Introduction 17 26 30 33 34 62 55 12 9 40 41 11 13 In summary, the results of these studies show age-related as well as ARM-related functional loss of dynamic processing. However, whether the loss is confined to the macula has not been definitively answered. A further question is whether a loss outside the macula is specific to temporal resolution or whether other temporal aspects of retinal processing, such as motion sensitivity, can also be affected beyond the macula in patients suffering from ARM. Furthermore, we asked whether the impairment is confined to the magnocellular system or also involves the parvocellular pathway. Methods Motion contrast threshold Experimental setup 2 1 Fig. 1 a b c d e Monitor calibration 4 51 52 54 25 r 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L = 4.807 - 0.1887g + 0.0034g^{2} , $$\end{document} L 2 g \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left( {{{\left( {L_{1} - L_{2} } \right)}} \mathord{\left/ {\vphantom {{{\left( {L_{1} - L_{2} } \right)}} {{\left( {L_{1} + L_{2} } \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {L_{1} + L_{2} } \right)}}} \right)}$$\end{document} Design of the motion stimulus 15 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} & L{\left( {x,y,t} \right)} = e^{{ - \frac{{x^{2} + y^{2} }}{{\sigma ^{2}_{r} }}}} \cos {\left( {\omega x + \varphi _{x} {\left( t \right)}} \right)} \cdot \cos {\left( {\omega y + \varphi _{y} {\left( t \right)}} \right)} + L_{0} \\ & = e^{{ - \frac{{x^{2} }}{{\sigma ^{2}_{x} }}}} \cos {\left( {\omega _{x} x + \varphi _{x} {\left( t \right)}} \right)} \cdot e^{{ - \frac{{y^{2} }}{{\sigma ^{2}_{y} }}}} \cos {\left( {\omega _{y} y + \varphi _{y} {\left( t \right)}} \right)} + L_{0} \\ \end{aligned} $$\end{document} L L 0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sigma ^{2}_{r} = \sigma ^{2}_{x} + \sigma ^{2}_{y} $$\end{document} ϕ(t) t σ 2 Fig. 2 Gabor stimulus with double sinusoidal modulation in spatial quadrature. The entire patch was stationary, while the plaid pattern moved within the envelope in one of four possible directions. In addition, the stimulus was temporally modulated by a Gaussian envelope function, so that it slowly appeared out of the medium grey background and then merged back into it 63 27 36 37 16 Adaptive algorithm 28 29 32 58 32 ϕ V n \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ V = \frac{\phi } {{1 - \phi }} = \frac{{5 \mathord{\left/ {\vphantom {5 8}} \right. \kern-\nulldelimiterspace} 8}} {{3 \mathord{\left/ {\vphantom {3 8}} \right. \kern-\nulldelimiterspace} 8}} = \frac{5} {3} $$\end{document} ϕ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \phi = \frac{{1 + \gamma }} {2} $$\end{document} γ  n Z n 58 V 28 m m m m C n C n s n s n Double-pulse resolution 60 46 48 50 Test setup 60 Stimulus characteristics 60 3 γ γ 2 2 Fig. 3 46 60 a b c 20 59 Flicker frequency analyzer 2 The subject indicated the perceived changes by a keystroke whereupon the critical frequency was recorded. The separate arithmetic means of the critical frequencies determined in the ascending and descending series are referred to as fusion frequency and flicker frequency, respectively. Each test cycle consisted of five training cycles, immediately followed by eight measurement cycles. For further analysis, the mean of the fusion frequency and the flicker frequency was calculated for each subject, which is referred to as the critical flicker fusion frequency (CFF). Color perception 1 Subjects 1 Table 1 Age and visual acuity of the subject groups Age Visual acuity   N Mean SE Minimum Maximum Mean SE ARM group 19 73.79 2.3 60 90 0.29 (20/63) 0.048 Age-matched controls 18 71.5 1.5 60 78 0.65 (20/32) 0.057 Young controls 8 27.1 1.7 21 34 1.25 (20/16) 0.047 Visual acuity is described in decimal notation and Snellen fractions ω ω The complete examination (including the initial interview) took approximately 3 hours. p Results Motion contrast threshold 4 2 Fig. 4 broken lines continuous lines Table 2 U z U p Eccentricity Nasal field Temporal field U z p U z p 10° 16.00 −4.71 <0.001 53.00 −3.59 <0.001 20° 69.50 −3.09 0.002 72.50 −2.83 0.005 30° 148.50 −0.68 0.49 96.00 −2.28 0.023 40° 145.50 −0.25 0.80 102.00 −2.10 0.036 60° − − − 134.00 −1.12 0.261 Double-pulse resolution 5 6 3 Fig. 5 3 Fig. 6 Double-pulse resolution (DPR) of the ARM group, age-matched controls, and young controls along the horizontal meridian Table 3 U z U p Eccentricity Nasal field Temporal field U z p U z p 5° 46.50 −2.55 0.011 46.50 −2.56 0.011 10° 45.00 −3.83 < 0.001 79.50 −2.78 0.005 20° 76.00 −2.89 0.003 61.00 −3.34 0.001 Critical flicker fusion frequency (CFF) 7 Fig. 7 Critical flicker fusion frequency as a function of age for the three groups. The regression line refers to the healthy controls F p p Color perception 31 F p  p F p  Discussion Motion perception 5 40 42 57 13 40 41 19 45 46 61 2 22 6 8 10 11 55 44 23 Double-pulse resolution (DPR) and critical flicker fusion (CFF) The results of DPR revealed distinct and statistically significant differences between the ARM group and age-matched controls up to 20° eccentricity. Furthermore, the increased foveal thresholds of double-pulse resolution in subjects with ARM parallel the elevated foveal CFF thresholds, which also show a dependency on age and a significant increase in subjects with ARM. 18 46 48 61 13 The fact that reduced dynamic performance in our patients was found for two quite different methods of measurement emphasizes the presence of impaired temporal vision performance far beyond the macula and suggests a common underlying pathogenesis. Color vision 31 14 42 14 42 Consequences 21 39 43 47 3 38 44 24 39 53 10 21 35 56