Introduction 2004 2006 2007 1997 2003 2001 1993a 2002 1997 Calidris canutus 1993b 1998 2002 2006 2007 2007 Calidris alpina 1993 2005 Materials and methods Data collection 1996 2 2004 1996 Statistical analysis 2004 1999 Results 2001 Results P 1 1 1 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^{2}_{8} = 20.45$$\end{document} P 1 Fig. 1 N N Error bars Table 1 Results of the generalised linear model with the number of sub-species per species as independent variable   Estimate ± SE df P Minimal adequate model        Migratoriness −0.10 ± 0.08   0.23  Non-breeding habitat −0.16 ± 0.19   0.39  Breeding habitat 0.06 ± 0.04   0.17  Species age −0.01 ± 0.007   0.11 Migratoriness × non-breeding habitat 0.27 ± 0.12 4.92 0.03 Separate models        Non-breeding habitat         Migrants 0.42 ± 0.15 7.39 0.007   Partial migrants 0.13 ± 0.10 0.07 0.79   Non-migrants −0.21 ± 0.21 1.07 0.30 P Discussion 2001 2005 2006 2001 2002 1998 The question remains why the difference in diversification between species occupying coastal and inland habitats is not reflected in the non-migratory species that breed there? Given that migrant species often greatly outnumber resident species at individual feeding areas during the non-breeding season, migrant species may have greater effective population sizes per non-breeding area than non-migrants. This would allow more efficient response to selection and increase the potential for local adaptive change in migrants relative to non-migrants. Given the arguments above, such change is most likely in coastal areas.