
Chapter 7

Boosting in Machine Learning

Boosting is a type of ensemble learning that combines weak learners to produce
a powerful committee of prediction models. From this view, it resembles bagging,
which averages the output of many, hopefully, uncorrelated models to reduce the
variance. Bagging, however, is fundamentally different and instead employs for-
ward staging additive modeling, where the data feed into a modeling procedure
at the selected stage depends on the output of a growing ensemble developed in
preceding stages. We start with examining AdaBoost.M1, show that it minimizes
exponential loss, and extend the concept to other loss functions, both for regression
and classification.

Somehow surprisingly, boosting, an approach to construct and use an ensemble of predic-
tive models, is easy to implement, is very powerful, and should be in anybody’s toolbox when
predictive accuracy is at stake. Similar, to bagging and random forests, boosting also relies
on combination of weak learners and implements ensemble learning. But while in bagging
we construct learners in parallel from sampled data, we construct boosting ensemble from
data that is re-weighted according to the performance of the previously inferred learners in
the sequence (Fig. 7.1). In this chapter, we start with intuitive building blocks of boosted
prediction models, and then dive into some of the related formalism.

7.1 AdaBoost In a Nutshell

Let us quickly skim through some of the concepts that are important in boosting machine
learning. We use boosting both in regression and classification, and in fact, we can adapt it
for any kind of supervised machine learning tasks. In this section, though, we assume we will
use it for classification, and will further – to simplify the introduction – constrain the task to
binary classification with equal class distribution.
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bagging - parallel boosting - sequential

Figure 7.1: Bagging improves accuracy through “wisdom of the crowd”, while boosting de-
velops a sequence of models where each model specializes in prediction in the area where
previous models in the sequence have failed.

Weak vs. Strong Classifiers

Consider an error rate, ε ∈ [0.0, 1.0] of a binary classifier with y ∈ {−1, 1} for a problem with an
equal class distribution. A weak learner would produce a weak classifier that would perform
only slightly better than a random classifier. That is, for an assumed problem, its error on the
training set would be just slightly below 0.5. On the other hand, in practice, we would like
to develop strong classifiers with a very low error rate. Interestingly, and as a fundation for
boosting, we can form a strong classifier from a set of weak classifier.

Consider a simple case of three classifiers, and let us denote them with h1(x), h2(x), and
h3(x), where x is a vector that describes a data instance we would like to classify. If the three
classifiers are substantially different, and they make wrong predictions in disjunct areas of the
data space (Fig. 7.2), we can construct a simple, strong classifier as an ensemble that would
join the output of the three classifiers in the following way:

H(x) = sign(h1(x) + h2(x) + h3(x)) (7.1)

The prediction of the classifier H(x), under the assumption that the areas of erroneous predic-
tion of each of the three classifiers do not overlap. It would be great if we could construct such
classifiers, but in reality, of course, the areas where classifiers get it wrong would overlap, and
hence a simple procedure for their ensembling would not necessary be beneficial.

We may try to develop classifiers that are of the type from Fig. 7.2, that is, where a
classifier attempts to be correct in the area where a previous classifier, or a set of previous
classifiers were wrong. We will do so by changing the data. We will build the first classifier,
h1 on the entire data set, but then try to distort the data to exaggerate on the data space
where h1 makes mistakes. A simple procedure we can use is through training data instance
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data space

h1 wrong

h2 wrong

h3 wrong

Figure 7.2: A hypothetical data space and three classifiers with disjunctive areas where their
prediction is incorrect.

weighting: we will increase the weight of the data instances that were misclassified by h1,
thus instructing a new classifier h2, developed on such distorted data set, to correctly classify
the data instances which were misclassified by h1. If we follow the idea from the previous
paragraph and try to develop three different classifiers, we now can train the third one on a
data set where the weights of the data instances would emphasize those x where h1(x) , h2(x).

Just a quick note: thus far, our classification inference algorithm never considered data
instance weights. It is not difficult to change the inference algorithm to do so. For instance,
in inference of trees, instead of counts of the data instances we would sum up the weights.
Where changing the training algorithms to handle weights is not possible, we could address
the exaggeration with oversampling of the target data instances.

Hierarchy of predictors

If constructing a classifier by ensembling the predictors works well, we could improve those
predictors as well through ensembling them from another, nested set of classifiers. By doing
this we would shrink the area where the predictors make mistakes, making it easier for a
base set of predictors not to overlap in their misclassification zones. Note that in theory we
may continue building such hierarchy to arbitrary level, whereas practically and in most cases
development of one serious of predictors suffices.

A Weak Classifier and Initial Data Instance Weights

We hinted about the use of weak classifiers, but have not yet introduced an algorithm to
construct them. Here it is: a decision tree stump. This learning algorithm uses a decision tree
inference algorithm, but limits the depth of the tree to one, that is, besides the root node there
is only a next level with a set of leaves. Stumps use only one feature to decide which leave
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node to use for prediction. In practice, we can employ shallow trees that are deeper than one
level, but for an example of a weak classifier a decision tree stumps would do as well. Also
notice that while our introduction talks about classifiers, we can use trees for regression as
well and hence we will also be able to develop bootstrap predictors for regression problems.

Note that we can use boosting with any kind of prediction models. But due to speed and
simplicity, and since they are weak classifiers, we use shallow trees in practical implementa-
tions.

The error rate of a classifier can be expressed as:

ε =
∑

wrong

1
N

where N is the number of data instances in the training set. Initially, all instances will have
equal weight and since we would like the weights to form a distribution and hence sum to 1,
the weights for each data instance i for the first classifier, that is h1, are:

w1
i −

1
N

Using the formulation above, we can express the error rate as a function of weights:

ε =
∑

wrong

wi

Ensembling Classifiers

A more general way to combine classifiers, rather than summing their outputs, would be to
construct their weighted combination:

H(x) = sign(α1h1(x) + α2h2(x) + . . . + αThT(x))

where T is a number of weak classifiers which we would like to ensemble. This is again
different from bagging. Bagging counts on wisdom of the crowds, while here we are summing
up on series of classifiers which are different in the areas of misclassification and where we
will weight them according to their error. In boosting, the wisdom of the crowds becomes the
wisdom of the experts that specialize in different area of the data space.

The overall procedure to construct our ensemble is then as shown in Table 7.1.

Suppose that we define the weights as:

wt+1
i =

wt
i

z
exp

(
−αtht(xi)yi

)

where z is a normalizing factor so that the weights form a distribution and they sum to 1. The
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Table 7.1: An overall structure of a bootstrap learner

t← 0
wt

i ← 1
N

while t ≤ T
t← t + 1
pick ht that minimizes εt

pick αt

calculate wt+1

equation above comes from mathematical convenience, but we will show that while initially
proposed for boosting, they have a more intuitive and simpler interpretation. Notice that
where the prediction ht(xi) and the true class yi agree, and assuming that the factors α are
positive, the future weight wt+1

i of the instance i is lowered. When prediction and the true
class do not agree, the value of the future weight wt+1

i is raised.

We would like to minimize the error for the ensemble. It turns out that to do this (FreundSchapire1997)
we need to set the weight of the classifier according to the following:

αt =
1
2

ln
1 − εt

εt (7.2)

= ln

√
1 − εt

εt (7.3)

If we combine this expression with the update for the data instance weights, and note
that the product ht(xi)yi equals 1 for correct classification and −1 for misclassification, than
we obtain

wt+1
i =

wt
i

z
×



√
εt

1−εt , if correct√
1−εt

εt , if wrong.

The weights have to add up to 1, thus we need to set the normalization factor to

z =
εt

1 − εt

∑

correct

wt
i +

1 − εt

εt

∑

wrong

wt
i

Notice, however, that the sum of the weights of the missclassified items is the error rate, that
is,

∑
wrong wt

i = εt. Similarly, the sum of the weight over correct classifications is one minus
the error rate, that is,

∑
correct wt

i = 1 − εt. Hence,

z = 2
√
εt(1 − εt)
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Combining the expression for weight update and normalization, we obtain:

wt+1
i =

wt
i

2
×



√
1

1−εt , if correct√
1
εt , if wrong.

Now, if we add the weights for the correct classifications, we get

1
2

1
1 − εt

∑

correct

wt =
1
2

1
1 − εt (1 − εt)

=
1
2

Similar is true for missclassifications,

1
2

1
εt

∑

wrong

wt =
1
2

1
εt ε

t

=
1
2

In other words, the boosting algorithm that we have described distrubutes the same
amount of weights to correct and incorrect classification. If incorrect classifications will be in
minority, which we hope they will, the misclassified examples will carry higher weights for
the next instance of the training algorithm in the sequence. The procedure described here
is called AdaBoost for adaptive boosting and was introduced in (FreundSchapire1997).
Interestingly, while the math for Eq.7.2 was worked out in the original publication, the inter-
pretation with notion that the weights for both misclassification and classification sum to one
half, which does in a way simplify the update as well, was not noticed at the time.


