Chapter 2

Trees and Forests

Trees introduce learning via recursive partitioning of the input variable space. De-
pending on the learning task, the algorithm used is either a classification tree or a
regression tree, respectively. The inference of trees is fast but leads to models that
are not stable and have high variance. To reduce the variance and increase stability,
the upgrade of the tree-learning approach may construct a set of trees. We define
two such procedures; one called bootstrap aggregation (bagging) and the other ran-
dom forest.

2.1 Classification and Regression Trees (CART)

Classification and regression trees, somehow surprisingly, conceptually relate to other ad-
vanced machine learning approaches, such as kernel methods, generalized linear models,
and adaptive basis function models. While we have yet to discuss them, let us visit them
briefly for some motivation. The (generalized) linear modeling paradigm, as introduced in
the next lecture, assumes that we can interpret the data generating process with a family
of distributions whose parameters are in a (transformed) linear relationship with the input
variables. These are parametric models. For kernel methods, the prediction takes the form of
a weighted sum f(x) = wT¢(x), where w is a weight vector and ¢ is a vector of similarities
with an input example x, such that

o) = [x(x, 1), ..., x(x, 4,)]

where y, represents either all the training data or some sample, and « is a kernel function.
Kernel functions are, in general, defined in advance, and coming up with a good kernel is
hard and may depend on the problem domain.

Learning kernel functions is on option, but is computationally expensive and requires a lot
of data. An alternative approach is to forget about kernels, and instead infer useful features
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18 CHAPTER 2. TREES AND FORESTS

¢(x) directly from the training data. This is an approach used by adaptive basis function
model, which takes the form

M
f@) =wo+ Y W)
m=1

where ¢,,(x) is the m-th basis function inferred from the training data. The basis functions are
parametric, so that we can write ¢,,(x) = ¢,(x; v,,), where v,, are the parameters of the basis
function itself. The CART approach can be viewed as a special case of adaptive basis function
model. CART recursively partitions the input space and defines a simplified local model in
each resulting region. Recursive partitioning can be represented as a tree, where partitioning
conditions are stored in internal nodes and region models in the leaves. The model takes the
following form

f(x) = E[ylx] (2.1)
M

= Z w,I(x € Ry) (2.2)
m];l

= Z Wi P(x; Om) (2.3)
m=1

where R,, denotes the m’th region and wy, is, simplified, the main response in the region. The
set v, encodes the choice of the variable to split on and the related threshold value in the path
from the root of the tree to the specific leaf. Notice that in CART the regions do not overlap,
and that the training example falls in only and exactly one of the constructed regions. The
region splits are defined on exactly one of the variables and are thus axis parallel.

Basic Idea

From the viewpoint of model construction and compared to generalized linear models, kernel
methods, and inference of adaptive basis function models, CART introduces a fundamentally
different modeling paradigm. One that assumes that we can interpret the data generating
process as a partition of the input variable space into homogeneous (pure) regions — regions
where there is little or no uncertainty left about the target variable. For regression, the
target variable for the data instances within this region is almost constant (see Fig. 2.1). For
classification, a majority of data instances in the region have the same value of the target
variable.

The CART Algorithm

Finding the optimal partitioning of the input variable space is in general NP-complete, even
if using axis-parallel splits only. That is, it is infeasible to check all possible partitions. In-



2.1. CLASSIFICATION AND REGRESSION TREES (CART)

target

target

1.5

0.51

0.0

—0.5

—1.0

-1.51

1.5

1.0

0.54

0.0

—0.5

—1.0

-1.51

Decision Tree Regression, max_depth=1

°
°
o
@
o ° o %,
&° o,
& ° N
%
°
° e %o e
° °
®
Do%cmo
°
1 2 3 4 5

data

Decision Tree Regression, max_depth=3

Decision Tree Regression, max_depth=2

1.5

1.0

0.01

target

~0.5

—1.0

-1.51

& o
4 [+
0.5 1@ . %
o

data

Decision Tree Regression, max_depth=4

154

1.04

0.5

0.0 -

target

—-0.5

~1.0

~1.5-

19

Figure 2.1: Regression trees fitted on data generated by a sine function with some noise.
While the tree adapts well to the training data, its ability to overfit the training data is visible
already with trees with of maximum depth of 4 (lower right).

Figure 2.2: A regression tree with maximum depth of 2 from the data from Fig. 2.1.
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stead, we will consider a greedy algorithm (CART) that uses binary recursive partitioning of
the input space, at each step choosing the best possible split (according to some pre-selected
criterion). Notice that this algorithm does not use any look-ahead, and while there are pub-
lished studies of such algorithms, they have found no use in practice. Algorithm 1 shows the
pseudocode of a CART algorithm.

Algorithm 1 CART
1: procedure FITTREE(D)
2 (DL, D, criterion) « split(D)
3: node <« createNode(criterion, D)
4: if stoppingCriterionMet(criterion, ) then return node
5
6
7

node.L « fitTree(Dr)
node.R « fitTree(DR)
return node

The CART algorithm uses several functions that require explanation:

» createNode(): This function creates an object that represents a tree node, which essen-
tially stores the criterion that splits the data in a node and a possible reference to the
data instances that are pertinent to the node. If the procedure finds a suitable node
split, the node stores the information on its to siblings. Note that, as introduced above,
the CART algorithm would construct binary trees.

* split(): The assumption here is that features are numerical or at least ordinal. We order
every feature based on possible splits (based on unique values in the data, so we have
a finite number of possible splits). And then, we go through all possible feature-split
combinations to find the one that is optimal according to our splitting criterion — the
one that minimizes the sum of the cost of the left and right subtrees. Below we discuss
possible splitting criteria.

* stoppingCriterionMet(): The stopping condition, also referred to as pre-prunning of the
trees, can be one or more of the following:

— The partition is sufficiently homogeneous/pure. In particular, there is no point in
splitting further if we have perfect homogeneity (all observations have the same
value).

— The gain A of splitting the data set in the current node (relative to stopping crite-
rion) is below some pre-determined threshold, where

A = cost(D) = cost(D) — (%cost(DL) + %cost(@R))

— The algorithm has reached pre-determined maximum tree depth.
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— Splitting the data set in the node would yield a leaf with number of observations
below some pre-determined minimum.

Choice of the Splitting Criterion

At each internal node, the inference method for the trees splits the training data set D per-
tinent to the node to maximize some splitting criterion. The split uses a single feature from
the training data set and forms a condition on the value of this feature that evaluates to true
or false. The condition splits the data D to two data sets, each pertinent to one of the two
siblings of the node. The result is a binary tree. Notice that we could use other, non-binary,
splitting mechanisms, but they would lead to over-fragmentation of the data, increase the
variance, and lead to increased overfitting.

Splitting criteria are related to data set purity, costs, loss, or estimated errors. They have
to address the type of the target feature, this being either numerical or discrete. Note that
the literature investigates many different criteria, and while, at least on the surface, these
take different forms, the practical differences regarding overall accuracies and ordering of
the features are often neglectable. The costs of the splitting is most often estimated for each
of the resulting siblings (leaves), and then weighted according to the estimated probability
that the data instance will fall in one of the two constructed regions

cost(node, criterion) = @cost(Z)L) + @cost(Z)R)
1D 1Dl

For regression trees, the most often used splitting criterion is the mean squared error of
predicting with the subtree mean

cost(D) = Z(yi - y)Z

i€eD
where y = ﬁ Y.iep i is the mean of the target variable in the resulting data set.

Many more splitting criteria were proposed for the classification setting, and most of them
rely on estimating class-conditional probabilities

Foo L S
T(e = 1D Zl(yz = C)
€D

For instance, we can measure the entropy (or deviance) of the resulting data set

C
H(f) = — Z #i, log i,
c=1
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or can measure the expected error rate in the form of a gini index

im(l—m)=2m—2ﬁ%=l—2ﬁ?
c=1 c c c

where 7t, is the probabilty a random entry in the leaf belongs to class ¢, and 1 — 7, is the
probability for this entry to be misclassified. Other criterion may include information gain,
information gain ratio, chi-squared test, and similar. Note that with all the above criteria,
splitting the training data set will never decrease the quality (and increase the cost) and in
the worst case the quality will remain the same if the node’s data set is already homogeneous.
Notice that we are estimating all the costs on the training set and thus potentially overfitting
the data.

Discussion

There are several issues with growing and using the classification and regression trees. The
trees have some advantages and many disadvantages. While, on their own, the trees are
rather mediocre predictors, their enhancements in terms of ensembling discussed in the fol-
lowing sections of this chapter elevate them to at least a formidable baseline, if not state-of-
the-art approach. Therefore, let us first review some of the issues that are pertinent to the
development and utility of CART, that is, induction of single trees.

Interpretation. Decision trees are easy to interpret. In fact, according to the current re-
search, the interpretability of trees is only behind decision tables and individual rules
when it comes to non-expert users. Yet, the standard decision tree algorithms are very
susceptible to small changes in the inputs. A small change in the training data set can
result in a substantially different tree. What good is an in-depth interpretation of the
model if this is inherently unstable? We can mitigate instability by using bootstrapping
to check if the algorithm produces stable trees before proceeding with the analysis. Also,
learning a (stable) tree that mimics a more complex model such as a tree ensemble and
neural networks is one of the most common approaches to explaining how the complex
model works. This approach, though, has gained recent criticism that if one is after the
explanation, one should primarily build interpretable models in the first place, and not
represent complex models with simple ones (Rudin2019).

Low computational complexity. Trees are fast to training and very fast in prediction. They
scale well to large data sets. The only exception to this observation is in treatment of
sparse data, that is, data with many unknown values. A thorough treatment of unknown
values may invalidate the divide-and-conquer approach with the passing of full data sets
to leaves and potentially visiting the entire tree when predicting. A potential remedy of
this side effect is to impute the missing values before training or prediction.
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Weak inductive bias. Compared to more sophisticated methods, including ensembles of trees
and neural networks, classification and regression trees have a relatively weak inductive
bias. That is, they will not perform the best (or close to) in terms of predictive quality
on most practical problems. The two main issues are a lack of smoothness and difficulty
of capturing additive relationships. See (ESL) for further details.

Possible complex treatment of categorical input variables. When splitting a predictor hav-
ing g possible unordered values, there are 27-! —1 possible partitions of the g values into
two groups and the computations become prohibitive for large 4. For example, consider
the treatment of postal codes in the data sets. There are possible heuristic approaches
to cope with such cases, though. For binary target variables, we can order the predictor
classes according to the proportion falling in outcome class 1. Then we split this pre-
dictor as if it were an ordered predictor. One can show this gives the optimal split, in
terms of cross-entropy or Gini index, among all possible splits. This result also holds for
a quantitative outcome and squared error loss—the categories are ordered by increas-
ing the mean of the outcome. The proof for binary outcomes is given by Brieman1984
and Ripley1996; the proof for quantitative outcomes can be found in Fisher1958. For
multicategory outcomes, no such simplifications are possible, although various approx-
imations have been proposed (Loh1988).

The partitioning algorithm tends to favor categorical features with many values; the
number of partitions grows exponentially in g, and the more choices we have, the more
likely we can find an (arbitrarily) good one for the data at hand. This can lead to
severe overfitting if g is significant, and such variables should either be avoided or
some preprocessing by means of a grouping of similar feature values, such as clustering,
should be used. Also, note that dummy (one-hot) encoding of categorical variables can
lead to the opposite problem of individual binary variables not being selected over many
features represented encoded variables.

The benefits of binary splits. Rather than splitting each node into just two groups at each
stage, we might consider multiway splits into more than two groups. While this can
sometimes be useful, it is not a good general strategy. The problem is that multiway
splits fragment the data too quickly, leaving insufficient data at the next level down.
Hence we would want to use such splits only when needed. Since multiway splits can
be achieved by a series of binary splits, the latter is preferred.

treatment of missing values. Suppose our data has some missing predictor values in some
or all of the variables. We might discard any observation with some missing values, but
this could lead to severe depletion of the training set. Alternatively, we might try to
fill in (impute) the missing values, with say the mean of that predictor over the non-
missing observations. For tree-based models, there are two better approaches. The first
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is applicable to categorical predictors: we make a new category for “missing.” From this,
we might discover that observations with missing values for some measurement behave
differently than those with non-missing values. The second more general approach is
the construction of surrogate variables. When considering a predictor for a split, we
use only the observations for which that predictor is not missing. Having chosen the
best (primary) predictor and split point, we formed a list of surrogate predictors and
split points. The first surrogate is the predictor and corresponding split point that best
mimics the split of the training data achieved by the primary split. The second surrogate
is the predictor and relevant split point that does second best, and so on. When sending
observations down the tree either in the training phase or during prediction, we use the
surrogate splits in order, if the primary splitting predictor is missing. Surrogate splits
exploit correlations between predictors to try and alleviate the effect of missing data.
The higher the correlation between the missing predictor and the other predictors, the
smaller the loss of information due to the missing value.

Tree pruning. If the tree is allowed to grow until the leaves are entirely (or nearly) homoge-

nous, we are likely to be overfitting. In some cases that is desirable - we will see such an
example later with random forests, where we want an individual tree in the ensemble
to include little modeling bias. However, in most cases, it is not. To prevent overfitting,
we can carefully tune the stopping criteria. However, growing the entire tree and then
post-processing it by pruning individual branches can sometimes lead to better results.
The basic idea is to go over each split and check if not making that split would not re-
sult in a significant increase in error. Additionally, we can use cross-validation to prune
based on an estimate of the generalization error, making the process more robust. Note
that cross-validation could (should), in theory, also be used when growing the tree.
The reason why we make splits based on what is essentially training set error is that
cross-validation would be computationally infeasible in most practical scenarios.

Model trees. As an alternative to reporting on average values in tree leaves, we can use

non-trivial models. Many approaches combine trees with generalized linear (additive)
models in the leaves. This can lead to improved results in problems that are a combina-
tion of crisp rules and (local) linear behavior while retaining most of the interpretability.
However, it comes at the cost of computational complexity because it requires a more
complex model evaluation when splitting the tree.

Oblique feature space splitting. Axis-parallel partitioning**: Most tree-based algorithms

(including the one described above) limit themselves to axis-parallel splits. This can
lead to very complicated trees if the boundaries between homogeneous regions do not
follow this assumption. As an alternative, non-axis-parallel (oblique) algorithms have
been developed. However, this comes at the cost of interpretability and computational

complexity.
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2.2 Bagging

Before we proceed with random forests, we will first introduce a component of random forests
that has more general applicability. Bagging (Bootstrap Aggregation) is a technique that can
improve the predictive quality of any models, in particular when the data set is small and/or
we are dealing with a high-variance model that can easily overfit the training data. A prime
example of such a model is a non-pruned tree.

The basic idea is straightforward: instead of using our model f that was trained on all
the training data, we take B bootstrap samples of the training data and re-train the model on
each sample, resulting in B models f,. The bootstrapped prediction is the aggregate (average)
of the individual bootstrap models:

B
ﬁ)oot(x) = Z %f;}(x)
b=1

In essence, we are using the bootstrap, where the functional of the data is the model’s
prediction for x. And, as we already know, the sampling error can be made arbitrarily small
by increasing B.

Why Does Bagging Work?

Note that most of the arguments we state here are from Grandvalet2004. Some authors,
including ESL, claim that the bagging estimate will be the same as the original model if the
model is linear. That does not imply that bagging will produce the same estimate if used
on linear regression. Overall, there is little rigorous theoretical justification of why bagging
should work, but there is ample empirical evidence that it often does work. Here we will
offer some empirical justification for the underlying mechanisms that make bagging work
(and sometimes fail).

Grandvalet (2004) argues that bagging equalizes the influence of individual points on the
prediction. As the most influential points (points with high leverage) are typically outliers and
have a bad influence on predictive quality, reducing their influence will improve performance
by reducing the variance. This is a more general explanation to the more common explanation
that bagging improves predictions because it reduces variance, in particular, because bagging
can also increase variance. That is, if points of high leverage have a positive influence, bagging
will decrease predictive quality.

One implication of the above is that models, where all points have the same or similar
leverage, would not benefit from bagging. Similarly, models, where a single point has very
little effect on the prediction, would also not benefit from bagging (robust models such as
regularized regression or models that already contain some sort of bagging, such as random
forests, which we discuss below). Therefore, high-variance models, such as non-pruned trees,
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is where we would expect the most benefit.

A prototypical example where all points have the same leverage (and bagging does noth-
ing) is predicting with the training set average. With enough bootstrap samples, every point
will be included in the bootstrap sample approximately the same number of times, and ev-
ery point has the same influence. Indeed, the bootstrap prediction will be approximately the
same as the prediction of the model that uses the entire training set.

In general, every point will be included in the bootstrap sample approximately the same
number of times, but what is at first maybe even somewhat surprising, not every point has
the same influence on the prediction. The fact that some points have more leverage on a
prediction can be illustrated with simple linear regression, where points further away from
the center of mass (x-axis only) have more leverage.

Example: Bagging on outliers, #1
The outlier (bad point) is a high-leverage point, hence bootstrapping improves perfor-

mance. Points in green denote true data generating process mean, points in black denote
predictions by linear regression, and points in red predictions by bootstrapped linear re-
gression.

%

Example: Bagging on outliers, #2
The outlier (bad point) is a low-leverage point. Bootstrapping gives it more influence,

slightly decreasing performance.
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-10

Example: Bagging on outliers, #3
The outlier (this time it’s a good point) is a high-leverage point. Bootstrapping gives it

less influence, slightly decreasing performance.

20
1

15

10

2.3 Random Forests

Random forests (Brieman2001) extend the idea of bagging but aim to develop even more de-
correlated trees than those from bootstrap samples. The approach develops a possibly large
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collection of trees {Tb}f, where each tree is inferred from a bootstrap sample of the training
data set. To additionally diversify the trees, the features on which to split each internal node
of the tree are selected from a random sample of p variables. This is different from the
normal growth of the trees which instead considers the entire set of predictors. Here, p is a
user-specified parameter. To make a prediction of a new data point x, we either average the
predictions of individual trees in a case of regression,

B
@ =5 Y 1
b=1

or choose a class using a majority vote in the case of classification.

Trees are ideal for the described averaging procedure. If they are grown sufficiently deep,
they have a relatively low bias. As they are notoriously noisy, they can benefit from averaging.
Since each tree in bagging is identically distributed, the expectation of an average of B such
trees is the same as the expectation of any of them. The bias of the bagged trees is the same
as that of the individual trees. Hence, in random forests, it is recommended that the trees are
not pruned but instead developed to the depth.

The benefits of trees can also be examined from the viewpoint of variance. Notice that the
average of B i.i.d. random variables, each with a variance of 02, has a variance

e
If the variables are only identically distributed but not necessarily independent with a positive
pairwise correlation of p, the variance of the average is
po” + 1‘TP02.
The aim of the random forest is to reduce the variance. We see that with a large number of
the trees and hence large values of B we decrease the value of the second term in the variance
as expressed above. The first term, po?, can then only be minimized by minimizing p. Hence,
we prefer the trees that are different, and whose correlations in predictions is minimized.
We, of course, prefer accurate trees, but those whose precision is focused on different parts
of the parameter space. For this reason, besides bootstrap sampling, random forests engage
extra randomization procedures, like arbitrarily choosing p features when examining which
feature to use at each split. In practice, p can be relatively small and equal to p = VD for
classification and p = D/3 for regression.

Random forests do remarkably well in terms of accuracy, with very little or no tuning
required (Fernandez-Delgado2014). Just like trees, they require almost no data preprocess-
ing, can treat both continuous and discrete features, and can easily handle missing values.
The inference of trees is fast and can be applied to any reasonably sized data set. With these
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characteristics, random forests are a great baseline, that is, provide accuracies that need to
be surpassed by more advanced approaches.

Out-of-Bag Estimates

Bootstrap sampling, on the average, leaves e~! = 0.368 of data instances out of sample. An
out-of-bag estimate is the mean prediction error on each training sample x;, using only the
trees that did not have x; in their bootstrap sample. With a fixed number of trees B in the
forest, this estimate would converge to the estimate we would obtain through, say, cross-
validation. Alternatively, we can use the out-of-bag estimate to observe the convergence of
estimated error and stop the growth of the trees when the error stabilizes. In practice, forests
are usually grown to include up to a few hundreds of trees.

Estimate of Feature Importance

One of the deficiencies of random forests is their overall complexity. If we agree that the
trees are models that can be read and interpreted, we lose this ability with the forest sim-
ply because of the large collection of trees. With forests, interpretability is lost. To remedy
the loss of interpretability, the author of the forests, Brieman2001, proposes to provide esti-
mates of the importance of features in the forests using out-of-bag estimates. The procedure
randomly permutes the value of a selected feature and estimates the out-of-bag error. The
decrease of accuracy caused by random permutation now provides an estimate of the fea-
ture’s importance. Notice that estimates obtained in this way can be substantially different
from univariate estimates of the correlation between a feature and a class variable, taking
into account possible feature interactions discovered by the trees in the forest.






