Introduction 1 2 3 4 5 5 6 8 9 pertussis toxin \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{G}}_{{{\text{ $ \alpha $ i}}}} {\text{ - proteins}} $$\end{document} 10 11 12 13 14 15 17 5 14 18 24 19 25 26 Neuronal Chemokine Expression 1 Table 1 Neuronal chemokine expression Chemokine Species Condition RNA Protein References CCL2 h Brain + 39 Spinal cord, ALS ↑ 35 Monoculture ↑ + 41 Cell line + 38 r Brain + 37 Brain, cranial nerve injury ↑ ↑ 30 Brain, ischemia ↑ ↑ 28 Retina, ischemia ↑ 168 Spinal cord, peripheral nerve injury ↑ ↑ 31 34 Monoculture + 164 m Brain, ischemia ↑ 27 29 Spinal cord, ALS model ↑ 36 Monoculture, West Nile virus ↑ 43 CCL3 h Brain, AD ≈ 40 Monoculture ↑ + 41 r Retina, ischemia ↑ 168 Monoculture + 51 m Monoculture ↑ 42 CCL4 h Monoculture ↑ + 41 r Retina, ischemia ↑ 168 m Monoculture ↑ 42 CCL5 h Monoculture ↑ + 41 m Monoculture ↑ ↑ 43 44 CCL20 r Monoculture +/↑ 51 Trigeminal neuron culture ↓ 169 CCL21 m Brain, ischemia ↑ 45 Monoculture ↑ ↑ 45 46 Neonatal hippocampal slice culture ↑ 46 CXCL1/2/3 r Monoculture + + 51 CXCL8 h Monoculture + 41 CXCL9 m Monoculture + 43 CXCL10 h Brain, HIV ↑ 54 Mixed brain culture + 54 mac Brain, HIV ↑ 54 r Brain, ischemia ↑ 52 m Brain, entorhinal cortex lesion ↑ 53 Brain, West Nile virus ↑ ↑ 43 Monoculture + + 43 CXCL11 m Monoculture + 43 CXCL12 h Brain, HIV ↑ 59 Monoculture + 59 r Brain + + 55 60 62 Monoculture + + 58 60 87 m Brain, ischemia ≈/↓ 56 Brain, LPS injection ≈ 56 Mixed brain culture + 59 CX3CL1 h Brain, MS ↑ 113 Brain, HIV ↑ 170 Spinal cord + 66 Monoculture ≈ ≈/↑/↓ 74 75 138 Cell line ≈ a 66 75 138 mac Brain + 66 r Brain and spinal cord, EAE ≈ 63 65 66 68 Spinal cord, peripheral nerve injury ≈ ≈ 171 172 Brain, LPS injection ≈ 67 Brain, KA injection ≈ 67 Monoculture ≈ a 64 65 73 76 78 118 m Brain + + 69 Brain, prion disease ≈ 67 Brain, LPS injection ≈ 67 Brain, KA injection ≈ 67 Brain, EAE ≈ 66 Monoculture ≈ ≈ 77 Cell line ≈ ≈ 77 h mac r m ALS AD HIV MS EAE LPS KA + ≈ ↑ ↓ a CC Chemokines CCL2 27 29 30 34 35 36 27 37 37 37 38 39 CCL3, CCL4, and CCL5 40 41 Toxoplasma gondii 42 43 44 CCL21 45 45 46 47 48 49 50 Other CC Chemokines 51 CXC Chemokines CXCL10 52 52 53 43 54 CXCL12 55 56 56 57 60 61 62 Other CXC Chemokines 51 41 43 CX3CL1 63 66 63 65 63 65 66 68 69 70 71 72 73 77 66 73 74 78 79 Potential Roles of Neuronal Chemokines in Neuron–Astrocyte, Neuron–Microglia, and Neuron–Neuron Interaction 2 Table 2 Chemokine receptor expression in astrocytes, microglia, and neurons Chemokine Receptor Cell type Species Condition RNA Protein References CCL2 CCR2 astrocyte h Brain, MS, HIV ↑ 96 97 173 Monoculture ↑ ↑ 83 99 174 176 mac Monoculture ↑ 175 r Brain, EAE, LPS injection ↑ 177 178 microglia h Brain, MS, HIV ↑ 96 173 179 Monoculture ↓ + 173 180 Glia culture + 99 r Brain, tumor, LPS injection, NMDA injection ↑ 177 181 182 Monoculture ↑ 88 m Spinal cord, peripheral nerve injury ↑ 183 neuron h Brain, HIV + 184 Monoculture + + 38 Cell line + + 38 r Brain and spinal cord + + 161 177 185 Monoculture + + 161 164 CXCL10/CCL21 CXCR3 astrocyte h Brain, MS, HIV ↑ 95 97 179 186 Astrocyte culture ↑ ↑ 84 98 175 Mixed glial culture + 95 mac Monoculture + 175 m Monoculture + 84 microglia h Monoculture + + 7 84 98 114 Cell line ↑ ↑ 98 r Cell line ↑/↓ 187 m Brain, various infectious agents, axotomy ≈/↑ ≈/↑ 125 Monoculture + ↓ 45 84 Cell line ↑/↓ 188 neuron h Brain, AD + ≈ 95 179 189 Monoculture + + 38 Cell line + + 38 mac Brain, HIV + 54 r Monoculture + 163 CXCL12 CXCR4 astrocyte h Brain, HIV ↑ 173 190 191 Monoculture ↑ ↑ 85 90 98 99 175 192 196 mac Monoculture ↑ ↑ 85 175 r Brain + 197 Monoculture ↑/↓ ↑/↓ 57 58 102 198 m Monoculture ↑/↓ ↑/↓ 86 101 104 199 200 microglia h Brain and spinal cord, HIV + + 173 179 190 191 201 202 Monoculture + ↓ 98 99 191 202 205 Cell line ≈ 98 bab Monoculture ↑ 206 r Brain + 197 Monoculture ≈/↑ + 58 207 198 m Cell line + 86 neuron h Brain, HIV + ≈/↑ 179 184 191 197 202 204 208 Monoculture + + 38 85 Mixed brain culture + + 202 Cell line + + 38 191 209 mac Brain + 210 211 Monoculture + 85 r Brain + + 57 Monoculture + + 64 158 CX3CL1 CX3CR1 astrocyte h Brain, MS ≈ 113 Monoculture ↑ + 113 175 mac Monoculture ↑ 175 r Monoculture ≈/↑ ↑ 76 198 212 m Monoculture ↓ ↓ 77 81 200 microglia h Brain, MS ≈ 113 Brain, HIV ↑ 170 Monoculture + + 75 113 r Brain, ischemia, prion disease, cranial nerve injury, EAE ↑ ↑ 63 67 68 213 Brain, LPS injection, KA injection ≈ 67 Spinal cord, peripheral nerve injury ↑ ↑ 171 172 Monoculture ↑/↓ ↑ 63 65 198 212 214 Cell line ↓ 187 Brain, LPS injection, KA injection ≈ 67 m Monoculture ≈ ≈ 77 neuron h Monoculture + + 75 Cell line ≈ ↑ 75 r Brain, LPS injection, KA injection ≈ 67 Monoculture + + 64 139 m Brain, prion disease ↓ 67 Brain, LPS injection, KA injection ≈ 67 h mac bab r m MS HIV EAE LPS NMDA N d AD KA + ≈ ↑ ↓ Neuron–Astrocyte Interaction 80 81 82 Neuronal Chemokines Induce Calcium Transients in Astrocytes 57 76 83 86 57 85 87 85 86 57 87 i 84 83 88 76 80 89 90 91 93 Neuronal Chemokines Induce Astrocyte Proliferation and Migration in Vitro: Implications for Astrogliosis? 94 95 97 95 97 97 98 99 87 100 102 i 87 103 83 84 86 103 104 Neuron–Microglia Interaction 105 106 82 107 108 63 65 Microglia Activity Upon Neuronal Damage 109 111 111 7 45 84 112 115 73 74 78 45 46 43 54 7 45 46 73 76 84 113 115 73 116 117 116 G93A 79 79 118 77 119 117 117 53 120 34 46 121 122 123 123 31 30 124 63 65 125 53 79 116 Neuron–Neuron Interaction 126 127 128 130 93 131 132 26 92 133 Neuroprotection tat 134 137 78 138 64 139 140 141 142 141 78 138 140 64 78 78 78 64 143 Neurotoxicity 144 145 146 64 102 147 148 102 147 102 143 146 148 149 149 102 150 150 151 54 152 153 153 Chemokinergic Effects on Synaptic Transmission 154 152 131 132 155 156 157 64 140 158 159 i 128 140 149 z 160 140 158 159 161 164 26 78 91 93 133 134 165 166 26 133 156 92 Future Directions 67 116 79 105 106 116 53 115 46 37 62 167 At last, as all reports indicating that chemokine exposure alters the excitability of neurons used exogenous chemokines, it is yet unknown whether chemokines released from neurons have similar effects. Conclusion Knowledge on the spatial and temporal expression of neuronal chemokines and their regulation under physiological and pathological conditions is increasing rapidly. As CNS cells can express the corresponding chemokine receptors, contribution of these neuronal chemokines to CNS cell interaction is conceivable. This assumption is corroborated by various in vitro and in vivo studies. For example, the following effects of neuronal chemokines were observed in vitro: in astrocytes proliferation and migration, in microglia migration and neurotoxic and neuroprotective activity and in neurons electrophysiological changes, neurotoxicity, and neuroprotection. Further, the synaptic transmission between neurons seems to be influenced by the action of neuronal chemokines on neurons and/or glia cells. In vivo studies support the important role of chemokines in migration and neurotoxic and neuroprotective activity of microglia upon CNS injury and neuroinflammation. Further exploration of the roles of neuronal chemokines in CNS cell interaction is needful, as insight into the role of neuronal chemokines in CNS injury and neuroinflammation may contribute to the development of therapeutic strategies.