
Chapter 8

Artificial Neural Networks

Neural networks combine incredibly simple computational units to solve possibly
the hardest problem in machine learning: discovery of feature interactions. Initially
inspired by architectures of neurons and brains, they model these very loosely but
equally build their power on the number of connections and parallel processing. In
this lecture, we provide an elementary introduction to artificial neural networks. We
focus on motivation, describe inspirations from biology, and delve into perceptron
and its failures. Next, we introduce the artificial neuron and the combinations of
neurons within the standard feed-forward neural network. We show how to com-
pute the gradient of the cost function with respect to the parameters of the model.
Computation of the gradients uses chain rules and led to the algorithm for weight
updates called backpropagation. We finish with some ideas on optimization and
avoidance of overfitting, and mention, but do not delve into, other types of neural
networks.

The computational motivation for introduction of neural networks are to learn hard con-
cepts. For instance, consider a concept depicted in Fig. 8.1: the classification rule that sep-
arates the classes needs to model interaction between the two features. Assuming the other
features or combinations are not as informative as a combination from Fig. 8.1, and suppos-
ing that the training data set that contains 1.000 features, one would need to search among
999.000 feature pairs to find the informative pair. If a concept involves a feature triplet,
the search size is larger and contains 332.334.000 triplets. Addressing such problem directly,
through exhaustive search, is computationally not feasible.1

A possible alternative to exhaustive search of feature interactions are models that incorpo-
rate feature interaction, and that can possibly model any kind of interaction between any of
the features. The problem we are facing is of course the data. Such models need substantial,
if not huge amount of data for training to avoid overfitting. But if data is available – and

1Actually, and depending on a data set, it is also statistically not feasible, but we will leave this problem aside.

81



82 CHAPTER 8. ARTIFICIAL NEURAL NETWORKS

x1

x2

Figure 8.1: An example of a hard classification concept, where the classifier would need to
recognize the interaction between two features, x1 and x2. Concepts like these are especially
hard to model in the presence of many other features, which can be to a degree related to the
class.

sometimes it is – then we better define the model that we can use in such cases. Notice that
we are moving into direction where such models may be hard to explain, but this also is an
issue we will deal with later, in our next chapter.

8.1 Motivation from biology

We start with disclaimer: artificial neural networks are very simplistic model of a brain, or
any biological neural network. Biology is by orders of magnitude more complex: an axon,
that is considered in artificial networks as a wire, has been studies in numerous projects and
its structure and physiology has been reported in books of thousands of pages. With this
warning, though, consider a realistic model of a neural cell in Fig. 8.3. Neural cell emits
electric signals through the axon, but only when the potential in the cell body reaches a
certain level, called action potential. The electrical potential of the body is a sum of potentials
in the dendrites, and and this in turn depend on potential evoked from connected cells.
Connections are established through synapses, which chemically transmit the electrical signal
from the axon tips (inputs) to the dendrites. Neural cells thus, in a very simplified way, sum
up the input signals and fire when the sum reaches specific threshold, emitting the signal
through the axon and establishing a network with connected cells.

Human brain contains 8 × 1010 neurons, where, on average, each neuron is connected to
10.000 other neurons. The resulting network is huge and contains 1015, that is, 1.000 trillion
connections.

Synapses adapt, adjusting the quantity of required transmitters and available receptors,
thus implementing one of the mechanisms for plasticity of the brain and learning. Synapses,
on the other hand, implement chemical transmission of the signals and are thus slow, but
they are many and function in parallel.

The brain is modular. Different regions perform different functions. Experimentally this



8.2. IDEALIZED NEURON 83

Figure 8.2: The structure of a neural cell, showing means of communication between two
connected cells.

was observed in patients where local damages had specific effects. But the plasticity was
observed as well: regions of brains can take over a specific function after the brain region
originally carrying out this function was damaged. Damage in one region can therefore be
alleviated through specialization of another region.

The idea of the network of neurons, neurons summing up the input signals, adaptivity of
synapses which can weight the input, and a activation function implemented by a body of a
neural cell are all concepts that are modeled by artificial neural networks. Brain plasticity and
redundancy are modeled as well, and specifically addressed in larger, deeper neural networks.

8.2 Idealized neuron

Idealized neuron is a model of a neuronal cell with complicated details removed (Fig. ??). It
performs simple mathematics, resorts to basic principles, and is wrong since the communica-
tion is not binary. The simplest model sums-up the inputs through a weighted sum, where wi

is a weight for i-th input:
z = b +

∑

i

xiwi, (8.1)

and the output of the linear neuron is
ŷ = z (8.2)

Other types of neurons incorporate other activation functions, that is, functions that take



84 CHAPTER 8. ARTIFICIAL NEURAL NETWORKS

x1

x2

xn

y...

Figure 8.3: An idealized neuron with xi representing its inputs and y an output variable.

a weighted sum of the inputs to compute the output of a neuron. Popular examples include
binary threshold neuron,

ŷ =


1 if z ≥ 0

0 else
(8.3)

rectified linear neuron, or RELU,

ŷ =


z if z ≥ 0

0 else
(8.4)

and sigmoid neurons,

ŷ =
1

1 + e−z (8.5)

Notice that a sigmoid neuron looks very much like one of the classification models we have
already studied. Which one, and what are the differences, if any?

8.3 Perceptrons

Training with a single linear neuron, that is, a neuron implementing z = wᵀx and a related
classifier,

ŷ = h(z) =


1 if z ≥ 0

−1 else
(8.6)

was popular in 1960s under the name perceptron. The perceptrons (Fig. 8.4, algorithm in
Table 8.1) were proposed by Frank Rosenblatt, one of the pioneers of artificial intelligence,
and were wrongly presented as a very powerful tool. In really, learning with perceptrons was
very weak, could not handle noise, but is still historically interesting.

Notice that the perceptron training (Table 8.1) actually implements a stochastic gradient
descent with a batch size of one and a learning rate of one. The training would succeed
in cases where the classes are linearly separable, but fail otherwise. In linearly separable
cases there would be infinitely many solutions where perceptron training would converge
to a particular one. The process would fail under any interaction between input variables,



8.4. ARTIFICIAL NEURAL NETWORKS 85

Table 8.1: Perceptron’s learning procedure

initialize w
repeat

choose (x, y) from the training set
if h(z) , y

if h(z) = −1
w← w + x

else
w← w − x

positive examples

negative examples

good 

weight vector

bad 

weight vector

the origin

Figure 8.4: Several concepts in perceptron learning.

where a typical example would be that of XOR. Obviously, there, we would need hierarchy of
concepts and a nested perceptrons to model interactions.

8.4 Artificial neural networks

Artificial neural network is a network of artificial neurons. Output of one neuron is fed into
inputs of a set of neurons. While there is no limitation on the structure of the network, the
typical network starts with a layer of input features, continues with a layer of neurons, and
then with the next layers, where each layer is fully connected. That is, a neuron at layer L
receives inputs from all neuron at previous level, level L − 1. The last layer is special, and set
according to the problem at hand. For instance, for regression, the last layer may include only
one neuron, whose activation models variable y. For classification, the last layer may have as
many neurons as there are class values, where each activation reports on a class probability.
We refer to all layers between an input layer and an output layer as hidden layers.

Just like with other machine learning techniques, we have to set a cost function, and
define a procedure to optimize the weights for each of the neuron accordingly. This procedure
is known as back-propagation, and actually implements a gradient descent. We develop the
mathematics for it in the next section.



86 CHAPTER 8. ARTIFICIAL NEURAL NETWORKS

8.5 Back-propagation algorithm

We start with some conventions. We assume that all units of the neural network can take
value between 0 and 1. We refer to this value as activation and will denote it with a. In the
previous text, when introducing a single neuron, we have denoted it with ŷ, which we will
now reserve for the output of the entire network. We will also assume that the output of the
neural network corresponds either to the value of regression problem, or to class probabilities,
where of form of softmax regression is used to guarantee that the class probabilities sum to
one.

To introduce the notation, consider a simple neural network with one input feature x and
one output ŷ, and one neuron in each of the two hidden layers (Fig. 8.5).

x

b1 b2 b3

a1 a2 a3w1 w2 w3

Figure 8.5: An example of a network with a single input and output and one neuron per layer.

Let us, for simplicity, assume we are dealing with only one example in the training set,
and define a cost function as a squared error:

J(w1, b1, . . . ,w3, b3) = (a3 − y)2 (8.7)

Until now, we have used the indices to denote the weights w, the offsets b and activation at
each layer. Later, when dealing with more than one neuron at each layer, a notation which
denotes the layer number will come handy. Apart from the layer with the input value, our
simple network from Fig. ?? has three layers, L = 3. The activation a3 belongs to the third
layer and we will alternatively denote it with a(L). Similarly, a(L−1) will denote a2. Same goes
with other parameters and activation values. We can thus write that the weighted sum of
inputs for neuron at layer L is equal to

z(L) = w(L)a(L−1) + b(L), (8.8)

the activation of that neuron is
a(L) = σ(z(L)), (8.9)

and the cost function
J(w1, b1, . . . ,w3, b3) = (a(L) − y)2 (8.10)

While we can use any activation function here, we will sigmoid activation function for conve-



8.5. BACK-PROPAGATION ALGORITHM 87

nience.

To implement gradient descent, we need to find how does a cost function J depend on
the values of the parameters of the neural network. For instance, how does J depend on the
weight w3, that is, the weight w(L)? We can use a chain rule to compute the partial derivate,
and while doing so, it helps us to examine the dependencies as depicted in Fig. 8.6:

∂J
∂w(L)

=
∂z(L)

∂w(L)
× ∂a(L)

∂z(L)
× ∂J
∂a(L)

(8.11)

= a(L−1) × σ(z)(1 − sigma(z)) × 2(a(L) − y). (8.12)

We can interpret the terms in this equation as a(L−1) denoting the power (or the weight) of
the precious layer, σ(z)(1− sigma(z)) denoting a derivative of an activation function, and term
2(a(L)) − y) as the error of the prediction.

w(L) a(L-1) b(L)

z(L)

a(L)

J

y

Figure 8.6: Dependency tree of the cost function J on some of the parameters from the neural
network from Fig. 8.5.

Above we have assumed we are dealing with only one training example. To generalize
the above assertions for a set of training instances, we first need to modify the definition of
the cost function, which now becomes:

J =

N∑

j=0

(
a(L)

j − y j

)2
(8.13)

Notice that the only change when computing partial derivative of J according to w(L) is in
computation of third term, ∂J

∂a(L) , which now becomes a sum of partial derivates.

Let us consider now a more general type of network, with a number of neurons at each
layer, and the number of neurons at the output layer. We again restrict the training set to only
one data instance. Consider a fragment of a network from Fig. 8.7, which depicts the relation



88 CHAPTER 8. ARTIFICIAL NEURAL NETWORKS

ak(L-1)

aj(L)wjk

Figure 8.7: A fragment of a neural network exposing the relation between activation of the
k-th neuron in layer (L − 1) and activation of a j-th neuron at leyer L.

between activation of the k-th neuron in layer (L − 1) and j-th neuron at leyer L. Notice that

z(L)
j =

∑

i

w(L)
ji a(L−1)

i + b(L)
j , (8.14)

a(L)
j = σ(z(L)

j ), (8.15)

J =

(∑

j

nL−1(a(L)
j − y j)2. (8.16)

We assume the indices run from 0, replace the intercepts b for each k-th neuron with w0k, and
denote the number of neurons at layer L with nL. Notice also that the weights have now two
indices. The weight w jk is a weight for a j-the neuron for the output of the k-th neuron from
the previous layer. For a gradient descent, we again need to compute the change this weight
invokes to the cost function,

∂J
∂w jk

=
∑

j

∂z(L)
j

∂w jk
×
∂a(L)

j

∂z(L)
j

× ∂J

∂a(L)
j

(8.17)

The partial derivatives of the first two terms in the product are straightforward, and stem
directly from the expression for z(L)

j and a(L)
j . But the partial derivative in the last term is new,

and we can break it down to

∂J

∂a(L−1)
k

=

nL∑

j=0

∂z(L)

∂a(L−1)
k

×
∂a(L)

j

∂z(L)
j

× ∂J

∂a(L)
j

(8.18)

With these two expressions, we can now chain back through the network and compute the
influence of every of the network’s parameters, thus providing means for the gradient descent.
The procedure is known under the name back propagation, which, intuitively:

• converts discrepancy between output and and target into error derivative,

• computes the error derivatives in each hidden layer from error derivatives of the next
layer,



8.6. BAG OF TRICKS 89

• uses error derivative with respect to activations to get error derivative with respect to
weights.

Let us express our derivations and back-propagation procedure in a matrix form. We will
assume that the input data includes m data instances and n features, and will for convenience
add a first column of 1’s to the input data matrix, thus increasing its size to m × (n + 1) and
denoting this matrix with X′. Let this matrix represent the activations of the neurons in the
first, input layer:

A(1) = X′ (8.19)

Then we can write the equations for the second layer:

Z(2)
m×n2

= A
m×n1

(1) W
n1×n2

(2) (8.20)

A(2)
m×n2

= σ
(
Z(2)
m×n2

)
(8.21)

For the general l-th layer we can write:

A(l) = σ
(
A(l−1)W(l)

)
(8.22)

We start with the last layer,

∂J

∂W (L)
=
∂Z(L)

∂W (l)
× ∂A(L)

∂Z(L)
× ∂J
∂A(L)

(8.23)

where computing the first partial derivative is straightforward. Let us represent the product
of the last two terms with d:

d(L)
m×nL

=
(
A(L) − Y

)
� A(L)

(
1 − A(L)

)
(8.24)

∂J

∂W(L)
=

1
m

(
A(L−1)

)ᵀ × d(L) (8.25)

where with � we denote element-wise product. In a similar way we compute the partial
derivative ∂J

∂A(L−1) as a function of partial derivate of ∂J
∂A(L) , and repeat the computation of the

above two equations for lower levels of the network.

8.6 Bag of tricks

As with training of other classifiers and regression models, like linear and logistic regression,
there are technique which can speed up and improve convergence of the training of neural
networks. These, in brief, include:

• To aim to prevent overfitting, we can use regularization, and include the sum of all the



90 CHAPTER 8. ARTIFICIAL NEURAL NETWORKS

weights of the network in a cost function. This procedure was also known as a weight
decay, where after the computation of each weight these well further scaled down by
some factor, say 0.99. Notice that if using sigmoid activation function, the small weights
meant that we operate at the linear part of sigmoid at thus with regularization aim at
derive close-to-linear model, thus simplifying it.

• Neural networks include many parameters, the problem we can alleviate through weight
sharing. That is, neurons at some level would share some of the weights.

• Training of neural networks assumes large training data set. We can use all of the data
instances from the training data, but for large data sets use mini-batch gradient descent
with adaptive learning rate and use of momentum in the optimization.

• To further avoid overfitting, we can use dropout, where we randomly drop neurons
along with their connections from the neural network during the training. Dropout pre-
vents neurons from co-adapting. During training, dropout samples form an exponential
number of different “thinned” networks, thus also, in some way, introduce ensembling.

These and other tricks and their details go beyond our discussion in this chapter. They are
all implemented in today standard packages for neural network training. While one of the
homeworks of this course will be on neural network implementation, this, and the derivation
of related equations and their implementation would almost certainly be a once-in-a-lifetime
attempt useful only for educational reasons.


