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1 Introduction
In these notes we will talk about generalizing the ideas of linear regression to target variables
whose support is all of R. For example, categorical data, count data, ordinal data, and
bounded continuous data such as, for example, non-negative and unit interval data. The
focus will be on general ideas, but we will also discuss some particular models, such as logistic
regression, multinomial logistic regression, ordinal logistic regression, Poisson regression, and
Gamma regression.

The motivation for learning learning linear regression and its generalizations is twofold. First,
these models are, despite their simplicity (or due to their simplicity!) very useful in practice
and still the workhorse of applied statistics. And second, the generalization part is preserved
even if we go for non-linearity by replacing the linear term with a more complex model, such
as a neural network, or if we transform the input space with kernel-based methods.

2 Linear regression
First, we briefly review linear regression. We use linear regression to model the relationship
between continuous target (dependent) variable yi ∈ R and corresponding input (independent)
variables xi ∈ Rk. As the name suggests, the model assumes that the relationship between
xi and yi is linear, governed by the vector of linear coefficients β.

Formally, we can write the model as yi = βTxi + εi, where the residuals εi are typically
assumed to be independent draws from a normal distribution: εi ∼iid N(0,σ2). Or , in
compact statistical modeling notation, yi|xi,β,σ2 ∼ N(βTxi,σ2).

2.1 Assumptions of linear regression

For future reference, let us explicitly repeat the assumptions: the relationship is assumed
to be linear, the input variables are assumed to be known and measured without error, the
residuals are assumed to be independent and distributed with the same variance. The latter
is also known as homoskedasticity.

There is another assumption that is not immediately clear from the model’s description, but
reveals itself when we try to infer the parameters. If we choose ordinary least squares, which is
also the maximum likelihood solution, the estimate is, in matrix form, β̂OLS = (XTX)−1XT y,
where X is the matrix with xi as rows and therefore input variables as columns. This will only
work if XTX is invertible. That is, if there is no multicolinearity in the input variables - no
input variable can be expressed as a linear combination of one or more other input variables.
If it can be, then there will be infinitely many solutions and our computation will fail.

The prototypical example of multicolinearity is when we have more input variables than we
have observations. The most common approach to addressing this problem is regularization
(penalizing the likelihood) or Bayesian inference with a suitable prior. Both of these topics
will be discussed in later lectures.
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2.2 Correlated input variables

Even if we do not have perfect multicolinearity, linear dependencies (correlations) between
input features are problematic as as small change in the training observations can cause a
large change in the estimated coefficients (but not in the predictions!). For an illustration
of the effects of correlation see Example 1 in accompanying dynamic report. When
coefficients are unstable, their interpretation is difficult.

The most common approaches to addressing this are removing highly correlated features
or transforming the input variables into less correlated or uncorrelated features, for example,
using PCA. However, transformations of the input space just replace one problem with another
- instead of interpreting highly correlated features, we can now interpret uncorrelated features
but each new feature is potentially a linear combination of many original features.

2.3 Influential observations

Often there will be outliers in our data - points that stand out from the other observations.
Some models are robust to such points, while others are not. Linear regression, like most
simple models, falls into the latter group and for such models the most typical approach is to
remove the outliers. When it comes to dealing with outliers, there are two practical issues.
First, there is no universal definition of what an outlier is. While it is simple to detect values
that are impossible, we cannot designate a possible value as an outlier without specifying
some arbitrary threshold on the probability of its occurrence. For example, in 100 normally
distributed data points it is unusual to find a point that is more than 3 standard deviations
from the mean. In 10000 data points it is not. And second, even if we do come up with some
criteria, detecting an outlier in high dimensional data is very difficult and/or computationally
expensive.

Fortunately, there is a way around this issue by focusing on a particular type of outliers -
points that highly influence the model. In principle, we do not want any point to have a
disproportionately high influence on the learning and we do not really care much if a point is
an outlier if it does not have a disproportionately high influence. In practice we could even
detect such points by re-learning the model without them and measuring the difference in
coefficients or predictions.

Recall that the fitted values of linear regression are

ŷ = β̂TX = Xβ̂ = X(XTX)−1XT y = Hy,

where H = X(XTX)−1XT is called the hat matrix and also the projection matrix because
it projects the observed values of the target variable to the fitted values. We also have
ε = (I −H)y, where ε is the vector of residuals. The i-th diagonal element of H, hii, is called
the leverage of the i-th observation (xi, yi) and we can compute it as hii = xTi (X

TX)−1xi.

The sum of all leverages is

n∑
i=1

hii = trace(H) = trace(X(XTX)−1XT ) = trace(XTX(XTX)−1) = trace(I) = k,

as trace(AB) = trace(BA) for rectangular matrices of corresponding dimension. Therefore,
the average leverage is k

n . And, 0 ≤ hii ≤ 1, which follows from V ar(εi) = (1− hii)σ2 ≥ 0,
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where we state the equality without proof. So, high leverage points (close to 1) will have
very small residual variance - that is, they will pull the model to be close to them so that the
residual is close to 0.

Leverage does not take into account the observed value yi. Now we introduce Cook’s distance,
which takes into account both xi and yi. Cook’s distance is defined in the spirit of our
naive approach of retraining the model without the point and observing the difference. More
precisely, as the normalized squared distance between the predictions ŷ we obtain using all
observations and prediction ŷ−i we obtain with the model that is trained on all but the i-th
observation:

Di =
1
kσ̂2

n∑
j=1

(ŷj − ŷ−i,j)2,

which can be shown to be equivalent to

=
ε2i
kσ̂2

hii
(1− hii)2 =

t2i
k

hii
(1− hii)

,

where ti = εi
σ̂
√

1−hii
is called the Standardized residual or the (internally) Studentized residual1

and σ̂ is the mean squared error of the model. As a rule of thumb, points with Cook’s distance
above 1 can be considered very influential.

Note that it is surprising that we can compute the model’s prediction without the i-th ob-
servation without retraining the model. Similarly, we can compute cross-validation estimates
of model error for linear regression without retraining the model - another benefit of the
simplicity of linear regression:

MSELOOCV =
1
n

n∑
i=1

(
(yi − ŷi)2

1− hii
)2,

where ŷi is the prediction of the model fit on all observations.

For an illustration of influential points Example 2 in accompanying dynamic re-
port. The example also illustrates the use of Standardized coefficients, leverage,
and Cook’s distance to identify influential points.

2.4 Extrapolation with linear regression

Linear regression is primarily used for interpolating the value of the target variable between
observed values. While there is no technical reason why we could not use it to extrapolate,
that is, predict for input variables that are outside the range of observed values of the input
variables, this is often a very bad idea and even when it is justifiable, it has to be done with
caution.

To illustrate the issue, we’ll use a figure from a 2004 Nature paper (see Figure 1). They used
a linear regression model to extrapolate winning times for the Olympic 100m sprint for men
and women. The extrapolation shows that in 2156 the women’s winning time will be lower
than the men’s. Even more, around 2700, the Olympic 100m sprint is expected to finish before

1An externally Studentized residual does not use the current observation in the estimation of σ̂.
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Figure 1: Figure 1 with caption from Tatem, A. J., Guerra, C. A., Atkinson, P. M., & Hay,
S. I. (2004). Momentous sprint at the 2156 Olympics?. Nature, 431(7008), 525-525.

it starts. It can be argued that the goal of the authors here was to illustrate the issues of
extrapolation and model selection. Regardless, it is a good example of how linear regression
is often (mis)used for extrapolation. Figure 2 shows a more humorous but no less relevant
example.

Both examples feature time as the independent variable, but the issue applies to any variable
that is not inherently bounded. Furthermore, the issue becomes more sever in higher dimen-
sions, where it becomes difficult to even define when and determine if a point is outside the
range of observations in the training set.

2.5 Putting it all together in practice

It follows from our discussion so far that a systematic application of linear regression is a
process that involves several steps.

We should inspect the data for correlations and if the goal is interpretation, we should con-
sider removing all but one input variable from every cluster of highly correlated variables.
Alternatively, we can transform the variables in a way that de-correlates them.

We should check if the errors are correlated. If they are, we should consider using a model
that takes potential correlation into account - if we do not, our error estimates will be biased.
A prototypical example of (auto)correlated errors is time series data.

We should inspect the standard diagnostic plots: the plot of standardized residuals against fit-
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Figure 2: In less than a decade, the resolution of Google Earth will be better that the resolution
of Earth. (https://xkcd.com/1204/).

ted values, a Q-Q plot comparison of the standardized residuals and the theoretical quantiles,
a plot of fitted against actual values, and a plot of standardized residuals against leverage.
These will help us identify deviations from linearity, heteroskedasticity, and influential points.

Also, as a rule, model parameters, not just in linear regression, but in all parametric models,
should be interpreted together with some sort of quantification of uncertainty. If we use
Bayesian inference, the uncertainty will represented by the posterior distribution. For linear
regression and many of its generalizations, closed form expressions exist for standard errors
of the parameters and confidence intervals or confidence intervals can be constructed using
asymptotic normality arguments2. Alternatively, we could bootstrap the sampling distribution
of the coefficients. While this is computationally intensive we can apply it to any model, even
when a closed form expression is not available or we do not know how to derive it.

3 Generalized linear models
Before a more general treatment, we start our discussion of generalized linear models (GLMs)
with a commonly used GLM - logistic regression. Indeed, logistic regression will be the focal
point of our discussion of generalizations of linear regression, because it is a GLM, a categorical
model, and even an ordinal model.

3.1 Logistic regression

If our target variable is dichotomous (0/1, no/yes) we can still apply linear regression by coding
the values with 0/1 or -1/+1, but linear regression can give predictions outside that range, so
at a minimum, we have to do some awkward post-processing of nonsensical predictions. We
can avoid these issues by choosing a more appropriate distribution for our data, because the
normal distribution is clearly not appropriate for dichotomous data.

Here the Bernoulli distribution is a natural choice. However, the main issue remains - the
2These quantifications are already built into popular modeling packages and libraries.
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linear regression term is in R and the parameter of the Bernoulli needs to be between 0 and
1. So we need a function that maps R→ (0, 1). One such function is the inverse logit:

logit−1(x) =
1

1 + e−x
.

Putting it all together, we can define logistic regression. We have dichotomous target variable
data yi ∈ 0, 1, independent variables xi ∈ Rk, and the Logistic regression model is

yi|β,xi ∼ Bernoulli(θi),

where θi = logit−1(βTxi). And if we explicitly write the log-likelihood:

`(β; y,x) =
n∑
i=1

(yi log θi + (1− yi) log (1− θi)).

The choice of the Bernoulli distribution for dichotomous data is a straightforward choice.
The choice of the inverse logit, however, is not. Why this function and not some other
functions? There many other functions that map from R to (0, 1), including other cumulative
distribution functions of continuous distributions 3. The main reason is that the inverse logit
is computationally convenient, which was historically very important. However, with the
development of computers and numerical methods, we can easily use some other function.
A common choice is the CDF of the normal distribution, which leads to a model called
Probabilistic (or just Probit) regression.

3.2 Poisson regression

Now let our data be count data yi ∈ {0, 1, 2, ...}. Can we apply the ideas of logistic regression
to this new setting? First, we need to choose an appropriate distribution for our data. The
classical first-attempt choice for count data is the Poisson distribution. Recall that the Poisson
distribution is a discrete distribution with support on the non-negative integers. It has a single
parameter θ > 0, which is both its mean and its variance4.

Now we need a function that maps from the real numbers to the positive real numbers - the
support of λ. A sensible choice is ex. Putting it all together, we get Poisson regression:

yi|β,xi ∼ Poisson(λi),

where λi = exp(βTxi).

3.3 Exponential family

We will say that a distribution belongs to the natural exponential family of distributions if
its PDF or PMF can be written in the form

3The inverse logit is the cumulative distribution function of the standard logistic distribution.
4Because of this, the Poisson distribution is not appropriate when the data are over or underdispersed. A

more flexible distribution, such as the Negative Binomial is a better choice.
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f(yi; θi,φ) = exp
(
yiθi − b(θi)

a(φ)
+ c(yi,φ)

)
,

where θi is the parameter of the family, φ is a scale parameter, and a, b, and c are functions.
A useful identity is E[yi] = d

dθi
b(θi). Note that here we only deal with scalar parameter

distributions and the natural exponential family, which contains most, but not all of the
standard cases. For example, Beta, Multinomial, and multivariate Normal do not fit into
this framework but are in the exponential family and have GLMs. The treatment of vector
parameter distributions and the full exponential family is beyond the scope of this text. If
interested in more details, Chapters 9.1-9.4 of Murphy, K. P. (2012). Machine learning: a
probabilistic perspective. MIT press. are a good starting point.

The Bernoulli/Binomial and Poisson distribution are in the exponential family.

Binomial: P (Y = y) = (niyi)p
yi
i (1− pi)ni−yi = exp(yi log pi

1−pi + ni log(1− pi) − log (niyi)),
therefore, φ = 1, a(φ) = 1, θi = log pi

1−pi , b(θi) = ni log(1 + eθi), and c(yi,φ) = − log (niyi).

Poisson: P (Y = y) =
λ
yi
i
yi!
e−λi = exp(yi log λi − λi − log yi!), therefore, φ = 1, a(φ) = 1,

θi = log λi, b(θi) = eθi , and c(yi,φ) = − log yi!.

And so are the Normal and Gamma distributions.

Normal: p(yi) = 1√
2πσ2 e

− (yi−µi)
2

2σ2 = exp
(
yiµi−µ2

i /2
σ2 + (−1/2 log(2πσ2)− y2

i /2σ2)

)
, there-

fore, a(φ) = φ, φ = σ2,θi = µi, b(θi) = θ2
i /2, and c(yi,φ) = −1/2 log 2πφ− y2

i /2φ.

Gamma: p(yi) =
βαi

Γ(α)y
α−1
i e−βiyi (α is assumed to be known) = exp(α log yi + α log βi −

log Γ(α)− log yi − βiyi), therefore, a(φ) = 1, φ = 1, θi = −βi(θi < 0), b(θi) = −α log(−θi),
and c(yi,φ) = α log yi − log Γ(α)− log yi.

3.4 Defining GLMs

A GLM is a model with three components:

• A distribution from the exponential family that is assumed for our data yi.

• A linear predictor ηi = βTxi.

• A link function g that connects the expected value E[yi] = µ(θi) with the linear predic-
tor: g(µ(θi) = ηi.

The link function g is required to be monotonic and differentiable over the range of possible
values of µ(θi). When θi = ηi we arrive to the canonical link function:

• For the normal distribution we have E[yi] = µi(θi) = θi. So, the canonical link function
is the identity g(x) = x. Therefore, linear regression is also a GLM.

• For the Poisson distribution we have E[yi] = µi(θi) = eθi . So, the canonical link
function is the logarithm g(x) = log x.

• For the binomial distribution the canonical link is the log odds (or logit) function g(x) =
log x

1−x , whose inverse is the inverse logit function. Therefore, logistic regression is the
Bernoulli GLM with canonical link function.
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• For the Gamma distribution we have E[yi] = µi(θi) = α/− θi, so the canonical link is
the negative reciprocal g(x) = −1/x.

Except for linear regression, there are no closed form solutions for maximum likelihood esti-
mation of GLMs, so numerical methods must be used. The use of canonical link functions
makes computation and theory easier, but in practice other link functions might give better
results. We already mentioned using the CDF of the normal distribution that leads to Probit
regression (the link function is the inverse of the normal distribution). Another common link
function for the [0,1] case is the complementary loglog function g(x) = log(− log(1− x)).

In the Bayesian framework, GLMs are typically inferred from using Markov Chain Monte
Carlo Methods. In the non-Bayesian approaches, maximum likelihood is used. GLMs allow
for a modified Newton-Rhapson approach called Iteratively Reweighted Least Squares (IRLS).
See Chapter 4 of Dobson, A. J., & Barnett, A. G. (2018). An introduction to generalized linear
models. CRC press.

The diagnostics plots and procedures for linear regression from Section 2 can also be used
for GLMs as long as appropriate transformations are made. However, for some distributions,
logistic regression in particular, interpretation is more difficult.

Note that it is possible to extend the ideas of GLMs to distributions that are not in the
exponential family. However, we lose some of the convenient statistical properties, so inference
is more difficult. See, for example, Venter, G. G. (2007). Generalized linear models beyond
the exponential family with loss reserve applications. ASTIN Bulletin: The Journal of the
IAA, 37(2), 345-364.

3.5 Gamma regression with log link

The canonical negative reciprocal link is not the most popular link for the Gamma GLM.
More often the log link is used.

Recall the pdf of the Gamma distribution p(x) = βα

Γ(α)x
α−1e−βx and that its mean and variance

are E[X ] = α
β and V ar[X ] = α

β2 , respectively. Note that we use θ for the coefficients to avoid
confusion with the β parameter of the Gamma distribution.

With the log link we gave logE[Yi] = θTxi and E[Yi] = eθ
T xi . Let µi = eθ

T xi . We have
R[Yi] = µi =

α
β and V ar[X ] = µi

β . The model is then

yi|θ,xi,β ∼ Gamma(µiβ,β).

We can see that in this model the variance increases with the mean. Such models are useful
in settings with heteroskedastic errors, such as air pollution or insurance claims.

For an illustrative application and implementation of the Gamma GLM with log
link see Example 3 in accompanying dynamic report.

4 Multinomial logistic regression
Logistic regression can also be interpreted as a latent strength (utility) model. Our obser-
vations are discrete (dichotomous) choices between, say, objects A and B, but we assume
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that they are made based on some unobserved (latent) continuous strengths of the two ob-
jects being compared, uA,uB ∈ R. The classical model for such pairwise comparison is the
Bradley-Terry model, which relates the latent strengths to the probability with

P (A is chosen) = euA

euA + euB
.

The exponentiation here is necessary to ensure that the expression is between 0 and 1. An
important observation here is that

euA

euA + euB
=

euA+c

euA+c + euB+c
,

for any c ∈ R. That is, this model is not identifiable - for every solution there are infinitely
many equally good solutions. In this model only the difference between strengths matters,
not the absolute values, so we can, without loss of generality, set one of the latent strengths
to 0, effectively choosing that object as the reference object. Let’s do that for object B:

P (A is chosen) = euA

euA + e0 =
euA

euA + 1 =
1

1 + e−uA
.

If we make the latent strength depend on the context and assume a linear relationship ui =
βTxi, we arrive at the logistic regression model. So, logistic regression can be interpreted as
a discrete choice model between two objects.

This latent strength approach can be generalized to more than 2 objects. Letm be the number
of objects we are choosing from, let their latent strengths be uij = βTj xi, j = 1..(m− 1) and
uim = 0 (let the last object be the reference category5). Note that here index i goes over the
observations and index j over the objects. Analogous to the 2 object case, the probabilities
are

P (object j is chosen in i-th observation) = euji∑m
l=1 e

uli
=

euji

1 +∑m−1
l=1 euli

,

except for the reference category object, where we have

P (object m is chosen in i-th observation) = 1
1 +∑m−1

l=1 euli
.

This model has (m− 1)× k parameters, one set of coefficients for each category, except the
reference category. The model is also a GLM where we assume that the target variable follows
a categorical distribution and the link function is the generalized inverse logit, also known as
the Softmax function. In statistical modeling notation:

yi|β,xi ∼ Categorical(softmax(u1i,u2i, ...,u(m−1)i, 0)),

where
5Interpretation depends on which object is chosen as the reference object.
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softmax(x1,x2, ....,xm) = [
ex1∑m
i=1 e

xi
, ex2∑m

i=1 e
xi

, ..., exm∑m
i=1 e

xi
]T .

5 Ordinal logistic regression
Ordinal data are categorical data where there is a natural ordering to the categories. For
example, questionnaire answers (strongly disagree, disagree, neutral, agree, strongly agree).

Categorical models such as multinomial logistic regression can be used on ordinal data and
they will typically perform well or even better in terms of predictive quality when enough
data are available. The advantages of using an ordinal model is that the ordering assumption
simplifies the model (the model has fewer parameters), which makes it more robust and easier
to interpret.

We again turn to logistic regression, this time from the ordinal perspective. Similar to the
discrete choice latent strength, we assume that there is an underlying real value ui that
determines whether the outcome is a 0 or a 1 and we can make that value depend on the
linear term ui = βTxi, so that we have regression. Let’s say that if ui is greater than some
threshold, the outcome will be 1, and 0 otherwise. As long as we have an intercept term
in βTxi, the threshold can be set to any constant, because the intercept will translate the
solution accordingly6. A convenient choice of threshold is 0.

What remains is to add some noise εi to ui - if we do not, the prediction will be deterministic.
And if we want to arrive at logistic regression, we have to go with standard logistic noise7. Note
that noise can be zero mean for the same reason that the threshold can be 0. Furthermore,
the noise can have unit variance, because we can already scale everything by multiplying all
coefficients with the same constant. If we allowed the noise variance to be a parameter, we
would again have a nonidentifiable model.

Putting it all together, we have:

P (outcome is 1) = P (ui + εi > 0) = P (εi > −ui) = 1− P (εi ≤ −ui) = 1− Fε(−ui),

where in our case the CDF Fε is that of the standard logistic distribution - the inverse logit.
Inserting the CDF, we get

P (i-th outcome is 1) = 1− Fε(−ui) = 1− 1
1 + eui

=
eui

1 + eui
=

1
1 + e−ui

.

So, in the case of two categories, logistic regression, multinomial logistic regression, and ordinal
logistic regression are the same model.

Now we generalize this idea to ordinal data with more than 2 levels. Let m be the number
of levels. Now we require m− 1 thresholds to subdivide the latent real variable into m levels.
Again, without loss of generality, let the first threshold (from level 1 to level 2) be t1 = 0,
and the remaining m− 2 thresholds are t2,...,tm−1. For convenience, we add t0 = −∞ and

6If we have an intercept and we also allow the threshold to be a parameter, then adding a constant c to the
threshold and the intercept would lead to an equivalent solution. That is, the model would not be identifiable.

7If we chose standard normal noise, we would arrive at Probit ordinal regression.
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tm = +∞. Now, same as before, the probability of a level is the probability that ui + εi falls
in between the two thresholds that correspond to the level.

5.1 Model summary

Our target variable is ordinal with k levels yi ∈ {1, 2, ..., k} and our independent variables are
real vectors xi ∈ Rk, for i = 1..n.

The ordinal regression model (or ordered logit) is defined as follows:

yi|t,β,xi ∼ Categorical(pi),

where β is the vector of size m of coefficients and t is a k + 1 vector of thresholds 0-indexed
for convenience t0 = −∞ < t1 = 0 < t2 < t3 < · · · < tk−1 < tk =∞.

The size k probability vector of probabilities for each of the k categories for the i−th obser-
vation is defined (component-wise) as:

pi(j) = F (tj − ui)− F (tj−1 − ui), j = 1..k

where F is the CDF of the standard logistic distribution and ui = βTxi.

Some practical considerations:

• The thresholds have to be ordered t1 < t2 < · · · < tk−1. This is a constraint that is not
trivial to maintain during optimization. Instead, use the stick breaking parametrization
t0 = −∞, t1 = 0, t2 = t1 + ∆1, ..., tk−1 = tk−2 + ∆k−1, tk = ∞. That is, let ∆i be the
parameters and derive ti from them. A simple box constraint ∆i > ε = 0 will suffice to
keep the ti ordered.

• In theory, ε = 0, in practice, however, we might, with certain datasets and optimization
algorithms run into problems where a ∆ is so small that we get 0 probability and −∞
likelihood. Starting values for ∆ are also important (standardizing independent variables
X makes this easier).

• Convergence issues may also arise if we have perfect separability (two or more categories
can be perfectly fit). In such cases infinitely many thresholds are optimal. And, of
course, if we have perfect colinearity in X, as is the case with any linear model.
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Chapters 3, 4, 8, and 9.2 of Dobson, A. J., & Barnett, A. G. (2008). An introduction to
generalized linear models. Chapman and Hall/CRC.

Chapters 9.1-9.4 of Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT
press.
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