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Multidimensional Scaling

distance between  
i-th and j-th data item 

in (original) data space
distance in 

embedded space



t-Distributed Stochastic Neighbor Embedding

similarity probability 
(in data space)

similarity probability 
(in embedded space)
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Examples
employee profiling 
telecom customers  

single-cell gene expression 



Cluster 
Explanation

feature ranking 
explainable classifiers
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AI and Embedding
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input (numbers, image pixels)

output (e.g., probability of “basketball”)
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AlexNet (Alex Krizhevsky, Ilya Sutskever, in 
Geoffrey Hinton, 2012) 
60 million parameters
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Images are simple. 
How about words?
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Ok, words. 
But can we use this on text?



Ok, text embedding. 
But how about generative AI?

What are large language models? Answer in 
simple English, in one sentence.

Large language models are advanced 
computer programs that use vast amounts of 
text data to understand and generate human-
like language, helping with tasks like 
answering questions, writing, or translating.



encoding of 
input string

prediction  
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She added a banana to her …

… mo
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… g 



encoding of 
input string

prediction  
of next token

She added a banana to her morning smoothie.



Structured Answering
Create a random strength workout with 

complementary exercises. I am going to 
provide a template for your output, where 
CAPITALIZED-WORDS are placeholders, 

replace them with content: **#: NAME** 
<newline>**set and timing:** REPS @ SETS, 

ESTIMATED-TIME-IN-MINUTES <newline> 
**muscles:** MUSCLE GROUPS WORKED 

<newline> **difficulty:** DIFFICULTY SCALE 
1-5 <newline> FORM NOTES. No itemization.

1: Push-ups 
set and timing: 15 @ 3, 10 minutes  
muscles: Chest, Shoulders, Triceps  
difficulty: 3  
Maintain a straight body alignment throughout. 

2: Dumbbell Shoulder Press 
set and timing: 12 @ 3, 12 minutes  
muscles: Shoulders, Triceps  
difficulty: 4  
Keep core engaged to avoid arching the back. 

3: Bent-over Dumbbell Rows 
set and timing: 12 @ 3, 10 minutes  
muscles: Upper Back, Biceps  
difficulty: 3  
Focus on pulling elbows back and squeezing 
shoulder blades together. 
…



Large Language Models  
are Huge
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Foundation Models
BioBERT - Biomedical text analysis enhancement 

AlphaFold - Protein structure prediction 

ChemBERTa - Chemical property prediction 

GPT-3 for Medical Queries - Medical text generation 

DeepVariant - Genetic variant analysis 

ClinicalBERT - Electronic health record analysis 

scFoundation - Single cell transcriptomics 

LSM1-MS2 - Mass spectrometry



Conclusion
Point-based visualizations map possibly complex, non-
structured data to 2D 

Projections, now embedding 

Explanation is crucial 

AI-based approaches for embedding will prevail over 
classical projection and embedding techniques 

There is much to be explored in the space of data and 
knowledge fusion


