Introduction 1954 1975 1979 a varying Rana esculenta 1969 1970 1993 2004 2006 precedes 2001 + 2002 2004 varying constant 1954 1975 1979 1959 1998 decrease R i r i unchanged 1972 R i 2001 decrease Rana esculenta Materials and methods Rana esculenta n 2 n n 2001 2004 1956 V t V t V t V t V t Results 1954 1975 constantly varying Rana esculenta 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ I_{\rm m} =\frac{1}{sr_{\rm i}}\frac{\partial ^{2}V_{\rm m} }{\partial x^{2}}. $$\end{document} r i r o r o r i r o 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta =\frac{\partial x}{\partial t} \quad \Leftrightarrow \partial x=\theta .\partial t,$$\end{document} 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ I_{\rm m} =\frac{1}{sr_{\rm i} \theta ^{2}}\frac{\partial^{2}V_{\rm m} }{\partial t^{2}},$$\end{document} V m x I m V m s r i \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{sr_{\rm i} \theta ^{2}}=\frac{1}{k}$$\end{document} k 3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta =\sqrt{\frac{k}{sr_{\rm i}}}.$$\end{document} r i a R i R i r i a 2 vol a 2 L L A sL 4 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta =\sqrt{\frac{k.vol}{R_{\rm i} A}}. $$\end{document} osm vol 5 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ vol \propto \frac{1}{osm} $$\end{document} 1959 K sp C 6 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{\rm sp} =\Lambda \eta _{\rm C} . $$\end{document} K sp R i 7 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_{\rm i} \propto vol. $$\end{document} 7 8 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_{\rm i} \propto \frac{1}{osm}. $$\end{document} 5 8 9 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \theta =\sqrt{\frac{k^{{\prime}}/osm}{A/osm}} ={\sqrt{\frac{k^{{\prime}}}{A}}},$$\end{document} constant k A 1972 R i R i 10 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_{i}=D(osm)+E,$$\end{document} D E 11 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \theta =\sqrt{\frac{k^{{\prime}}/osm}{(D(osm)+E)A}}. $$\end{document} k A 12 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \theta =\sqrt{\frac{1}{D^{{\prime}}(osm)^{2}+E^{{\prime}}(osm)}},$$\end{document} D E decrease 12 R i Reversible effects of hyperosmotic extracellular solutions on action potential waveforms and latencies 1 V t A B V t a b c V t B 2001 Fig. 1 A V t B a b c 1 1973 1 1 −1 n −1 n −1 n V t Grading of conduction velocity changes with extracellular osmolarity 2 A V t B V t 1973 V t decrease n n n 2006 Fig. 2 A V t B a b c d e f B V t 3 V t n 3 V t 3 R i θ R i osm 4 5 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \theta \propto \sqrt{\frac{1}{R_{\rm i} \left( {osm} \right)}}. $$\end{document} Fig. 3 a V t a R i R i 1972 a V t b R i −1 R i 1972 G i R i Q 10 R i 1970 1972 1 R i osm 1 2 R i osm 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{\theta _1 }{\theta _2 }= \sqrt{\frac{R_{\rm i2}\left( {osm_2 } \right)}{R_{\rm i1}\left( {osm_1 } \right)}},$$\end{document} 1 −1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \theta _{\rm 2} =\hbox{214.78}\sqrt{\frac{1}{R_{\rm i2} \left( {osm_2 } \right)}},$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\quad R_{\rm i2} =\frac{1000}{5.91\times 1.37^{\left({temperature/10-2} \right)}\times \frac{250}{\left[ {250+\left( {\frac{osm_2 -250}{370}} \right)\times 86} \right]}}.$$\end{document} The values generated by the above equations predicted a decline in conduction velocity with increasing extracellular osmolarity. F x 2 2 1969 2 y i y x i x i \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \chi ^{2}= \sum {\left( {\left\{ {y_{\rm i} -y(x_{\rm i} )} \right\}^{2}} \right)} . $$\end{document} 2 1 2 2 2 R i F \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F_1 =\frac{\left| {\chi _1^2 -\chi _2^2 } \right|}{\chi _1^2 }\left({n-1} \right),$$\end{document} n n 2 F P R i 1972 R i Discussion 1954 1975 + I Na 1974 C m R m r i a R i R i r i a 2 a Rana esculenta 1969 1970 1993 2004 2006 1973 + 2001 2002 2004 1965 2004 1959 1998 K sp R i R i 1972 R i decreased V t C m + I Na V t V t four 1965 R i 1972 2 unmyelinated 1972 2001 Electronic supplementary material Below is the link to the electronic supplementary material. 49 kb doc