiae asured in 79 different
DNA microarray hybridization experiments (1). From these
we learn to recognize five functional classes from the Munich
Information Center for Protein Sequences Yeast Genome Data-
base (MYGD) (http://www.mips. pg.de/proj/yeast). In
addition to SVM classification, we \um\\t these data to analyses by
four competing machine learning techniques, including Fisher's
lincar discriminant (7), Parzen windows (8), two decision tree
learners (9, 10). The SVM method out-performs all other methods
investigated here. We then u r these func
tional groups to pred 15 yeast ORFs

of unknown function.

Methods and Approach

DNA Microarray Data. Each data point produced by a DNA mi-

croarray hybridization experiment represents the ratio of expres-

sion levels of a particular gene under two different experimental

conditions (11, 12). The result, from - iment with # genes on
ple chip, is a series of n expressi vel ratios. Typically, the

merator of each ratio is the expression level of the gene in the

varying condition of interest, whereas the denominator is the

expression level of the gene in some reference condition. The data

from a series of m such experiments may be represented as a gene
expression matrix, in which cach of the n rows consists

-clement expression vector for a single g Follc Eisen er

(1), we do not work directly with the ratio as discussed above but

its normalized logarithm. We define X, to be the

f the ratio of expression level E; for gene Xin experiment

to the expression level R, of gene X in the reference state,

normalized so that the expression vector X (X, . Xw) has

ean length 1

log(E,/R))

I'he expression measurem ive if the gene is
(turned up) with respect to the reference state and negative i
is repressed (turned down) (1)
Initial anz xl\\u described here are ca
cctors for 2,46
se! luxul by Eisen et al. (1) based
tional annotations. T
spotted arrays using samples collected at various
the diauxic shift (12), th totic cell divisi
(14), and tempe:! re and reducing shocks, ar > available wn!lu
web site (http: a.stanford.edu/clusterin
Predictions of ORFs of unknown function were made by using
slightly different set of data that did
The data incluc 21 gen
ted genes described above. The 80-¢
expression vectors used for these experiments included 65 of
elements from the initial data used, plus 15 additional mitotic cell
division cycle time points not used by Eisen ef al. (1). This data is
also available on the Stanford web site

Support Vector Machines. Each vector X the gene expressiol

matrix may be thought of as a point in an m-dimensional expression

space. In theory, a simple way to build a binary classifier is to
2 hyperplane separating class

ples) from non

tunately, most real-world problems involve nonseparable data for

bers (pot exam-
¢s) in this space. Unfor

which there does not exist a hyperplanc that successfully separates
the positive from the negative examples. One solution
inseparability problem is to map the data into a higher-di

space and define a separating h plane there. This
dimensional space is called the f e space, as opposed to the
input space occupied by the trainin mples. With an appropri-
ately chosen fea space of sufficient dimensi

tent training set can be made separable. However, transl:
training set into a higher-dimensional space incurs both computa
tional and le

from a
examples in the feature \]\.uc Also, the decision Iumhnn for
assifying points with respect to the hyperpl involves do
products between points in f > space. Because the
rithm that finds a separating hype
stated entirely in terms of vec
products in the feature space, a support vector machine can locate
the hyperplane without presenting the space explicitly

the input space and dot

simply by defining a function, kernel functic ysthe
role of the dot product in the feature space. This lwuuqm avoids
the computational burden of explicitly representing the feature

vectors.

For some data sets, the SVM may not be able to f
hyperplane in feature space, either }‘\\J‘I\L' he kernel f
propriate for the training data or because the data c
labeled examples. The latter problem can be addressed by us:
x that allows some trainin examples to fall on the
he separating hyperplane. Completely specifying a
rt vector machine therefore requires specifying two param-
the kernel function and the magnitude of the penalt
the soft ma The settings of these parameters depend
specific data at har
Given an expression vector X for cach gene X, the simplest k
we can use to measure the similarity betwee
dot product ir input space K (X, Y)
For technical reasons (sce http://www.cse.ucsc.cdu
¢ add 1 to this kernel, obtair
def XY + 1. Whe
is used, the feature space is essentially the same
dimensional input space, and the SVM will classify the examples
h a separating h lane in this space. § thisk
fining K (X, Y)
input space. nding separating hyperplane in the

ic separating surface

ure space includes f atures for .11 pair
interactions XX, where 1 =4, ). Raising
pw-nn yields polync
t space. In general, the kemel of degree
Al,\. Y) = (XY + 1) In the feature space of
X there are features for all d-fold interactions between r
measurements, represented by terms of the form X, X
79. We experiment here with these
and 3

scparating surfaces of I

n form K (X, Y) = exp(—|| X 2/2a%), where ais the
of the Gaussian. In our experiments, a is set equal to
can distances from cach positive exa
cgative example (16).

The gene functional classes examined here contain very few
members relative to the total number of gene: he data set. This
leads to an imbalance in the numbe;
train examyg in combination
likely to cause the SVM to make incorrect cl.
mp. lk\nul\ul hs the tot
optimal hyperpl located by

mag; ude 1 S the negat
nu )\xuxpm b
SVM will be uninformative, classifying all members of the train
ive examples. We combat this problem by moc
matrix of kernel values computed during SVM optimization. Let
X, ..., X" be the genes in the tra g set, and let Kbe the matrix
de lmu by ‘h\ Mxm] function K on this training set; i.e., Ky = K
to the diagonal of the kernel matrix a constant
whose magnitude depends on the class of the t S
can control the fraction of miscl
que ensures that the pos
sitive examples, the diagonal element is modi-
fied by Ky + AMn*/N), where n* is the number of positive
training examples, NV is the total number of training examples, and
Aisscale factor. A si
withn* replaced by n~. In the experiments reported
factor is set to 0.1. A more mat atically detailed discussic
techniques employed h lable at http://www.cse.ucsc.edu

ssearch/cc

Experimental Design Using 4 finitions made by the
MYGD, we trained SVMs to recognize six functional classes
tricarboxylic acid (TCA) cycle
proteasome, histones, elix-t x proteins, The MYGD

tion, cytoplasmic ribosomes,

class definitions ¢« nd genetic studies of
ion whereas the ay e ion data
\\]m genes. Many classes in | especially stry

earnable from expr
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any classifier. The first five classes were selected because they

cpresent categories of genes that are expected, on biological
unds, to exhibit similar expression profiles. Furthermore, Eisen

et al. (1) suggested that the mRNA expression vectors f

classes cluster well using hierarchical clustering. The sixth class,

helix-turn-helix proteins, is included as a wulm] group. Because

there is no reason to believe that members of this class arc

similarly regulated, we did not expect any classifier to learn to

recognize members of this class based on

measurements.

The performance of the SVM classifiers was compared with that
of four st Jud machine learnir gorithms: Parzen windows,
I r's lin criminant, and two decision tree

wd MOCTI). Descriptions of these algorithms can Iu
http:/ /www.cse.ucsc.edu/research/compbio/genex h.lnl
was tested by using a three-way cross-validated experiment
: expression vectors were randomly divided into three
Classifiers were trained by using two-thirds of the data and were
tested on the rema third. This ] rocedure was then repeated
two more times, cach time using third of the genes as test

The performance of each classifier was

how well the classifier identified the positive and ne

in the test sets. Each in the test set can be

false positives are genes that the classifier places w
ass, but MYGD classifies as non-n I
senes that the classifier
fies as members. We r

the class, but MYGD
es in each of

ods we tested

ge overall performance, we define

od M as C(M) = fp(M) + 2n(M), where fp(M) is the number

of false positives for method M, and fn(M) is the number of false
gatives for method M. The false negatives are weighted more

he cost of using the

heavily than the false positives because, for these data, the number

of positive examples is small com r £
tives, The cost for cach method is compared with the cost C(V) for

ull lea g procedure, which classifies al

We define the cost savings of using

procedure M as S(M) = C(N) = C(M)

xperiments predicting functions of unknown ger
t \\1 classi on the 246
leamable classes. For cach class, the remaining

examples
learning

S were per

es were then ¢

Results and Discussion
SVMs Ou(pedorm Other Methods. Our experiments show that some
classes of genes can be recognized by using SVMs trained
ray expression data. We compare SVMs to four
and find that SVMs provide sup perfor-

mance

Table 1 summarizes the results of a three-fold cross-validation
experiment using all eight of the classif; tested, including four
SVM variants, Parzen windows, Fisher's lincar discriminant, and
two decision tree learners. Performance is evaluated in the standard
in which each
ative classification label for each member of the test
set based only on what it has learned from the training set. The first

s false positive (FP), false negative

od must produce a

four columns are the ca
(FN), true positive (TP), and true negative (TN), and the fifth is a
measure of overall performance

helix-turn-helix class), the best-
performing method is a support vec achine using the radial
basis or a higher-dimensional dot product kernel. Other cost
functions, with differ its of the false positive and

For every class (except

performance. In five
separate tests, the radial basis SVM performs better than Fisher's

Table 1. Comparison of error rates for various classification
methods

Class

TCA

sitive, and true negat

Method
D-p 15VM

p 2 SVM
D-p3SVM
Radial SVM

NeBWVWAND

~ 0w

D-p2SVM
D-p3SVM
Radial SVM
Parzen

FLD

~

SN we

cas

MoC1

D-p 15VM
D-p 2 SVM
D-p35VM
Radial SVM
Parzen

NoeRN®

TRZ2% e

D-p 15VM
D-p 2 SVM
D-p3SVM
Radial SVM
Parzen

FLD

c4s

MOC1

D-p 15VM
D-p2SVM
D-p35VM
Radial SVM
Parzen

ds are the SVM g
and third power, the r
¢ Discriminant, and

next five columns

ed by the savings

ar discriminant

equally g

best all five
classifiers to learn to recc

ood, the probability th
s is 0.03. The

proteins, as expected

The

resu 111\ shown in Table

2

<3

~

VRS

NN
Nt uewnw

VNWWNNNN SO N wveeoe

daaaa s

o

NNNNNNNNNNNNNNNNNN
W wWwwwwa N A

NNNNNNNNNNNNN

NNNNNN

2,451
2,437
2,437
2,449
2,445

ed dot product kerne
asis function SVM, P

e rates sum

sion tr

S(M)), as defined in

Under the null hypothesis that the met

the radial basis SVM w¢

results

ze genes th,

hods are

uld be the

at produce helix-turn-helix

r SVMs are con

rates for clusters

srarchical

Table 2. Consistently misclassified genes
Class Gene Locus Error

TCA YPROOIW  CIT3 FN
YOR142W  LSC1 N
YLR174W 1DP2 FN
YiL12sw KGD1 FN
YDR148C KGD2 FN
YBLOISW  ACH1
YPRI9IW  QCR2 FN
YPL2ZTIW ATP1S
YPL26. FUM1
YML120C  NDIt
YKLOBSW  MDH1
YGR207C
YDLO67C COoX9
YPLO37C EGD1
YLRA06C RPL31B
YLRO7SW  RPL10
YDL184C RPLATA
YALOO3W  EFB1 P
YHR027C RPN1 FN
YGR270W  YTA? FN
YGRO48W  UFD1 P
YDRO69C DOoA4 FN
YDLO20C RPN4 FN

Hist YOL012C HTA3 FN
YKLO4SC CSE4 FN

Description

Mitochondrial citrate synthase

a subunit of succinyl-CoA ligase

Isocitrate dehydrogenase

a-ketoglutarate dehydrogenase

Component of a-ketoglutarate dehydrog. complex (mito)
Acetyl CoA hydrolase

Ubiquinol cytochrome-c reductase core protein 2
ATP synthase « subunit

Fumarase

Mitochondrial NADH ubiquinone 6 oxidoreductase
Mitochondrial malate dehydrogenase
Electron-transferring flavoprotein, g chain
Subunit Vila of cytochrome ¢ oxidase

B subunit of the nascent-polypeptide-associated complex
Ribosomal protein L31B (L34B) (YL28)

Ribosomal protein L10

Ribosomal protein LA1A (YLA41) (L47A)

Translation elongation factor EF-18

Subunit of 265 proteasome (PA700 subunit)
Member of CDC48/PAS1/SECIB family of ATPases
Ubiquitin fusion degradation protein

Ubiquitin isopeptidase

Involved in ubiquitin degradation pathway
Histone-related protein

Required for proper kinetochore function

The table lists all 25 genes that are most consistently misclassified by the SVMs. Two types of errors are inclu

a false positive (FP) occurs when the SVM includes the gene in the given class but

not; a false negative (FN) occurs when the SVM does ne
classification does.

lentified 8 of the 11 histones,
wd 112 of the 121 genes and
ot ribosomal genes (1)

and the ribosome cluster only fc
included 14 others that were

We repeated the experiment with all four SVMs four more times
with different random splits of the data. The results show that the
variance introduced by the random splitting
relative to the mean. The ¢ st-10-
those with the allest rat
savings. For example, for the radial basis SVM, the
standard deviations of the cost sav

of the data is small,
functional classes are
» of stand iation to mean cost
for the two casi

29 and 180
respectively. The most difficult class, TCA cycle, had a mean and

ribosomal proteins and histones—are

standard deviation of 10.4 * 3.0. Results for the other classes and

sion profile of YPLO37C compared with the MYGD dass of

mal proteins. YPLO37Cis dlassified as a ribosomal protein by the

ded in the class by The figure shows the expression

ard deviation bars for the class of cytoplas

msomal proteins. Ticks along the x axis represent the beginnings of exper
I series.

Brown et al

e MYGD dassific
ot include the gene in the gi

other kernel functions are similar www.cse,ucse.edu

research/compbio/genex).

Signif of G tently Misclassified Annotated Genes. The five
different three-fold cross-validation experiments, cach performed
with four different kernels, yield a tota
functional class. Across all five functiona
turn-helix) and all 20 experiments, 25 g
least 19 of the 20 experime

ments with MYGD re
expression data, whic
and the MYGD definitions, which have been arrived at through
experiments or protein structure predictions. For exan
MYGD, the members
co-purification whereas the expression d.
that are
functioning of the complex. This \ul[ lead 1o dl\ eements in the
form of false positives. Disagreements be tween the SVM and
MYGD in the form of false 2
reasons. First, genes that are classified in MYGD primarily by
structure (e
patterns. Second, genes that are regulated at the translational level

of 20 experiments per
classes (excluding helix

re misclassified in at
neral, these disagree-
different perspective provided by the

epresents the genetic response of cell,

of a complex are defined by bioch
entify proteins

ot physically part of the cor bute to proper

s may occur for a number of
, protein kinases) may have very different expressio

protein level, rather than at the transcriptional level as measured
by the microarray exper its, cannot be correctly classified by
expression data alone genes for which the microarray data
is corrupt not be cc ly classified. False positives and false
negatives re urther biological experimenta-
tion may be f

Many of the false positive genes in Table 2 are known from
bi ical studies to be important for the functional class assigned
by the SVM, even though MYGD has not included these
their classification. For example, YALOO3W and YPLI

signed repeatedly to the cytoplasmic ribosome ¢
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Table 3. Predicted functional classifications for previously unannotated genes

Class Gene Locus

TCA YHR188C
YKLO39W

YKRO1
YKRO46
YPRO20W

synthas:

Conserved in worm, Schi

Comments
ccharomyces pombe, huma
ral membr.
regulated
sible homolog in 5. pombe

ently annota subunit of mitochondrial ATP

e complex

plasmic protein kinase of unknown fun

YNL119
YNL255C
CCHC

053w

tein-tyrosine phosphatase,

g of translationally controlled tumor protein
erved and ubiquitous protein of
n function

remote homologs in several divergent species

Cellular nudleic acid binding protein homolog, sever

ral) type zinc fingers

arexpression bypas:

growth arrest by mating fact

YNL217TW
YDR330W
YJLO36W
YDLOS3C

ribosomal proteins; however, both are important for proper func-
ng of the ribosome. YALOO3W encodes a translation elonga

r, EFB1, known to be i
1¢ ribosome (17)
polypeptide

or the proper functioning

1, is part of

ssociated complex, which has been she

ribosomes and help target nascent polypeptides to
ons, including the endoplasmic reticulu

chondria (18). The cell ensures that expression of these pi

keeps pace with the expression ibosomal proteins, as shown in

Fig. 1. Thus, the SVM classifies YALOO3W and YPLO37C with

ribosomal proteins,

A false positive in the respiration class, YMLI20C, encodes
NADH:ubiquinone oxidoreductase. In yeast, this enzyme repl
respiration complex 1 (19) and is crucial f
clectrons fre

ansfer of high energ
NADH to ubiquinone, and thus for respiration (19,
20). A consistent false 1 the proteasome class is
YGRO48W (UFD1). /
YGRO48W is r

athway (21), v

h not strictly part of the proteasome,
proper functioning of th viquitin
rs proteins to the proteasome for pro-
sitive in the TCA class is

A hydrolase. Although this ¢
1 be considered an unproductive reaction
oxylate cycle substrate, its act

teolysis. Another
YBLOISW (ACH]I)
zyme ¢

on a key TCA cyclh

very important

ity could be
gulating
ficant that expression of
cycle enzymes
A distinct set of false positives
athway, YPL262W and YKLOSSW
though MYGD se

classes

> respiration class. Al-
tes the TCA pathway and respiration, both
mportant for the production of ATP. In fact, the
profiles of these two classes are strikingly similar (data
t shown). Thus, although MYGD considers
arate, both the expression da

hese two classes

wd other experim

pgest that there is significant regulatory overlap. The ¢

SVMs may lack sufficient sensitivity to resolve two such intimately
n data alo;
tives occur when a prote

ated functional classes u expres:
edtoa
y special function that

ole, YKLIMOC is

functic class based on structure has

demands a different regulation strategy. For ex:

o bis (5" nucleotidyl)-tetraphosphatases

n regulatory domain p

ting nexin family

pombe homolog

No convincing homol

YLR Three C2H2 2

ne finge
7

classified as a histone protein by MYGD based on its 61% amino
ity with histone protein H3. YKLO49C is thought 1o act

as a part of the centre

acid simil
(22); however expression data
t co-regulated with histone nes. A similar
situation arises in the 3 ¢ cl: Both YDLO20C

YDRO69C maz
but the SVM does not classify them as belonging to the proteasome

shows that it is n
proteasome (23-25

because they are regulated differently from the rest of the protea-
some during sporulation.
Onc limita
some genes are regulated at the translational and protein levels. For
of the five genes that the SVM was unable to identify
the TCA class are zymes known
allosterically by ADP/ATP, succinyl-CoA, and
NADPH (26). Thus, the activitics of these enzymes are
d by me that do r olve changes in mRNA level. If
RNA levels don ther TCA cycle
enzymes, the SVM will not be able to classify them correctly by
CXpressior i

herent in the use of gene expression data is that

-nes encoding
NAD
) those ¢

ta alone
Other discrepancics apy by corrupt data. For
example, the SVM classifies YLRO7SW as a cytoplasmic ribosomal
protein, but MYGD did not. However, YLRO7SW is a ribosomal
in MYGD has since
been corrected. Some proteins YGR207C and
YGR270W aturely placed in functional classes based
only on protein sequence s

rotein (27, 28), and the original annotat
r example
may be prer
larities. Other errors occur in the

th icroarrays contain bad
y ne locations in the gene expression
marked as containing corrupt Four of the genes
listed in Table (YPROOIW, YPL271IW, IC, and
YOLO012C) are marked as such. In adc
assigns YDLO7SW
"

matrix ar

correctl

YLR406(

to the ribosomal protein class,
plicate sequence copy of YDLOTSW, is

dto the

essentially a
ribosome class despite the correct nment of its near twin
YDLI33C-A. Because pairs of nearly identical genes such as these
cannot be distinguished by hybridization, that the
YLR406C and YDLIS4C data is also ques

Functional Class Predictions for Genes of Unknown Function. In
cy of SVM method
using genes of known function, we used SVMs to classify

the classification acc

e of this exper-

annotated yeast genes. A common trivial oute
( djacent to

iment g or ORFs that ov

annotated cls 3 a situati

the current set of predicted ORFs in the yeast genome.
expression array d
cases the extent of 1

| because in many
ption beyond ORFs is no
acent or overlappi < t always be distinguisk
ored these predictions. Table 3 lists the 15 unar
dicted to be class members by at least thre
enes are near the indicated
The predictior ental testing. In some
ation supports the
ecent annotation shows that a gene
espiration, YPRO20W, is a subunit of
the ATP synthase complex, confirmin
YKLO56C, a highly conserved protein
ian translationally controlled tumor pre¢
with ribosomal pi

cases described in Table 3
prediction. For example
1 to be involved ir

this prediction (29)
omologous to the mam
in (30),isco alated
c first hint concerning its function. A
retroviral type znc fin

ulated with ribosomal proteins, a compelling finding considering
the activity of this type of prote RNA chaperone (31). In the
proteasome class, YDR330W has homology to ubiquit ulatory
protein domains, su, a role in ubiquitin-dep ent protea
some activity. The gene YJLO36W is a member of the sorting nexin

family (32), and we would predict that it is involved

cin containing sev s also co-

1 the delivery
work on
s will be necessary 1o determine whether their r
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Brown et al. (2000) Knowledge-based analysis of acid similarity with histone prot;ain H3. YKI1.049C is thought to act
microarray gene expression data by using support as a part of the centromere (22); however, the expression data

vector machines, PNAS 97(1).

O Scatter Plot

Axes

Axis x: 0 diau f (]

Axis y: ) spo- mid (]

Find Informative Projections

Attributes

Color: function

Shape: (Same shape)

Size: (Same size)

Label: gene (]

Label only selection and subset

Symbol size:

Opacity:

Jittering:
Jitter numeric values

Zoom/Select

2?2 B B @& |211861-1- >1]186]2

shows that it is not co-regulated with histone genes. A similar
situation arises in the proteasome class. Both YDL020C and
£ YDRO069C may be loosely associated with the proteasome (23-25),
but the SVM does not classify them as belonging to the proteasome
because they are regulated differently from the rest of the protea-

some during sporulation.
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Leban et al. (2005) VizRank: finding informative data projections in
functional genomics by machine learning, Bioinformatics 21(3).
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Principal Component Analysis
Karl Pearson, 1901

Multidimensional Scaling
Roger N. Shepard, 1962

t-Distributed Stochastic Neighbor Embedding

Geoffrey Hinton and Sam Roweis, 2002
Laurens van der Maaten and Geoffrey Hinton, 2008
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Neurologists/Psychiatrists

N (nervous system) @
Dermatologists
D (dermatologicals)

L (antigeoplastic and
immun%nodulalmg agents)

) . : . Endocrinologists (Diabetes)
N ephrologlsts/Endrocrmologlsts A (alimentary tract and metabolism)
Ophtha]mo]ogists L0« : 'llrlm inhibilors) @ = A10 (drugs used in diabetes)
S (sensory organs) anti-parathyroid agents) - HO4 (pancreatic hormones)
- SO1 (ophthalmologicals) " © £
o Gastroenterologists
limentary tract and metabolism)

Pulmonologists/Allergists
® R (respiratory system)
Urologists Cardiologists
(3 (genito urinary system .B (blood and blood forming organs)
(o) and sex hormones) (0] i e
® Hematologists Geriatricians

B (blood and blood forming organs) C (cardigvas@lar system)
o %(ncr\rous system)

Gynaecologists

G (genito urinary system — Gagtroenterologist
and sex hormones) o . ‘' nal medicine
J (antiinfective§ 10r syste . P

od and blood forming organs) Gerlgtrlclans
C (cardiovascular system)

N (nervous system)

)
\ Infectious Disease Specialists
g (antiinfectives for systemic use)

unknown o

J (antiinfectives for systemic use) Pediatricians

D (dermatologicals)
R (respiratory system)

o
ENT Specialists

R (respiratory system)

Poli¢ar et al. (2023) Nation-Wide ePrescription Data Reveals Landscape of Physicians and Their
Drug Prescribing Patterns in Slovenia, Proc. Artificial Intelligence in Medicine Europe.
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employee profiling
telecom customers
single-cell gene expression
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Godec et al. (2019) Democratized
image analytics by visual programming
through integration of deep models
and small-scale machine learning,
Nature Communications 10:4551.
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name exercise
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Jason Salavon
American, born 1970

Little Infinity (v.MFAH), 2020

Site-specific wallpaper

Mouseum commission funded by the Caroline Wiess
Law Accessions Endowment FEund, 2020. 141

Using software he designed, Jason Salavon has
pulled nearly a quarter million images from
the ImageNet dataset, a picture collection
used by researchers and corporations to train
artificial intelligence systems. By sampling each
of the dataset’s 20,000 categories and arranging
those images from darkest to lightest within
each category, Salavon presents a cascade of
photographs suggesting the flood of imagery
that inundates our daily lives. Exposing
ImageNet’s odd inclusions and notable absences
i1 each category, Little Infinity (v. MFAH)
poses essential questions about the nature of
images and the ways in which they sway any
understanding of the world.




AlexNet (Alex Krizhevsky, llya Sutskever, in
Geoffrey Hinton, 2012)
60 million parameters
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Images are simple.
How about words?

@ Data Table

words
Cup
Curtain
Desk
Detergent
Diploma
Dishwasher
Door
Drawer
Drawing
Drum
DVD
Earbuds
Envelope
Fan
Faucet
Fertilizer
File

Fire extingui...
Float
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Ok, words.

@ theguardian.com

ast week, the pop star Lily Allen was viciously criticised on social

media after it was revealed that she had rehomed her dog Mary -

after Mary ate her and her children’s passports. The animal rights

charity Peta published an open letter accusing Allen of treating her
dog like an accessory “to be discarded when they become inconvenient”.
Allen tried to put the event in context, saying that the passport eating was
the final straw in a series of incidents stemming from the dog’s severe
behavioural issues.

While I understand the natural impulse to say that Allen is a “monster” for
rehoming Mary, [ have sympathy for her. Having a pet is a big responsibility,
and one we should always take seriously, but when a pet has such extreme
behavioural issues that it can’t seem to live and thrive in your home, it’s OK
to ask whether it might be better off elsewhere.

My sympathy for Allen also stems from the fact that I am toying with the
decision to rehome my two cats. I grew up with pets and love animals, but
my now ex-boyfriend and I didn’t have any - for a while. Then in January
2023, he came home one day with a kitten he had rescued from a friend of a
friend. And six months later, he turned up again with another kitten,
claiming that our cat was lonely and needed company. Suddenly, we had two
cats.

When we broke up, the question of
what would happen to our cats hung
over everything. Unfortunately, I
ended up having to care for both
cats. I want to be a good cat-parent:
they deserve to have a happy and
fulfilling life. Sadly, it’s increasingly
clear I can’t provide that.

One cat has behavioural issues and

But can we use this on text?
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Ok, text embedding.
But how about generative Al?

What are large language models? Answer in
simple English, in one sentence.

Large language models are advanced
computer programs that use vast amounts of
text data to understand and generate human-
like language, helping with tasks like
answering questions, writing, or translating.
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She added a banana to her morning smoothie.




Structured Answering

Create a random strength workout with
complementary exercises. | am going to
provide a template for your output, where
CAPITALIZED-WORDS are placeholders,
replace them with content: **#: NAME™*
<newline>**set and timing:** REPS @ SETS,
ESTIMATED-TIME-IN-MINUTES <newline>
“*muscles:*™ MUSCLE GROUPS WORKED
<newline> **difficulty:** DIFFICULTY SCALE
1-5 <newline> FORM NOTES. No itemization.

1: Push-ups

set and timing: 15 @ 3, 10 minutes

muscles: Chest, Shoulders, Triceps
difficulty: 3

Maintain a straight body alignment throughout.

2: Dumbbell Shoulder Press

set and timing: 12 @ 3, 12 minutes

muscles: Shoulders, Triceps

difficulty: 4

Keep core engaged to avoid arching the back.

3: Bent-over Dumbbell Rows

set and timing: 12 @ 3, 10 minutes
muscles: Upper Back, Biceps
difficulty: 3

Focus on pulling elbows back and squeezing
shoulder blades together.




Large Language Models
are Huge

GPT-4 (OpenAl) ~1 trillion (exact unknown)
GPT-3 (OpenAl) 175 billion

PaLM 2 (Google) 340 billion

LLaMA 2 (Meta) Up to 70 billion

Flaude 2 (Anthropic) ~70 billion







oundation Models

bALL-E 2

~3.5 billion Image generation from text descriptions
(OpenAl)
PaLM 2 340 billion Multilingual understanding, text generation,
(Google) and reasoning
CLIP ~300 million Image and text matching for understanding
(OpenAl) visual concepts
Jukebox 5 billion Music generation and style transfer from
(OpenAl) text descriptions
Whisper ~1.5 billion Automatic speech recognition and
(OpenAl) transcription
VALL-E ~4 billion Text-to-speech synthesis and voice
(Microsoft) cloning
VideoGPT ~1 billion Video generation and video-to-text tasks
(OpenaAl)
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Corpus Viewer (3)

RegExp Filter:

Y2K misinterpretation, Al warning standfirst: John Thow on the global effort that prevented a Y2K disaster, and
Robert Frazer on Isaac Asimov's laws of robotics

bodyText: Re the existential threat from Al (Letters, 2 June), Phyl Hyde says
the concerns over Y2K were “a panic” about an “overblown future | A ) © Business
cause”. Like many IT specialists across the world, | am fed up o ‘ O y
with this misinterpretation of what happened. Organisations put © Culture
serious money into employing thousands of people to inspect L q
their systems and to amend them to ensure the issue was avoid-
ed. Because of this, systems continued to function normally over ) D Environment
the century change and lives were not affected. The result was N o
that people thought it was a fuss about nothing. It took several | N Politics
years of planning, resourcing and working to achieve the desired r & .y @ Sport
result. It's probably going to take a lot more to understand and | e o
cope with the unintended consequences of Al. John Thow Bas- > Technology
ingstoke, Hampshire + Regarding Isaac Asimov'’s three laws of @ Travel
robotics, many of his stories show how impractical they are —
such as Little Lost Robot, where harm-anticipating robots keep
dragging researchers out of the potentially hazardous environ-
ment they're working in, forcing the first law to be suspended — or
else how robots bend and evade laws they are ostensibly pro-
grammed to obey. In another short story, The Evitable Conflict,
the three laws ironically create the situation that they were sup-
posed to prevent: robots use the first law's order that a robot “may
not through inaction allow a human being to come to harm” to jus-
tify overthrowing a human government with Al-controlled dictator-
ship: humans cannot rule without harming themselves, so the law
requires robots to rule in our place. Asimov deliberately desianed

Al risks and benefits
Al terror threat

Al's potential harms
Education
Al threat overblown

Al societal risk

Moral outsourcing and Al

Al job fears

Al pioneer dies

Al regulation urgent

Al saves world

Al developments and concerns (1)

Robots replacing jobs

Al developments and concerns (2)
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Foundation Models

BIOBERT - Biomedical text analysis enhancement
AlphaFold - Protein structure prediction
ChemBERTa - Chemical property prediction

GPT-3 for Medical Queries - Medical text generation
DeepVariant - Genetic variant analysis
ClinicalBERT - Electronic health record analysis
scFoundation - Single cell transcriptomics

LSM1-MS2 - Mass spectrometry




Conclusion

Point-based visualizations map possibly complex, non-
structured data to 2D

Projections, now embedding
Explanation is crucial

Al-based approaches for embedding will prevail over
classical projection and embedding technigues

There is much to be explored in the space of data and
knowledge fusion




