Chapter 5

Kernels

Machine learning often considers problems where we profile objects with attribute-
value vectors. This representation has, in principle, several limitations. Objects may
be complex, and their vector-based representation is not trivial. Consider text docu-
ments, molecular structures, trees, graphs, and networks. For these, an alternative
to feature-based representation is the utility of a function that can measure object-
to-object similarity. Moreover, even if feature-based representation is available, it
may be too weak to allow simpler models, like linear and logistic regression, to
model more complex relations, like feature interactions. One way to surpass such
limitations is kernels. In general, kernels are functions that map a pair of input ob-
jects to a number. One use of kernels is to consider a prototype object and then map
input space into a latent representation, where selected modeling techniques may
be more successful. When applied to a pair of data instances, we can regard kernels
as functions that measure similarity. Smoothing kernels as used in kernel density
estimation, which has a substantially different meaning. In this chapter, we look at

a range of typical kernels and approaches that can use kernels in model inference.

In the previous chapters, we have introduced machine learning models that consider a set
of training data to infer a predictive model. The training data is then discarded, and predic-
tions for new inputs are formed entirely based on the model and its inferred parameters.

In this chapter, we introduce a different class of machine learning techniques that keeps
the training data and uses it within the prediction phase. We have already exposed one such
algorithm, namely k-nearest neighbors. We refer to algorithms of this kind as lazy, or memory-
based. They typically require a metric of similarity of any two data points from the input
space. We can recast many linear parametric models into an equivalent dual representation
in which the predictions are based on a linear combination of a kernel function evaluated in
the original, input space. For models, which are based on a fixed non-linear feature space
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mapping ¢, the kernel function is given by the relation

K(x,x') = G()THE).

The kernel function is, from the definition, symmetric. Again, and importantly, the defini-
tion above says that instead of computing the dot product between the vectors in the latent,
mapped space, we can compute the kernel function in the space of original features. This
concept, thus formulated as an inner product in a feature space, allows us to develop ex-
tensions of many well-known regression and classification methods. All we need to do is
to reformulate the methods to operate with dot products of input vectors. When introduc-
ing transformation to latent space, this product is then replaced with the kernel. We show
the utility of the kernel trick in detail for one regression and for one classification approach:
linear regression with ridge regularization and support vector machines.

In particular, support vector machines have received much attention in the past, but their
importance has been in decay with the introduction of recent approaches, including deep
networks. A particularly important driver of support vector machine’s success was the utility
of kernels on structured objects, like text, voice, images, and graphs.

5.1 Examples of Kernel Functions
A kernel function, or just a kernel is defined as:
K: XXX >R,

where X is our variable space or typically, an input space. A kernel is thus a function x(x, x’)
that takes a pair of elements from the input space x,x” € X and maps them to a real number.
In practice we typically deal with kernel functions where x(x,x’) > 0 and «(x,x") = x(x’, x).
That is, non-negative and symmetric kernel functions, which allows us to interpret them as
similarity measures.

Notice that kernel has different meanings in different contexts. We will be here covering
three:

* First, we will look at kernels in a very general sense - as functions that map a pair of
elements from our (input, feature) space to a number.

* Then we will move on to positive-definite (or Mercer) kernels, which are a special
case of the former (that is, with additional requirements) and allow for more efficient
computation that is the basis for models such as SVM and kernel ridge regression.

* And third, we will introduce smoothing kernels that are used in kernel density estima-
tion and has a substantially different meaning.
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Polynomial Kernel

A standard kernel that is related to a transformation to a latent space that can, for instance,
yield a linearly-unserable data instances manageble under linear models (e.g., Fig. 5.4) is a
polynomial kernel:
Kk(x, x") = (xTx" + 1)".
For n = 2, and assuming that x = [u1u2]T and x’ = [v1v2]T we get
T ’ 2 — 2
(x™x" +1)° = (uqv1 + upvp + 1)
= u%v% + u%v% + 1 4 2uq01 + 2up0 + 2u101U2 T

= (1, V2 u1, V2 up, 13, V2 uguin, u2)™(1, V2 01, V2 05,02, V2 010, 03)

Polynomial kernel of second degree returns a dot product of vectors in six-dimensional
space.

Radial Basis Function Kernels

The squared exponential kernel, or Gaussian kernel is defined by:
’ 1 ’ -1 ’
x(x, x") :exp(—z(x—x)TZ (x—x))

When X is diagonal, this kernel can be expressed as:

I 1
k(x,x’) = exp [_E Z ;(xj - x})z]
=17

1

We can interpret o; as characteristic lenght scale of the dimension. If we assume that all
characteristic length scales are equal, then we can write this kernel as:

2
k=¥l )

K(x,x') = exp( 72

where o2 is known as a bandwidth. Since this kernel depends only on a function ||x — x’||, that
is, only on a distance between a point x and, say, a reference x’, this kernel is a radial basis
function and is often referred to as an RBF kernel.

Notice that an RBF kernel has a parameter, o, that needs to be either set by the user
given some domain knowledge or inferred from the data through, for example, internal cross-

validation.
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Linear Kernel

When ¢(x) = x, we get a linear kernel defined as:
K(x, x") = xTx’

This kernel is useful if the original data is already high dimensional, and if the original
set of features are informative. Examples of such data sets are frequent in text mining and
related with a bag of words representation of text documents, or data set from molecular
biology that involve thousands of genes or millions of single-nucleotide polymorphisms. In
these cases, a linear combination of features may represent a sufficiently accurate decision
boundary, and it may not be required to use some other latent representation.

Kernels for Comparing Text Documents

Notice that kernel provides a proxy for the similarity of data instances. Given two objects,
we will be able to construct regressors or classifiers by only computing the kernels, that is,
estimating the similarity between two objects. If the objects are text documents, we can
represent the document with vectors that contain word frequencies. We often refer to this
presentation as bag of words. Because we can consider documents of different lengths, the
Euclidian distance would fail (why?). We can instead normalize the bag-of-words represen-
tation according to the document length or use the cosine similarity *:

xTx’
K(x,x") =

T

Cosine similarity measures the cosine of the angle between the two vectors x and x’ that
represent the corresponding documents. Since both vectors are count vectors, the cosine
similarity will be between 0 and 1.

Bag of words representation may include punctuations and frequently occurring words,
so-called stop words, that may obscure the differences between documents and yield doc-
ument representations too similar to each other. Various techniques for text pre-processing
to avoid this effect were proposed in the literature. Among the most frequently used are
stop-words removal and transform called term frequency-inverse document frequency, which
replaces word counts with weights so that to expose less frequent words.

String Kernels

Kernels that operate on strings report on string sequence similarity. In these times, it may not
be hard to consider RNA sequences of viruses that have infected people at different continents.

'Euclidian distance between normalized vectors and cosine similarity are in practice almost identical. Find
what is their relation mathematically!
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Due to mutations, their sequence may be different, and so is the effect on a phenotype of a
patient. We may predict these phenotypes using kernels that measure sequence similarity.
Consider the following three sequences:

TCGGTTTAACGGATTATGGTAC
TCGGTCCAACGGATAATGGAAC
TCGGCGATTTAACGGATCGATTTATGGTAC

To compare them, we may, for instance, use edit distance, that is, the measure that reports
how many atomic changes like deletions, insertion, or single nucleotide mutation we have to
introduce in one sequence to derive another one. Sequence similarity may also be computed
through the count of the substrings the two strings have in common, or through the length
of the longest common substring, or similar. There is vast research on string similarity mea-
sures and means to compute them through sequence alignment in the literature of molecular
biology, and interested readers should consult algorithms such as BLAST or CLUSTAL.

5.2 Kernelized Linear Models

One simple way to use kernels for classification or regression is to use kernel machines. A
kernel machine is a generalized linear model where the input vector has the form

¢(X) = [K(xr Pl)/ ceey K(xr PK)]

where y, is a set of centroids or prototypes, that is, a subset of examples from the training
set. Considering kernels as proximity functions. Then, the above-defined kernelized feature
vector can be, for a give data instance, regarded as a vector of similarity to the prototype data
instances. The general idea is that wherever we use a linear term ﬁTx, that is, in linear re-
gression, generalized linear models, ordinal regression or similar, we could instead transform
the input vector x via a kernel function with respect to a set of prototype observations y, ...,
- After constructing these new features, we proceed with the inference as we would with
the original modeling method, we have a different, transformed input space (the term used
now is BT p(x).

Prototypes, if appropriately selected, may help linear models to model feature spaces with
feature interactions. Consider an XOR problem and logistic regression. Using RBF kernel
and four different prototypes, logistic regression would be able to infer a perfect model for
this otherwise hard classification case. Notice, though, that choice of the prototypes here is
essential. In general, though:

* The number of prototypes K can be less, above, or equal to the dimension of the original
training set.
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* We can choose the prototypes using some systematic approach, like clustering. Alterna-
tively, we could use every training example, x, for a prototype.

* If the number of prototypes is large, we could use any of the sparsity-promoting priors
on B, as discussed in the chapter on regularization. We refer to such an approach is
called sparse vector machine. The most natural choice is ¢ regularization, an approach
we refer to as {j-regularized vector machine, or LIVM. Another popular approach of
creating a sparse kernel machine is a support vector machine, discussed in detail below.

* And, most importantly, worth emphasizing again — we can use this approach within
any linear model we have learned so far. With this approach, we can produce non-
parametric versions of those parametric approaches, where their expressiveness can
grow with the number of data points.

5.3 Mercer Kernels

Mercer kernels are related to approaches that use kernels through the so-called kernel trick
and where we define models where input data appears within the inner products of the input
data instances. We here define the Mercer kernels, establish the equivalence between Mercer
kernels and inner products in transformed space, and outline some of the rules to follow
when constructing a new kernel.

Definition Mercer’s Theorem

A kernel function « of the form R? x R? — R is said to be symmetric positive semidefinite if
it is (a) symmetric: x(x,x’) = x(x’,x) and (b) for any integer m > 0 and any set of m vectors
x; € R? the matrix

x(x1,x1) ... K(xX1,Xm)

K= ) )

K(XI’H/ xl) et K(xm/xm)

is positive semidefinite. This matrix is also called the Gram matrix.

Definition 1 Mercer Kernel. A symmetric positive semidefinite kernel « is also called a Mercer
kernel.

Definition 2 Mercer’s Theorem. If « is a Mercer kernel then it is an inner product (dot product)
k(x, x") = (P(x), (x")) for some (possibly infinite dimensional) mapping ¢(x) : R" — D.

Note that the mapping ¢ is often called the basis function and the space D is called the
feature space.
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This theorem is fundamental. It justifies the kernel trick that we will see a couple of times
later. The kernel trick is just a direct application of Mercer’s theorem - if we have a method
that depends only on the inner products, we can replace those inner products with any Mercer
kernel to obtain the application of that method on the feature space 9 determined by that
kernel. Of course, computing the kernel is, in most cases, much easier.

Polynomial Kernel Revisited

We can start by considering one-dimensional polynomial regression, which is equivalent to
using the basis function ¢ : x — (1,x,x?, ..., x"). For example, for quadratic polynomial regres-
sion (r = 2), ¢ : x — (1,x,x2) and for cubic polynomial regression (r = 3), ¢ : x = (1,x,x%,x%).
Similarly, for higher dimensional x, we have ¢ : (x1,x2) = (1, x1, X2, X1X2, X3, x3).

In practice, it turns out that the basis functions for polynomial kernels use slightly dif-
ferent weights. For the cubic example, instead of ¢ : x — (1,x, x%,x3), we use ¢ :x =
(1, V3x, V3x2,x3). The squared-roots do not make any difference when considering linear
combinations, as the inner two coefficients will just be scaled by V3. However, it does make

the computation much more convenient:

(B(x), p()) = 1+ 3xx’ +3x°(x')> + 2(x')° = (1 + xx')>.

This can be generalized to arbitrary power r, obtaining the polynomial kernel x(x,x’) =
(1 + xx’)". The beauty of this kernel is that the computation of the inner product in feature
. + . . . . . . . .
space, which has (") dimensions, actually requires just one inner product in the original
space (dimension m) adding one and taking power.

RBF Kernel Revisited

With no proof, we should state here that:
1. Radial basis function (RBF) kernel is a Mercer kernel.

2. RBF kernel corresponds to a basis function that transforms the data instance to an
infinite-dimensional feature space, that is, to a space of an infinite sum of polynomial
kernels. So not only is the feature space inner product more convenient to compute in
original space, it would be impossible to compute in feature space.

Other Mercer Kernels

In general, it is difficult to verify if a kernel is a Mercer kernel. There are, however, operations
that preserve the property. If k1 and «, are Mercer kernels defined on the same feature space,
then the following are also Mercer kernels (ShaweTaylorCristianini2004):
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* x(x,x") = ck1(x,x’), where ¢ > 0 is a constant

* k(x,x") = f(x)x1(x, x") f(x"), where f(x) is a real function with nonnegative coefficients
* x(x,x) = flri(x, x7))

* x(x, x) = x1(x, x) + x2(x, x7)

e x(x, x") = x1(x, x")K2(x, x)

* K(x,x7) = x1(P(x), ¢(x7))

* x(x,x") = xTAx’, where A is symmetric positive semidefinite matrix

Let us start with a linear function x(x,x’) = (x7x’), which is a kernel since A = I is a
positive definite matrix, (and as such also positive semi-definite). Then a simple polynomial
kernel x(x,x’) = (x"x")? = contains only terms of degree two, and is equal to the linear kernel
squared, and is also a kernel. A slightly generalized function x(x, x’) = (xTx’ +c)?> with ¢ > 0 is
also a kernel since its expansion contains linear combinations of linear or polynomial kernels
of degree two. Through similar reasoning, we can find taht «(x,x’) = (x7x’ + c)M is a kernel
for any ¢ > 0.

Another commonly used kernel, a Gaussian kernel, takes the form

k(x,x’) = exp (— I — x||? /202)
This is a valid kernel, sinceby expanding the square
Ix =27 = xTx + (' )Tx" —2xTx’
we can write
K(x,x') = exp(—xTx/20%) exp(xTx’ /0?) exp(—(x') T« /x5?)

and see that this is a valid kernel.

5.4 Application of the Theory of Mercer Kernels to Modelling

We want to express an existing linear method in terms of inner products and then replace
them with a kernel to obtain the linear method in the transformed feature space, conse-
quently constructing a non-linear model. That is, we apply the kernel trick. Of course, for this
to work, the kernel needs to be a Mercer kernel, not just any kernel function. Below, we show
that regularized linear regression has a dual form that uses dot products of input vectors,
and hence it can be kernelized. We also derive support vector machines, a linear classifica-
tion algorithm that uses a weighted sum of the dot product of pairs of data instances from
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the training data set. Furthermore, we briefly discuss a kernelized version of the k-nearest
neighbors. For other methods, like support vector machine regression, kernelized principal
component analysis, or kernelized k-means clustering, see (2012-Murphy).

Kernelized Ridge Regression and the Kernel Trick

First, recall what we’ve learned about ridge regression, that is, L,-regularized linear regres-
sion. Again, let X € RN*P be our independent variables and y € RY our dependent variable.
Given a regularization parameter A the objective is to find coefficients p that minimize the
squared error and the squared sum of coefficients f,

A

b= argmﬁin(llX,B - yll% + /\||,3||%)-

We know that this has a closed-form solution = (XTX + AI;)"'XTy.
Now we will rewrite this solution in an alternative (dual) form, which will facilitate the
use of a kernel. Observe that

XTX + AL)XT = XTXXT + AXT = XT(XXT + AL).

Multiplying the leftmost and rightmost terms by (X? X+AI;)~! on the left and (XX +AI;)™!
on the right-hand side, we get

XT(XXT + AL) ' = (XTX + AL) ' XT.

So, we have found an alternative formulation of the closed-form solution:

B =XT(xXT + AL,) .

Using this new formulation as depicted above, we can define the prediction for a new
observation as

() = T = () = ()T XT(XXT + AL) .

The critical observation here is that the prediction depends on X and x’ only through stan-
dard inner products.
T
', x1) (1, x1) o o, X
More precisely, (x')'XT = : and XXT = : : is the Gram ma-
&, xn) (o, x1) oo (X, Xn)
trix.
So, we can apply the kernel trick and replace these inner products with the more general
kernelized formulation.
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Figure 5.1: Kernelized ridge regression with polynomial kernel on one-dimensional data.
Choice of hyper-parameter of the kernel can greatly influence the degree of fit.

9(') = k(@)K + AL) 'y,

T
K(x’, x1) k(e x1) ... kX1, X)
where k(x’) = : and K =

K(x// xi’l) K(xi’l/ xl) e K(xn/xn)

That is, using a kernel, we can perform ridge regression in the space whose inner product
is represented by the kernel.

An alternative view is to explicitly introduce the (dual) variable a = (K + /\In)‘ly to allow
us to express the closed-form solution as

ﬁ =XTa = Z a;x;.
The solution to the problem is just a linear combination of the observations!

Plugging this into the prediction for the new observation, we get

() = ()T Z apx; = Z a;(x)Tx; = Z a;x(x’, x;),

which illustrates that the prediction for a new observation is just a weighted sum of train-
ing observations’ values of y (weighted by the similarity of those observations with the new
observation x’)! For example, for linear regression, where we just have the standard inner
product, observations that have a smaller angle (closer to O or 180) have a higher weight.

The degree of fit of kernelized ridge regression depends on the choice of kernel and its
parameters, and on the choice of degree of regularization (see Figs. 5.5 and ??).
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Figure 5.2: Wrong choice of hyperparameters can lead to overfitting, as shown in the plots of
regression on one-dimensional data set with Gaussian kernel.

Support Vector Machines

Support vector machines are, in essence, linear classifiers that infer separating hyper-planes
with maximal margins to the neighboring data points. We here derive the formulation of this
classifier, show how to its power with a kernel trick, and describe extension for non-linearly
separable cases. We also derive the formulation for support vector machines using hinge loss.

The Large Margin Principle

Figure 5.3: A separating hyper-plane with large (left) and small margin (right).

Consider a binary classification problem, with y = +1, where data instances of the two
classes are linearly separable. Our aim is to define a separating hyper-plane that splits the
feature space so that the margin between the closest positive and the closest negative data
instance is the largest 5.3. Intuitively, a large margin would steer us from overfitting and may
yield best accuracy on yet unseen data. Let us denote the margin with y. We would therefore
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like to find w that defines the direction of a separating hyper-plane wTx + wy = 0, where wy
is the intercept, with largest margin y. With no loss of generality, let us choose w so that the
data points on the margin are one unit away from separating hyper-plane. The equations for
the margins are thus:

wix+wy=1

wTx +wy = -1

Consider now a point x on one margin and its projection x; accross separating hyperplane to
the other margin:
+2 @
x=x +2y—
llw

Using the equations of the margin, so that wTx + wy = 1 and wTx, + wy = —1, we obtain:

w
wT(x +2 —)+w0 =1,
SRAT
wTw
wTx +wo + 2y 2ol =1,
wTw
-1+2y—— =1,
Vel
and finally, considering wTw = llwlf?,
1
7 ool

To maximize the margin, we need to minimize the length of w. Formally, and considering
that all data points in our linearly separable classification problem have to lie on or outside
the margin, we therefore want to opimize

1 .
min = |[w|? s.t. yi(wTx; +we) =1, i=1...N
w,wo 2

For convenience, we have added % and are optimizing the squared norm instead of the norm,
which, of course, should be mathematically more convenient and leads to the same solution.
We can now use the method of Lagrange multipliers to find the minima of our criteria function
that succombs to the set of constrains. The primal Lagrangian is:

N

1
L(w, wo,@) = 3 [l = ), aqlyi(wTx; +wo) = 1]
i=1

where a; > 0 are Lagrange multipliers. Optimal value of parameters that define the separating
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hyper-plane is where the gradient of the Lagrangian is zero:

_a
T ow

N
:w—Zaiyixi:O

i=1

VL

Therefore,
N
=1

w = Z ajYyix; (5.1)

~

Separating hyperlane is defined through a normal vector that is a weighted sum of vectors
that define our training data instances!

Similar holds for wy,
JL

i a;yi =0

M-

1l
—_

1

and hence
N
aiy; =0
i=1

1

We now insert the values of our optimal parameters back to the Lagrangian:

1 N N N N N N
L = E (Z aiyixi) [Z ajij]‘] — (Z aiyixi) [2 ajijj] — Z ailYi + Z a;
i=1 i=1 i=1 i=1 i=1 i=1
N 1 N ZJ\I ]
= Z a; — 5 Z Z QAi0YiY XX
i=1 i=1 j=1

Support vector classifier is then defined through the following optimization problem:

N N N
1
maximize L(a) = Z o — 5 Z Z QA YiY XX

i=1 i=1 j=1

N
subject to Z yia; =0,
i=1

a;>20,i=1,...,N

The problem of finding the separating hyper-plane with maximal margin thus translates to
quadratic programming, for which a standard solver can be used.

At this stage, notice that finding & through quadratic programming provides us the weights
w (see Eq. 5.1) and consequently provides for b. Notice that the solution of a quadratic pro-
gramming problem, that is, the vector a is typically sparse. That is, most «; will be zero. That
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is, the weights w will be defined by only a small number of input data instances. These data
instances are those that define the margin and are called support vectors. The support vectors
are, therefore, training data instances for which «; > 0.

The decision rule for classification of data instance x to the positive class (y = 1) is
wix+b>0

and if we substitute for w we obtain:

N
Z a;Yix;Tx + b>0
i=1

Notice that in essence we do not need to compute the weights w for classification. All we need
is to remember the instances for the training data set and compute the scalar product between
training data instances and the vector the represents data instance to be classified. We can
notice that in the quadratic programming formulation, where we solve for a, its dependency
on the training data is again expressed through the scalar product xZ.Tx]-.

Support Vector Machines and Kernel Trick

Consider a data set with linearly non-separable classes (Fig. 5.4, left panel), and a transfor-
mation ®(x) = (x%, x%, 2 x1x7) that takes each two-dimensional data instance and transforms
it into a latent space with three dimension. The transformed data set becomes linearly sep-
arable (Fig. 5.4, right panel). If x and x’ are two vectors in original space, what is their dot
product ®(x)d(x’) in transformed space?

D(x)D(x') = (x%,x%, V2 xlxz)T(xiz,xf, V2 X1x5)
= x%xiz + 2x1X0X7 X7 + x%xf
= (x1x] + x2%5)

= (x7¥)?

So, if, instead of using a dot product between two vectors xTx” in formulation of SVM, we
can replace it with a x(x,x’) = (xTx’)%. This substitution is called a kernel trick. The kernel
trick avoids the explicit mapping that is needed to, say, get a linear model to learn a nonlinear
function or decision boundary. For all x and x’ in the input space, certain functions x(x,x’)
can be expressed as an inner product in another space. The function « is referred to as a
kernel or a kernel function. Notice that the kernel trick allows us never to transform the data
to the latent space, that is, never to use the transformation function ®(x). In this way, the
latent space could, in principle, have infinite dimensions, yet all we need is to compute the
scalar product in this space. For any kernel, there is a corresponding function that transforms
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Figure 5.4: A two-feature binary classification data set (left), where the data points of differ-
ent classes are not linearly separated. The same data set, where each point x was transformed
through ®(x), so that ®(x) = (x3,x3, V2 x1x7) (right).

the data from original space to latent space, and there are some kernels where the required
dimensionality of latent space is infinite. We will discuss various kernel functions and their
properties a bit later in this chapter.

Non-Linearly Separable Data

If the data is not linearly separated, which is expected from any real data that contains some
noise, the support vector machine that we have defined so far does not have any solution.
For such cases, we need to introduce slack variables &; > 0 such that slack is zero if the data
instance is on or inside the correct margin boundary, or the slack is positive and equal to

poly

Figure 5.5: Classification in two-dimensional feature space shows decision boundaries of
support vector machines with linear, polynomial (n = 3), and Gaussian kernel. Double-circled
data points are support vectors. Code for figures by Gaél Varoquaux.
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the distance to the corresponding margin. Notice that if 0 < &; > 1 the point lies inside the
margin, but on the corre side of decision boundary. To solve for this problem, we replace
the hard constrains with soft margin constraints with the new objective, where, as before, we
would like to maximize the margin with minimal use of slack:

w,wop,&

N
1
min - ]2 +c25i s &>0, yiwxi+we) >1-&,i=1...N
i=1

The corresponding Lagrangian is
1 N N N
L(w,wo,@) = 5 [l +C Y & = Y alyi(w i +wo) =1+ &1 = ), iy
i=1 i=1

i=1

After computing the corresponding gradients and replacing the results in the primal La-
grangian, the dual form of Lagrangian is the same as before,

1 N N
a; — E Z Z aiajyiy]'xixj
i=1 j=1

with the only exception of a box constrain 0 < a; < C. Notice that the parameter C is a

N
i=1
regularization parameter that controls the number of errors we are willing to tolerate on
the training set. This parameter is commonly defined as C = 1/(vN), where 0 < v < 1 is

the fraction of misclassified points we allow during the training phase. This version of the
algorithm is called v-SVM classifier.

Multi-Class Classification

We have defined support vectors classifiers for supervised learning on binary classification
data. Unlike some other approaches, like softmax for logistic regression, SVMs do not have a
natural extension that would be appropriate to treat multi-class data. Standard approaches
that solve multi-class problems through inference of a set of binary classifiers include a one-
versus-all approach and one-versus-one approach. However, the problem to use them is that
SV, in its original formulation, is not a probabilistic classifier.

Choosing the Value of Hyper-Parameters

Regularization parameters like C and v are parameters of the algorithm, that is, hyper-
parameters that need to be set before the inference of the model. To search for the most
appropriate value, we can use approaches such as the search over a fixed set of parameters
and estimating their appropriateness through cross-validated accuracy on the training data.
We then use the parameter value with the highest estimated accuracy to infer the model from
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the entire training set.

Hinge Loss

An alternative derivation of support vector machine comes from the utility of hige loss, a
variant of a loss function for binary classification, defined as:

Lhinge(y/ T]) = max(O, 1- y’?) = (1 - y’?>+

Here, n = f(x) = wTx + wy can be regarded as “confidence” in choosing label y = 1. The
overall objective is again to maximize the margin while minimizing the loss, therefore:

N
1 2
rur)11101(')1 5 [lw||* + C ;(—yif(xi))+

This objective function is non-differentiable because of the max term. We can replace this
term with slack variables, and request in the revised objective that the slack is minimized.
The new objective function

N
1
min §||w||2+c25i sEE>0, yiwTxi+we) >1-&, i=1...N

w,wo,& P

is exactly the same as the one derived above, in the section on the treatment of non-linearably
separable data.

Kernelized k-Nearest Neighbors

k-nearest neighbor algorithms are based on distance, that is, they find the observations closest
to the one we are predicting for. If using an Euclidean distance, this can be expressed in terms
of inner products

2 2 2 2 2
[lx, x[I7 = llx||* + [IX[|7 — 2¢x, x") = (x, x)* + (&', x")° = 2(x, x”).

Thus, we can replace these dot products with a kernel, and in this way perform k-nearest
neighbors in the feature space of a chosen kernel.

Support Vector Machines Regression

Here, we motivate SVM with the problem of kernelized ridge regression, and actually with
other approaches discussed so far that use the kernel trick, where the solution is not sparse.
More precisely, the solution of kernelized ridge regression E = ) wa;x; and subsequently the
predictions #(x") = }_ a;x(x’, x;) depend on all training observations.
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A key idea of SVMs is to introduce sparsity through the loss function. Vapnik proposed
the epsilon insensitive loss function:

Le(y, 7)) =1y — 9l — € if [y — | > € and O otherwise.

Basically, anything that has an absolute error less than € is not penalized. The objective
function we want to minimize is then

J=CY Loty 9 + IBIP

where §; = f(x;) = BTx; + fo and C = 1 is a regularization constant.

This optimization problem is non-differentiable because of the absolute value in the loss
function. Typically, it is reformulated as a constrained optimization problem by introducing
slack variables &:

yi— f(x) < +e+ &7,
vi— flxi) > —e—¢&;.

Now we can reformulate the objective function.

J=CY @ + )+ B

This is a quadratic function of f and we need to minimize it, subject to the above constraints
and £ >0, & > 0. Standard quadratic programming black-box solvers can be used.

If it is not immediately clear what we did with the slack variables: First, we deliberately
put the f(x;) on the left-hand side of the inequality constraints above. This is to illustrate the
fact that for observations that we can fit within €, the constraint will immediately be true, and
both &; can be 0. For all other observations, one of the inequality constraints will be violated,
but not both. So, one of the slack variables will be 0, and the other will be exactly the amount
the fit exceeds e. This is what forces the f(x;) as close to y; as possible, in the absolute sense;
the only way to make &; as close to 0 as possible, again, in the absolute sense, is to make the
f(x;) as close to y; as possible. That is, in the optimal solution, the sum of & will be exactly
the total sum of all exceedances of €), so by minimizing the one, we minimize the other. But
we got rid of the absolute term.

The solution of the above optimization problem (2012-Murphy) has, not surprisingly, the

p=) an

i

form

where a; > 0. Notice that this solution is typically sparse, as most a; = 0. The x; where
a; > 0 are again called support vectors. We should emphasize that the sparseness comes from
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the objective function (€). In practice, and depending on training data, we sometimes do get
unlucky as it turns out that most x; from the training data are support vectors.

SVM regression is typically solved in its dual form. The form above is the primal form.
The two forms are the same as the optimization problem is convex. The dual formulation is
also where the result comes that the solution is a linear combination of observations, very
similar to kernelized ridge regression.

As with kernelized ridge regression, the prediction for a new observation is
9y = po+x""p
= ﬁAo + X'T Z‘ aiX;
= IB\O + Z Olix’Txl‘
=Bo+ Z ajrk(x’, x;)

So, we can also use the kernel trick here and do SVM regression in a feature space determined
by the choice of kernel.

Kernel Density Estimation

Here, we will discuss on a substantially different kind of kernels, the so-called smoothing
kernels. We will use the smoothing kernels to create non-parametric density estimates p(x),
as well as for creating generative models for classification and regression of the form p(y, x).

A smoothing kernel is a one-argument function that satisfies the following properties:

f x(x)dx =1,
f xk(x)dx =0,

f x*1(x)dx > 0.

A simple example of a smoothing kernel is a Gaussian kernel,

—x2/2

x(x) = e

(2n)?

and we can control the width of the kernel by introducing a bandwidth parameter h:
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We can generalize this kernel to vector-valued inputs by defining an RBF kernel:

Kn(x) = Kn(lixl)-

Kernel density estimators are different from, say, Gaussian mixture models, a parametric
density estimator that requires speficying K prototypes. An alternative is to allocate one
cluster center per data point, so that the kernel density estimator, also called the Parzen
window density estimator becomes

1 N
plx) = 5 ) Kl = x).
i=1

The advantage of kernel density estimator over the parametric models is no need for
model fitting and no need to pick the prototypes. However, we need to tune for the band-
width, which can be performed by internal cross-validation. Notice also that the choice of &
influences the bias-variance tradeoff. More smoothing decreases bias but increases variance,
less smoothing decreases variance but increases bias. The optimal point is somewhere in
between.



