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1 Introduction
The purpose of these notes is to introduce the reader to some of the fundamentals of an
important part of the applied predictive modeling process – model evaluation. In fact, we
begin this introduction by arguing that this is the most important part of modeling. We base
our argument on two observations. First, there is no single best model or modeling paradigm.
Therefore, in most applications, we will be faced with model selection decisions, choosing
between different settings of a model or entirely different modeling paradigms. And second, a
poorly designed model evaluation will lead to incorrect decisions, regardless of how good we
are at writing models or at any other stage of the modeling process. On the other hand, a
well designed model evaluation will illuminate any and all performance-related mistakes we
might make in any of the models we use.

Model evaluation (comparison, selection) is strongly connected with learning. However, for
now, we will keep the two separate and we will break down model evaluation into two com-
ponents: (1) choosing what to measure1 and (2) choosing how to measure it. And from these
two components follow the two groups of model evaluation mistakes:

1. Measuring the wrong thing. That is, measuring a quantity that does not correspond
to our practical objective.

2. Measuring in a biased or inaccurate way. That is, measuring potentially even the
correct quantity, but doing so in a way that has a lot of error.

Before we move on to a more rigorous treatment of these concepts, let’s illustrate them on a
real-world example. And let’s choose an example that most of us have been (and will be) in
one way or another personally involved in – evaluating student performance. At university we
assign grades to student performance in a course. These grades are then used for progression
and graduation decisions and even for student comparison in processes such as awards for
scholarly performance and stipends.

In the above example students play the role of learning algorithms2 – their goal is to learn
the course contents as well as possible or at least well enough to pass the exam. The role of
model evaluation, on the other hand, is played by the teacher. And we’ll assume that the goal
of the teacher is to assign grades that correspond to the students’ level of performance in the
course.

As with any model evaluation process, the teacher must decide on what to measure and how
to measure it. Until technology evolves to a stage where we can just measure the contents
of a student’s brain, we are somewhat limited in our options. In most cases teachers opt to
query the student with tasks or questions related to the course contents, either via homework,
projects, written or oral examinations. This sounds like a reasonable thing to do – good
performance in related tasks and correct answers to substantive questions should be a good

1Unless otherwise noted, we will be using the term performance measure or just measure to refer to quantities
we use in describing model performance and not in the measure-theoretic sense.

2Arguably, the teachers also play a part, as their objective is more often than not to help the students on
their path to knowledge.
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proxy for the student’s skills and knowledge. Of course, we could also make a mistake in our
choice of what to measure. For example, we could decide that a student’s grade in a machine
learning course will be based on how long they can hold their breath. We can all recognize that
this is a silly choice and a choice we would never make, but we will later see how similarly silly
(but somewhat less obviously so) choices are commonplace in applied predictive modeling.

Now that we have, at least conceptually, decided what to measure, we must decide how we will
measure it. As is the case with most empirical work, our measurements will have measurement
error. And this error will have two parts – bias (systematically deviating from what we are
trying to measure) and variance (non-systematic deviation from what we are trying to measure
or lack of accuracy)3.

Let’s for a moment assume that we will use a written exam with 5 problems chosen randomly
from the course contents. And that the only remaining choice to make is who will grade
the exam. The first option we will explore will be to use a trained circus monkey that will
more-or-less randomly write grades on exams. While monkeys might seem like an obviously
silly choice, they do have their advantages. In particular, their lack of comprehension of
modern machine learning (not to mention reading skills) makes them more-or-less unbiased.
Of course, grades assigned by a monkey would still be very poor – an empty exam can earn a
top grade or an exceptional student can fail – but at least in expectation the monkey is fair
and all the error will come from variance.

The second option we will explore will be a commonly used and arguably better one than
using a monkey – using a teaching assistant. A teaching assistant is knowledgeable in machine
learning and will adjust the grade to each individual students’ solutions thus reducing the
variance. However, with a reduction in variance typically comes a systematic bias. The
teaching assistant might be on average more lenient or more strict. Of course, a relatively
small bias is still a great trade-off for the reduced variance and an overall student evaluation
performance that is without a doubt better than a monkey’s. The third and final option
is of course the course teacher himself. While some, students in particular, might argue
that teachers can also be biased, inaccurate, or even inconsistent, that is not the case. By
definition, a student’s grade is what the teacher says it is and is therefore perfect, without
bias or variance.4

The above only scratches the surface of the measurement problems we face in education. For
example, having more questions on an exam will reduce variance, but after some point the
student’s tiredness might overwhelm the final grade. Oral examinations typically have lower
variance but the teacher’s bias might be more pronounced, while with written examinations
it is typically the opposite. Luckily, we do not have to concern ourselves with such things in
the evaluation of predictive models.

There is, however, a particular form of bias that is very common in predictive modeling –
bias due to model overfitting. We should already be familiar with overfitting, at least on a
conceptual level. Later we will discuss at length how to design a model evaluation procedure
that will allow us to detect overfitting5, but here we will just provide an illustrative example in
the context of student performance evaluation. Students often prepare for exams by studying
past exams, sometimes to the extreme of memorizing all past exam problems and solutions.

3This bias-variance decomposition should already be a familiar term for most of us.
4This is a joke... Or is it?
5It is not the purpose of model evaluation to prevent overfitting, merely to detect it. Dealing with over-

fitting is a modeling problem and different techniques can be used, such as bagging, feature selection, and
regularization.
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Unless the pool of problems is so large that it covers all there is to learn in a course, this will
be a clear example of overfitting. This by itself is not a problem, but if it is not taken into
account, for example, by always introducing new problems or non-trivial variants of existing
problems, students might pass the exam without a proper level of knowledge of the subject
matter. An extreme example of this problem would be to give the students an exam that was
also used as a practice exam for preparation for the exam. Obviously, the students’ grades
would be biased – on average higher than their level of knowledge. Analogously, we should
never evaluate our predictive models on training data. At least not without accounting for
bias due to the learning algorithms capacity to learn.

1.1 Evaluating predictive models

Anyone with some practical experience in machine learning will be aware that there exists
a plethora of different measures of predictive performance. Accuracy, Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), absolute error, quadratic score, Brier score, spher-
ical score, logarithmic score, AIC, BIC, DIC, AUC, F1, sensitivity, specificity. And the list
goes on.

On the other hand, most of the models are fit with underlying optimization procedures that
are based on maximizing the likelihood, minimizing the MSE, maximizing mutual information,
etc. which, as we will show, are all related to maximizing the logarithmic score. So why do
we have so many different measures? Why do people fit logistic regression using maximum
likelihood and then choose the best model based on its accuracy or AUC? And how is this
different from teaching students machine learning and then grading them based on how long
they can hold their breath? The short answer is that this area of applied predictive modeling
is a bit of a conundrum and full of bad practices. The long answer will take up the better
part of these notes.

In the remainder of these notes we will cover loss functions (what to measure) and the es-
timating generalization error (how to measure). However, to fully appreciate the practical
application of model evaluation, we will do so through the basics of statistical learning and
statistical decision theory.

2 Empirical risk minimization (ERM)
In this section we will focus on one particular principled approach to statistical learning -
empirical risk minimization. The key idea is not unlike the predictive modeling practice that
we might already be familiar with: our goal is to select the model that has the lowest expected
error and, because the true distribution of data is rarely known, we instead estimate it using
available (empirical) data. However, a more principled approach will allow us to study the
properties and limits of learning.

We will use the following notation throughout: Let X and Y be our dependent variable
(input) and independent variable (output) space, respectively. Typically, we have X = Rk

and Y ∈ R (regression) or some subset of N (classification, ordinal regression). Let pX,Y
be the joint distribution of a pair of variables (X,Y ) from X × Y and Dn = {(xi, yi)}ni=1
our dataset (assumed to be i.i.d. samples from pX,Y ; we will restrict ourselves to the i.i.d.
setting). We will use h : X → Y to denote a model (function). A learning algorithm A given
a dataset produces a model A(Dn) = hn. Let H to denote the set of all possible models for
a particular learning algorithm (that is, the hypothesis space).
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A loss function is a mapping ` : Y × Y → R+.6 For example, two commonly used loss
functions are `(y, ŷ) = Iy 6=ŷ (0-1 loss) and `(y, ŷ) = (y − ŷ)2 (quadratic loss). Note that
choosing the appropriate loss function(s) for our problem is not trivial. The theoretical and
practical considerations will be discussed throughout these notes.

The quantity central to empirical risk minimization is the model’s risk (or generalization
error) - the expected loss over the distribution of the data

R(h) = EX,Y [`(Y ,h(X))].

Let hopt be the model that attains the minimum possible risk Ropt = infhR(h) over all
possible models.7 Similarly, let h∗ be the model that attains the minimum possible risk
R∗ = arg minh∈HR(h), that is, over all possible models in a learning algorithm’s hypothesis
space H.

By definition, we have R∗ ≥ Rmin. However, in order for learning to be feasible, the hypothesis
space H of a learning algorithm is much less rich than all possible models, thus the theoretical
minimum is rarely obtained.

Because the distribution of the data pX,Y is typically unknown, we have to utilize the empirical
data Dn. In the most basic form of empirical risk minimization we do so by replacing the
distribution of the data with the empirical distribution Dn, obtaining the empirical risk of a
model h:

Rn(h) =
1
n

n∑
i=1

`(yi,h(xi)).

Learning a model then becomes a minimization problem:

hn = arg min
h∈H

Rn(h).

We use hn to distinguish it from the optimal choice for the learning algorithm h∗. Note that
hn depends on Dn (it is in essence a functional of the empirical CDF) and can be viewed as
a random variable until observed. Also note that minimizing empirical risk typically results
in overfitting. Later we will discuss other approaches to selecting hn or estimating true risk -
structural risk minimization, train/test evaluation, and cross-validation.

2.1 Examples of ERM estimators

Quadratic loss

Suppose y ∈ R and that our loss function is the quadratic loss `(y, ŷ) = (y − ŷ)2. What is
the ERM estimator ŷ? That is, which estimator minimizes the empirical risk?

In this case the empirical risk is
6The notation ` is often used for the log-likelihood. The (negative)log-likelihood is also a loss function, but

we use ` here in the more general sense of any loss function.
7For our purposes we do not have to precisely define what we mean by all possible models. Typically, it

would be the set of all measurable functions.
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Rn(ŷ) =
1
n

n∑
i=1

(yi − ŷ)2

and as we might already know from statistics, the sum of squared residuals is minimized at the
sample average θ̂ = y. That is, the sample average is the ERM estimator under the quadratic
loss.

Absolute loss

Now suppose y ∈ R and that our loss function is the absolute loss `(y, ŷ) = |y− ŷ|. What is
the ERM estimator ŷ? That is, which estimator minimizes the empirical risk?

In this case the empirical risk is

Rn(ŷ) =
1
n

n∑
i=1
|yi − ŷ|.

Using d
dx |x| = sign(x) we can observe that the derivative of the empirical risk will be a sum of

sign(yi− ŷ) terms. This will be 0 if the number of strictly positive and strictly negative terms
will be exactly the same. That is, the same number of yi must be greater than ŷ as there
are yi less than ŷ. This implies that ERM estimator under the absolute loss is the sample
median! It also shows that the ERM estimator does not have to be unique.8.

Maximum likelihood estimation (MLE) as ERM

Given a parametric model (likelihood) p(yi|θ), parametrized with θ, we define the maximum
likelihood estimator (in the i.i.d. case) as:

θ̂ = arg max
θ∈Θ

n∏
i=1

p(yi|θ).

or, equivalently,

= arg min
θ∈Θ

n∑
i=1

(− log p(yi|θ)) .

The negative logarithm of the predicted density at the observed value is also known as the
log-loss. So, MLE is a special case of ERM, where Y is the space of densities (or distributions)
and we use the log-loss under the assumed parametric model as our loss function.

Let’s illustrate what MLE. Suppose our y is categorical and that we use the log loss as our
loss function. The empirical risk is

Rn(ŷ) = −
1
n

n∑
i=1

log ŷ(yi),

8The sample median is not always unique
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where ŷ(i) is the probability that our estimator assigns to category i. Let ni be the number of
times the i−th category appears in our data. Now we rewrite the risk in terms of categories:

Rn(ŷ) = −
k∑
i=1

ni
n

log ŷ(i) = −n1
n

log
(

1−
k∑
i=2

ŷ(i)

)
−

k∑
i=2

ni
n

log ŷ(i).

We deliberately expressed the probability of one category with the probabilities of the other
categories to explicitly include the constraint that the probabilities need to sum up to 1
(effectively, we have only k− 1 parameters to optimize). Now we take the derivatives:

∂

∂ŷ(i)
Rn(ŷ) =

f1

1−
∑k
i=2 ŷ(i)

− fi
ŷ(i)

=
f1
ŷ(1) −

fi
ŷ(i)

.

These will be zero if the ratio between the relative frequency in the data fi = ni
n and the

assigned probability ŷ(i) will be the same for all categories. And because both relative fre-
quencies and probabilities need to sum up to 1, we can conclude that they must be the same.
So, the estimator that minimizes log loss is the one that matches the empirical distribution
of the data!

Suppose that the true probability distribution is q and f is the empirical distribution from
before. The excess risk of the ERM estimator under the log loss, which we’ve shown is f , is
then

R(f)−R(q) = −
k∑
i=1

qi log fi +
k∑
i=1

qi log qi =
k∑
i=1

qi log qi
fi

.

The last term is also known as the Kullback–Leibler (or KL) divergence from f to q.

0-1 loss

Suppose the same categorical setting as above in the MLE example, but now our that we use
the 0-1 loss (or accuracy). Note that 0-1 loss depends only on the true and predicted class,
so we do not have to work with predicted probabilities. The risk is

Rn(ŷ) =
1
n

n∑
i=1

Iyi 6=ŷ = 1− 1
n

n∑
i=1

Iyi=ŷ = 1−
k∑
i=1

ni
n
Iŷ=i,

where ni is again the number of times the i−th category appears in our data. It is immediately
clear that we will minimize the risk by setting the estimator to the category with the largest
relative frequency (the mode of the empirical distribution)! This also shows how multiple (in
fact infinitely many) different sets of probabilities can obtain the same 0-1 loss as long as they
have the same mode. Also, if two or more categories are tied for the mode, predicting any of
them will be the ERM estimator.

2.2 Approximation-estimation decomposition

Now we are ready to introduce excess risk - the difference between the chosen model’s risk
and the optimal risk:

6



R(hn)−Ropt =

approx. error︷ ︸︸ ︷
(R∗ −Ropt) +

est. error︷ ︸︸ ︷
(R(hn)−R∗) .

The decomposition of excess risk on the right-hand side provides a useful view on model per-
formance. The first term (approximation error) is the difference between the best attainable
risk for this learning algorithm (by a model from the learning algorithm’s hypothesis space)
and the optimal risk. The second term (estimation error) is the difference between the chosen
model’s risk and the best attainable risk for this learning algorithm.

The above can be viewed as a more general bias-variance decomposition. A very expressive
algorithm such as a large neural network will have low approximation error (h∗ closely fit
hopt) on the other hand, due to this expressiveness, we might be prone to overfitting (hn is
expected to vary a lot from h∗), which would result in a higher estimation error. For ordinary
least-squares linear regression the opposite is typically true - it has high approximation error
because H is restricted to linear models, on the other hand, it is very robust - even for small
n (but assuming still relatively large relative to the number of input variables) the estimated
linear model hn will be close to the optimal attainable h∗.

Analogously we could say that our circus monkey from the introduction has optimal approx-
imation error (because it assigns grades at random, it’s hypothesis space includes all possible
models), on the other hand, its estimation error is very large - the grades it assigns randomly
vary around the bets possible grades he can generate. The teaching assistant is a much better
(and robust) learning algorithm so his grades no not vary much around the optimal grades.
On the other hand, certain biases, such as being too strict or too lenient might reduce the
teaching assistant’s hypothesis space and result in a higher approximation error.

Note that the learning algorithms that are most often used in practice are so used because
they have a good inductive bias. That is, the assumptions made by the algorithms restrict
the hypothesis space in a way that benefits estimation error without having too much of an
adverse effect on approximation error.

2.3 Consistency of empirical risk minimization

At first glance empirical risk minimization (ERM) is an appealing and intuitive approach,
however, we are yet to discuss what (if any) guarantees we have when we use it. In particular,
how good is the model hn compared to h∗ or, in terms of risk, what can we say about Rn as
an estimator of R?

First, ERM is in general not unbiased. In fact, for learning algorithms it is typically positively
biased - the empirical risk of the selected model will underestimate the true risk or Rn(hn) <
R(hn), hence the selected model will typically not be h∗ and R(hn) < R(h∗). This is the
principle that underlies overfitting.

We do know that Rn(h)
P−−→ R(h) for any h ∈ H as it follows from the Law of large numbers.

However, is this enough to conclude that R(hn)
P−−→ R(h∗) (that is, that the selected model’s

risk will converge in probability to the risk of the optimal model or that ERM is consistent)?
It turns out that a stronger condition is necessary (and sufficient) - that the convergence in
probability is uniform across h: suph∈H |Rn(h)−R(h)|

P−−→ 0 (convergence in the Glivenko-
Cantelli sense).
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We now show that the uniform convergence is sufficient (the necessary part is beyond the
scope of these notes). We begin with two inequalities:

• The empirical risk of the model that maximizes empirical risk will be less or equal to
the empirical risk of the optimal model: Rn(hn) ≤ Rn(h∗).

• The risk of the model that maximizes empirical risk will be greater or equal to the risk
of the optimal model: R(hn) ≥ R(h∗).

Note that neither hn nor h∗ have to be unique for this argument to hold. The above inequalities
lead to

0 ≤ Rn(h∗)−Rn(hn) +R(hn)−R(h∗),

rearranging the terms gives

= R(hn)−Rn(hn) +Rn(h
∗)−R(h∗),

and

≤ sup
h∈H

(R(h)−Rn(h)) +Rn(h
∗)−R(h∗).

The model h∗ is unknown but a constant, so the term Rn(h∗)−R(h∗) goes to 0 (in proba-
bility) for reasons discussed above. Under the assumption of uniform convergence the term
suph∈H (R(h)−Rn(h)) also converges to 0. Therefore, uniform convergence is a sufficient
condition for both R(hn)

P−−→ R(h∗) and Rn(hn)
P−−→ Rn(h∗)!

2.4 Generalization error bounds

Informally, uniform convergence will be met if the learning algorithm’s hypothesis space is
not too rich. In the other extreme case the model could have infinite capacity. In such a case,
we also say that the problem is unlearnable - no matter how many data points we have, there
will always be a model that fits all the data points but does not attain R(h∗).

The Vapnik-Chervonenkis (VC) learning theory formalizes this notion of richness (VC dimen-
sion, capacity). We will not discuss this theory, only state one of the most important concepts
- a bound on true risk. For more on VC theory and structural risk minimization refer to Ch.
5 of Scholkopf, B., & Smola, A. J. (2001). Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press.

As we already mentioned before, we will typically have R(h) ≥ Rn(h). That is, the empirical
risk will underestimate true risk. But can we know by how much? VC theory provides an
answer in the form of an upper bound on the true risk:

With probability 1− δ we have

R(hn) ≤ Rn(hn) +O

(√
dV C
n

log n

dV C
− 1
n

log δ
)

,

where n is the number of observations and dV C the VC dimension of the learning algorithm.

8



Intuitively, this makes sense - the more data we have, the closer the empirical risk will be to
the actual risk, and the more capacity to learn the algorithm has, the less we can say about
the true risk from empirical risk alone.

This gives rise to another principled approach to learning - structural risk minimization
(SRM). The idea of SRM is to divide the hypothesis space H into nested subsets H1 ⊃
H2 ⊃ ... ⊃ Hk ⊃ H the capacity of which we are able to compute. Then we perform empirical
risk minimization for each subset select the model that minimizes the upper bound on the
true risk. That is, the model, where the sum of the empirical risk and the capacity penalty
is the lowest. As opposed to ERM, where we only minimize the empirical risk. Note that
Support Vector Machines are a representative of SRM - it can be shown that maximizing the
margin corresponds to minimizing the bound on empirical risk.

Regularization (penalized likelihood)

hn = arg min
h∈H

(Rn(h) + λC(h)),

where C(h) is some measure of model complexity and λ is a regularization constant, is related
to SRM and can be thought of as an approach to limiting the capacity of a model. Similarly,
Bayesian statisticians limit the capacity of a model by putting priors on the parameters.

Note that cross-validation and related procedures that estimate a model’s true risk in fact
indirectly estimate the learning algorithm’s capacity to learn.

2.5 Choosing a loss function

Choosing a loss function is first and foremost a practical decision that depends on the problem
at hand. And, at least in theory, there exists for every possible loss function a scenario where
that loss function is the most appropriate choice - trivially, when the goal is to minimize that
loss function. However, that does not imply that any loss function can be justified for any
scenario. In this section we’ll offer some arguments when and why certain loss functions should
be chosen and why some commonly used loss functions have typically undesirable properties.

But first note that in the ERM framework the loss function is part of the learning/estimation
process. That is, the decision making part is part of the learning process.9 As such, it does
not make sense to learn the models using one loss function and then select a model using a
different loss function. For example, to train logistic regression using MLE and a decision tree
using mutual information and then select the model that has the best accuracy.

There are exceptions to this rule - situations where it is practically unfeasible to train the
model using the desired loss function. For example, 0-1 loss (accuracy) is discontinuous and
difficult to optimize for. We might instead use a substitute or surrogate loss, such as hinge
loss or log loss, to simplify optimization, even though we will in the end select the model with
the best accuracy.

In some cases we might not know what the learning algorithm will be used for, for example,
when developing a new learning algorithm. In such cases we might prefer a more general loss
functions, such as log loss, which results in optimizing for the (information-theoretic) distance
between the predicted and true distribution.

9As we will see in the Bayesian decision theory section, there are alternative frameworks where that is not
the case.
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The examples of ERM estimators in Section 2.1 already offer some insight. If we are interested
in predicting the median, for example, we should use the absolute loss, not the quadratic. The
use of MLE (ERM with log loss) also comes with some guarantees.10

We provide furher insights into choosing a loss function in Section 2.6 and in the empirical
examples in Section 4.

2.6 Proper scoring rules

The framework of scoring rules and the concept of propriety offers some insights into the
selection of loss functions. This framework developed in the area of probabilistic forecasting,
in particular, in meteorology. That is, in problems where the goal is to predict the entire
distribution/density, not just point predictions. For more information on scoring rules, the
following paper is a great starting point Gneiting, T., & Raftery, A. E. (2007). Strictly proper
scoring rules, prediction, and estimation. Journal of the American statistical Association,
102(477), 359-378.

Formally, a scoring rule is a function S : P × Y → R, where P is typically the set of all
measurable functions on Y. In other words, a scoring rule S(p, y) takes a probability distri-
bution/density p ∈ P and an outcome y ∈ Y and assigns a score.

Scoring rules and loss functions are closely related. For example, log loss is a scoring rule:
Slog(p, y) = log p(y). Other loss functions can also be formulated as scoring rules, although
this is more complicated for loss functions that are based on point predictions and one could
argue that these are not actually scoring rules. For example, 0-1 loss is S0-1(p, y) = 1 if the
mode of p is y and 0 otherwise. If the model only predicts the mode (and not the distribution),
we can still compute this score by assuming that the predicted category was the mode. And a
scoring rule that corresponds to squared loss could be defined as Ssq(p, y) = −(Ep[Y ]− y)2.
Similarly, we can compute this score for a model that only gives point predictions by assuming
that the model’s prediction is the expectation.

Now we are ready to define what we mean by propriety. A scoring rule S is said to be
proper if the reward is maximized at S(ptrue, y), where ptrue is the true distribution. That
is, if reporting the true distribution maximizes the score. A scoring rule is said to be strictly
proper if ptrue not only maximizes the score but is in fact the only p that maximizes the
score. That is, reporting anything other than the true distribution will reduce your score. If
a scoring rule is not proper, we’ll refer to it as improper.

In words, a proper scoring rule encourages the forecaster (model) to report the true probability.
If a scoring rule is not strictly proper, the model might get a maximum score even though
it is not reporting the true probabilities, but the model that does will still get the maximum
score. For improper scoring rules, however, it would be possible for a model to get a better
score by reporting something other than the true distribution.

Strictly proper scoring rules

So which of the commonly used loss functions are strictly proper? For categorical/discrete y
the log loss and quadratic score S(p, y) = −

∑k
i=1(pi− Iy==i)2 (also known as the Brier score)

are strictly proper. Log loss is also strictly proper for continuous y. Another commonly used
10As we discussed in the probability course, MLE is under certain regularity conditions consistent, asymp-

totically normal, and asymptotically optimal/efficient.
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(or severely underused) proper scoring rule is the rank probability score (RPS), which can be
applied in the discrete

SRPS(p, y) = −
k∑
i=1

(Fp(i)− Iy≥i)2

and continuous setting

SRPS(p, y) = −
∫
(Fp(x)− Iy≥x)2dx,

where Fp is the CDF of p. In words, the RPS is the squared distance between the predicted
and empirical CDF, where the latter is based on the single actual outcome. Unlike the log
and quadratic loss, the RPS takes into account the ordering of the categories.

Note that we are deliberately consistently writing all scoring rules in a way such that maxi-
mizing S maximizes the reward. In different sources you will encounter a different sign and
maximizing the reward will correspond to minimizing the score. For example, quadratic score
(Brier score) is more often written as

∑k
i=1(pi − θ̂)2, although this is inconsistent with the

name score as the reward is maximized by minimizing the function.

Rules that are not strictly proper

Many commonly used loss functions are not strictly proper. For example, 0-1 loss (or accuracy)
is not strictly proper. In order to maximize our score, we do not have to report the true
probabilities (or what we believe to be the true probabilities). Instead, it suffices to report
probabilities where the mode will correspond to what we believe to be the mode. For example,
if in the binary case we believe the true distribution to be p1 = 0.6, p2 = 0.4, we will maximize
our score by reporting and distribution that satisfies p1 > 0.5. This highlights the danger of
using probabilities from models that were selected on the basis of their accuracy.

This argument can be extended to any loss function or scoring rule that partitions the models
into non-singleton equivalence classes. That is, any two models that always have the same
mode will have the same accuracy and for any probabilistic prediction there are always in-
finitely many different probabilistic predictions that have the same mode. Therefore, the score
can not be strictly proper, because the true distribution will have other distributions in its
equivalence class. It follows that sensitivity, specificity, F1, and AUC are not strictly proper,
squared loss (or mean squared error) is proper but not strictly proper in the continuous case
(as we stated before, it is strictly proper in the discrete case), and absolute loss is not strictly
proper in neither the discrete nor the continuous case.

Furthermore, some of the commonly used loss functions are in fact improper. Absolute loss is
improper in the discrete case - it encourages the model to assign the maximum probability to
the mode of the true distribution. Accuracy is proper in the iid setting but can be improper
in the some more complex settings.11 AUC is also improper, but in cases that are unlikely to
arise in practice.12

11See https://www.fharrell.com/post/class-damage/.
12See Byrne, S. (2016). A note on the use of empirical AUC for evaluating probabilistic forecasts. Electronic

Journal of Statistics, 10(1), 380-393.
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Summary

When interested in any sort of inference from the probability or density reported by the
model, we should avoid the use of scoring rules that are not strictly proper. In cases where
we are interested only in forecasting a particular aspect of the probability or density, such as
the actual outcome, the use of rules that are not strictly proper is acceptable. The use of
improper scoring rules is difficult to justify.

Choosing between strictly proper scoring rules, of which there are infinitely many, unfortu-
nately again comes without clear rules or recommendations, other than if you are unsure about
the decision making requirements in your particular problem (or do not care to think about
them), stick with the log loss. This paper is a good starting point for further investigation
of the topic: Merkle, E. C., & Steyvers, M. (2013). Choosing a strictly proper scoring rule.
Decision Analysis, 10(4), 292-304. We also provide some empirical evidence in Section 4.

3 Bayesian decision theory
Bayesian decision theory offers a principled alternative to ERM. First, let’s quickly review
the Bayesian inference framework. Given a parametric model (likelihood) p(y|θ) and a prior
distribution on the parameters p(θ), we infer the posterior distribution of the parameters
using Bayes’ theorem:

p(θ|y) = p(y|θ)p(θ)
p(y)

.

When the goal is not only to infer the parameters but also to make predictions for new data,
we do so through the posterior predictive distribution:

p(ynew|y) =
∫
p(ynew, θ|y)dθ =

∫
p(ynew|θ, y)p(θ|y)dθ =

∫
p(ynew|θ)p(θ|y)dθ.

The posterior predictive distribution is a mixture of of likelihoods over the posterior distribu-
tion of the parameters. Note that the final step is due to conditional independence of ynew and
y given the parameters θ (all the information from y required to predict a new observation is
contained in the likelihood and parameters).

We can see how the Bayesian framework is based on updating our belief about the parameter
values (and subsequently new data).

The Bayes risk is defined as:

R(θ̂|y) = Ep(θ|y)[`(θ, θ̂)] =
∫
`(θ, θ̂)p(θ|y)dθ

and the estimator θ̂ that maximizes the Bayes risk is called a Bayes estimator. Observe that
the only difference between Bayes risk and ERM risk is that the latter is an expectation over
the unknown distribution of the data, while the former is an expectation over the posterior
distribution of the model.

Similarly, we can define the Bayes risk when the loss function is defined on observations not
on parameters:

12



R(ŷ|y) = Ep(ynew|y)[`(ynew, ŷ)] =
∫
`(ynew, ŷ)p(ynew|y)dynew.

Note, however, that there is no conceptual difference between the two - it is just that in one
the quantity of interest is the parameter, while in the other it is the observation. Bayes risk
can be computed for any quantity by using the posterior distribution of that quantity. For
example, if we had a discriminative model.

3.1 Examples of Bayes estimators

We will see from the below examples that in the Bayesian framework the inference and decision
theory are completely separate (unlike in ERM, where they are done jointly). This is extremely
convenient, because parameter inference can be done without having to know how the model
will be used, which substantially simplifies decision making.

Quadratic loss

Suppose we have a likelihood p(y|θ), a prior p(θ) and we compute the posterior distribution
p(θ|y). We will not make any further assumptions - the results of this section will apply to
any choice of likelihood and prior and any data.

For the first example suppose our loss function is the quadratic loss `(θ, θ̂) = (θ− θ̂)2. Let’s
compute the Bayes estimator - the estimator that maximizes Bayes risk

R(θ̂|y) =
∫
(θ− θ̂)2p(θ|y)dθ.

Taking the derivative wrt θ̂ and setting to 0 we get

0 =
∫
(θ̂− θ)p(θ|y)dθ =

∫
θ̂p(θ|y)dθ−E[θ],

which will hold when θ̂ = E[θ]. That is, the Bayes risk under the quadratic loss is maximized
by reporting the posterior mean!

Again, note that in this context there is conceptually no difference between making a decision
based on the parameter or if we based our loss on the predictive distribution. That is, the
posterior mean is a Bayes estimator under the quadratic loss regardless.

Absolute loss

For the second example suppose our loss function is the absolute error `(θ, θ̂) = |θ− θ̂|. Now
we have

R(θ̂|y) =
∫
|θ− θ̂|p(θ|y)dθ =

∫ θ̂

−∞
(θ̂− θ)p(θ|y)dθ+

∫ ∞
θ̂

(θ− θ̂)p(θ|y)dθ.

Taking the derivative wrt θ̂ and setting to 0 we get

∫ θ̂

−∞
p(θ|y)dθ−

∫ ∞
θ̂

p(θ|y)dθ = 0
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and then

∫ θ̂

−∞
p(θ|y)dθ+

∫ ∞
θ̂

p(θ|y)dθ = 2
∫ ∞
θ̂

p(θ|y)dθ,

which leads to

1
2 =

∫ ∞
θ̂

p(θ|y)dθ = 1− Fθ|y(θ̂).

Therefore, the Bayes risk is minimized by θ̂, such that Fθ|y(θ̂) = 1
2 , which is the median of the

posterior distribution θ|y. We leave it to the reader to check that this is indeed a minimum
and not an inflection point.

0-1 loss

For the third example suppose our θ = {1, ..., k} is categorical and our loss function is 0-1
loss `(θ, θ̂) = Iθ 6=θ̂. Now the risk is

R(θ̂|y) =
k∑
i=1

Iθ 6=θ̂P (θ = k|y) = 1−
k∑
i=1

Iθ=θ̂P (θ = k|y) = 1− P (θ = θ̂|y).

So, to minimize risk, we have to pick the θ̂ that maximizes the posterior P (θ|y). That is, the
Bayes estimator for a categorical variable under 0-1 loss is the posterior mode!

4 Toy examples
The purpose of these toy examples is twofold. First, to illustrate some of the pathologies of
ERM and certain loss functions that we discussed earlier in these notes. And second, to provide
some empirical evidence on how different loss functions encourage different predictions, which
might be helpful in choosing which loss function to use in a particular case.

4.1 ERM discards information about the distribution of the data

To illustrate this, suppose we draw and we choose absolute loss. We have already derived
that the ERM estimator in this case is the sample median and that the Bayes estimator
is the median of the posterior or predictive posterior. However, in this particular case the
predictive posterior is normally distributed and the mean and median coincide. The mean of
the posterior will typically be different from the sample mean, so in this scenario the ERM
and Bayes estimator disagree!

Now we empirically verify which is better. We do this by generating 15 samples from a
standard normal distribution and evaluating the average absolute loss of the estimators on
10000 independent samples from the same distribution. We repeat this process 1000 times.
Results are shown in Figure 1.
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Figure 1: ECDF of average absolute loss over 1000 repetitions of the experiment. The Bayes
estimator achieves lower average absolute loss.

4.2 Discrete probability forecasts

In this example we evaluate 5 different probabilistic forecasts with 5 different loss functions.
The purpose is to illustrate the effect of using a particular loss function. Note that because
we know the true probabilities, we are able to compute the expected loss. The results are
shown and discussed in Figure 2.

This example was inspired by Minka’s paper https://tminka.github.io/papers/erm.html
where the reader can also find more discussion on the topic of ERM being an incomplete
inductive principle.

4.3 Continuous point and density forecasts

In this example we evaluate 6 different density forecasts with 4 different loss functions. The
purpose is to illustrate the effect of using a particular loss function. Note that because we
know the true density, we are able to compute the expected loss. The results are shown and
discussed in Figure 3.
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(a) five different probabilistic forecasts (in gray are the true probabilities from 1)
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(b) expected loss for five different loss functions

Figure 2: Forecast 1 are the true probabilities. As such, Forecast 1 has the lowest log loss,
quadratic loss, and rank probability score (these are all strictly proper scoring rules). It
also has the lowest 0-1 loss (it is a proper scoring rule) but all the other 4 forecasts, despite
being substantially different, attain the same 0-1 loss, because all five forecasts assign the
most probability to outcome 1. Forecast 2 gets the lowest absolute loss but is the worst (or
tied for worst) for all other 4 loss functions. Forecasts 4 and 5 are symmetric (if there is no
order) and their losses are identical for all loss functions, except the rank probability score,
where Forecast 4 is better. Finally, Forecast 4 has better log loss than Forecast 3 but for the
quadratic score it is the other way around - the log loss is more sensitive to small probabilities.
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Figure 3: Forecast 1 is the true density. As such, Forecast 1 has the lowest (or tied for
lowest) log loss, quadratic loss, absolute loss, and rank probability score (all four are proper
scoring rules). However, quadratic and absolute loss are not strictly proper - they evaluate
the forecaster only on a particular aspect of the predicted density (or a point prediction).
So, any point forecaster whose prediction matches the mean or median, respectively, will
attain minimum loss. Similarly, in our case, all density forecasts with the same mean or
median, respectively. Log loss and RPS are strictly proper, so only the true density attains
the minimum loss. This again illustrates that proper scoring rules should be preferred. As
was the case with discrete forecasts, the RPS takes into account the ordering. Forecasts 4
and 6 illustrate the preferences of log loss and RPS.
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