Introduction . 2001a b 1986 2007 1994 1995 2000 2005 2001a b 1986 2007 Aspergillus niger 2001 Erwinia chrysanthemi Saintpaulia 1989 2001 2000 2003 2002 2001 2001 1996 2004 1998 1999 NtCIF 1998 NtVIF 1998 Actinidia deliciosa 2004 Arabidopsis 2003 2004 2005 Ficus awkeotsang 2001 2002 1990 2004 2000 2005 2000 2004 2004 2004 1998 Solanum 2004 SGT1 2002c 2002b EDS1 2002b 2002a NPR1/NIM1 2002b Nicotiana benthamiana AtPGIP1 AtPGIP1 Arabidopsis 2006 AtPGIP1 AtPGIP2 Botrytis cinerea 2003 AtPGIP1 2006 CaPMEI1 Capsicum annuum Xanthomonas campestris vesicatoria Xcv 2000 CaPMEI1 CaPMEI1 E. coli CaPMEI1 Arabidopsis CaPMEI1 CaPMEI1 Materials and methods Plant materials and growth conditions Capsicum annuum −2 −1 3 3 Arabidopsis thaliana −2 −1 Pathogens, inoculation procedures, disease rating and tissue staining Xanthomonas campestris esicatoria Xcv −1 −1 8 −1 8 −1 X campestris esicatoria Pseudomonas fluorescens Escherichia coli Arabidopsis 600 Pseudomonas syringae tomato Pst 2 −1 Hyaloperonospora parasitica Arabidopsis H. parasitica 4 −1 H. parasitica H. parasitica Isolation and sequence analysis of pathogen-induced cDNAs X campestris vesicatoria + 2000 2000 1997 Treatment with abiotic elicitors and environmental stresses −1 2 2 2 2 RNA isolation and RNA gel blot analysis 1987 N + CaPMEI1 CaPMEI1 CaBPR1 CaSAR82A 32 In situ RNA localization 2000 −1 l −1 −1 Purification of recombinant CaPMEI1 protein CaPMEI1 EcoR Xho Escherichia coli 600 600 g g SDS polyacrylamide gel electrophoresis 2 1970 Pectin methylesterase enzyme inhibitor assay 2004 2 In vitro antifungal activity Fusarium oxysporum . matthiole Alternaria brassicicola B. cinerea ™ −1 4 −1 B. cinerea −1 F. oxysporum matthiolae 5 −1 Plasmid construction and plant transformation CaPMEI1 Xba Bam Xba Bam CaPMEI1- Xba Bam Hin Eco CaPMEI1 Agrobacterium tumefaciens Arabidopsis A. tumefaciens 1998 Agrobacterium −1 g 600 Arabidopsis Agrobacterium 600 Arabidopsis Virus-induced gene silencing (VIGS) CaPMEI1 2002a 2004 CaPMEI1 CaPMEI1 A. tumefaciens CaPMEI1 600 RT-PCR analysis 15 CaBPR1 CaPR10 CaPOA1 CaSAR82A Drought stress treatment and evaluation Arabidopsis CaPMEI1- 1962 Surface-sterilized seeds were also used for examination of relative root length. Seedlings were grown on plates placed vertically in growth chambers and root length was estimated for 14 days. To assess mannitol tolerance, seedlings were grown for 7 days in 1× MS agar media supplemented with 1% sucrose, and then transferred to wells containing 1× MS liquid media supplemented with 100, 200, 300 or 400 mM mannitol. For drought treatment, 4-week-old soil-grown plants were deprived of water for 15 days and then re-watered on day 16. To minimize experimental variation, both the transgenic and control plants were grown in the same tray. Experiments were repeated at least three times. For transpiration rate measurements, leaves of 4-week-old plants were detached and maintained at room temperature. Leaf weight was determined every 20 min for 2 h, and then every 1 h thereafter. Each measurement was performed using eight leaves. Experiments were repeated at least three times with similar results. Oxidative stress treatment and evaluation Arabidopsis CaPMEI1- 664 648 1987 Results CaPMEI1 Xcv 2000 PR-1, PR-10 SAR8.2 CaPMEI1 C apsicum a nnuum p m i C. annuum 1 1 2000 Nicotiana tabacum Arabidopsis thaliana Pinus radiata A. thaliana Fig. 1 Nicotiana tabacum A. thaliana A. thaliana Pinus radiata asterisks CaPMEI1 CaPMEI1 CaPMEI1 2 CaPMEI1 Fig. 2 CaPMEI1 CaSAR82A CaBPR1 CaPMEI1 CaBPR1 H M a CaPMEI1 b CaPMEI1 CaBPR1 C. coccodes Xcv. c CaPMEI1 Xcv P. fluorescence E. coli 4 d CaPMEI1 CABPR1 −1 e CaPMEI1 CaSAR82A 2 2 CaPMEI1 CaPMEI1 C. coccodes Xcv Xcv CaPMEI1 2 CaPMEI1 C. coccodes 2 CaPMEI1 Xcv 2 CaBPR1 Capsicum annuum basic PR1 CaBPR1 Xcv 2 CaPMEI1 CaPMEI1 Xcv Pseudomonas fluorescens E. coli 2 Xcv CaPMEI1 Xcv CaPMEI1 CaPMEI1 P. fluorescens E. coli CaPMEI1 CaPMEI1 1996 2007 CaPMEI1 2 CaPMEI1 CaPMEI1 CaPMEI1 CaBPR1 2 CaBPR1 CaBPR1 CaPMEI1 CaPMEI1 2 CaPMEI1 CaPMEI1 CaPMEI1 2 2 CaPMEI1 CaBPR1 CaSAR82A CaPMEI1 CaPMEI1 CaPMEI1 3 3 CaPMEI1 3 CaPMEI1 C. coccodes 3 3 CaPMEI1 3 CaPMEI1 2 Fig. 3 CaPMEI1 CaPMEI1 (a c e g) (b d f h) a b c d e f C. coccodes g h −1 P X UE LE Vs C Inhibition of pectin methylesterase (PME) activity by CaPMEI1 protein CaPMEI1 E. coli CaPMEI1 . 4 4 4 4 1994 Fig. 4 a E coli 1 E. coli 2 E. coli 3 4 E. coli 5 6 b 1 2004 2004 4 ca ca Antimicrobial activity of CaPMEI1 F. oxysporum . matthiole, A. brassicicola B. cinerea 5 −1 −1 F. oxysporum . matthiole 5 5 Fig. 5 a F. oxysporum . matthiolae A. brassicicola B. cinerea a b b F. oxysporum . matthiolae top −1 middle −1 bottom Bars c F. oxysporum . matthiolae CaPMEI1 Xcv Xcv CaPMEI1 2002a 2004 CaPMEI1 CaPMEI1 CaPMEI1 CaPMEI1 Xcv CaPMEI1 6 CaPMEI1 CaPMEI1 Xcv CaPMEI1 CaPMEI1 Fig. 6 CaPMEI1 CaPMEI1 CaPMEI1 Xcv 6 −1 H CaBPR1 CaPR10 CaPOA1 CaSAR82A 6 CaBPR1 CaPR10 Xcv CaPMEI1 Xcv Xcv CaPMEI1 CaPOA1 CaSAR82A Xcv CaPMEI1 CaPMEI1 Xcv 7 CaPMEI1 Xcv Xcv CaPMEI1 Xcv 7 CaPMEI1 Xcv 7 Xcv CaPMEI1 7 CaPMEI1 Xcv Xcv Fig. 7 CaPMEI1 Xcv Xcv a Xcv 6 −1 Xcv b CaPMEI1 CaPMEI1 Xcv Xcv 4 −1 CaPMEI1 Pst p35S CaPMEI1-GFP p35S-GFP A. thaliana 1998 p35S-GFP 1 1 8 Fig. 8 Arabidopsis CaPMEI1- P syringae tomato a Arabidopsis CaPMEI1 b Pst Pst 5 −1 c Pst 5 −1 d PR Pst 5 −1 CaPMEI1 P syringae tomato Pst 5 −1 CaPMEI1 Pst 8 8 CaPMEI1 PR AtPR1a, AtPR2 AtPR5 CaPMEI1 Arabidopsis Pst 8 AtPR1a AtPR2 CaPMEI1 AtPR5 AtPR5 CaPMEI1 Pst AtPR1a, AtPR2 AtPR5 Arabidopsis 1992 nahG PR 1994 1999 AtPDF1.2 CaPMEI1 CaPMEI1 Hyaloperonospora parasitica CaPMEI1 Arabidopsis H. parasitica 9 CaPMEI1- H. parasitica 4 −1 Fig. 9 Arabidopsis CaPMEI1- H. parasitica a dpi Bars b below 9 H. parasitica 9 9 H. parasitica CaPMEI1 CaPMEI1 CaPMEI1 10 CaPMEI1 Fig. 10 Arabidopsis CaPMEI1- a b c d CaPMEI1 Arabidopsis e 10 CaPMEI1 10 CaPMEI1 CaPMEI1 CaPMEI1 10 CaPMEI1 10 CaPMEI1 CaPMEI1 CaPMEI1 CaPMEI1 11 CaPMEI1 11 CaPMEI1 11 11 11 Fig. 11 Arabidopsis CaPMEI1- a b c d Discussion 1998 2004 Arabidopsis 1998 2003 2004 2004 Arabidopsis 1998 2003 CaPMEI1 2000 2000 2000 CaPMEI1 CaPMEI1 F. oxysporum matthiolae, A. brassicicola B. cinerea. 1986 Phaeosphaeria nodorum 2000 2004 2005 Arabidopsis AtPMEI-1 AtPMEI-2 B. cinerea 2007 1998 2007 CaPMEI1 Xcv CaPMEI1 Xcv PR1 PR10 2001 2006 1994 1997 2000 CaPMEI1 PR in planta CaPMEI1 Arabidopsis P. syringae H. parasitica Arabidopsis 2003 2003 CaPMEI1 Pst H. parasitica 1996 2002 CaPMEI1 H. parasitica P. syringae 1986 2004 Arabidopsis 2003 CaPMEI1 Arabidopsis CaPMEI1 PR1, PR2 PR5 1992 Thaumatococcus daniellii 1997 1991 1997 1998 2000 1991 PR CaPMEI1 Arabidopsis CaPMEI1 Arabidopsis CaPMEI1 CaPMEI1 Arabidopsis 2005 2006 NtCIF NtVIF 2004 2004 2 1996 Arabidopsis CaPMEI1 CaPMEI1 Here, we have determined that CaPMEI1 from pepper plays a role as an antifungal protein and has an inhibitory effect on PME. Furthermore, we have shown that Arabidopsis CaPMEI1-OX lines are resistant to bacterial pathogens. In addition, they exhibit tolerance to drought and oxidative stress. In conclusion, these multivariate functions of CaPMEI1 provide valuable insights into understanding the physiological significance of PMEIs in plant disease resistance and abiotic stress tolerance. Electronic supplementary material Below is the link to the electronic supplementary material. S1 (DOC 19 kb)