Introduction 7 9 14 32 1 2 5 30 31 34 17 23 29 3 20 24 36 23 24 9 10 12 15 19 22 26 8 15 19 22 25 4 16 21 22 27 6 15 18 25 26 35 25 6 15 16 22 25 35 33 28 33 28 t t Materials and methods Animals and anesthesia A total of 14 healthy, New Zealand white rabbits of female sex weighing a mean of 2.81 kg (2.66–3.09 kg) were used in this investigation. The rabbits were solely housed on a 12 h/12 h (light/dark) cycle and provided with standard diet food and water ad libitum. All animals were housed in the Central Animal Laboratory, Utrecht University, Utrecht, The Netherlands and received care in compliance with the European Convention Guidelines. The animals were pre-anesthetized with a combination of methadone (10 mg/ml at a dose of 2.5–5.0 mg i.m.), ventraquil (10 mg/ml at a dose of 2.5–5.0 mg i.m.) and etomidaat (2 mg/ml at a dose of 2.0–8.0 mg i.v.). 2 2 Surgical technique 1 Fig. 1 Operation device consisting of a base plate with a slide for sideways movement on top of this. On this slide another back-forward slide with a drill was fixed. The forward movement was initiated by a weight of 1.5 kg. Another dynamic plate was fixed on the base of the plate to move up and down. During surgery, the rabbit was fixed on this dynamic plate During surgery the rabbit was fixed on the dynamic plate. This plate made it possible that the femur or tibia were on the same height as the K-wire. The sideways moving slide was responsible for the exact position of the K-wire in front of the femur or tibia. After the rabbits were preanesthetized, X-rays were made to exclude deformities. Thereafter the animal’s hind limb was carefully shaved and prepared with a povidone-iodine solution. After this procedure, the hind limb was fixed on the testing machine. With the animal surgically draped, a straight-line skin incision was made on the lateral aspect of the femur extending from just below the anterior–inferior spine to the distal femur, followed by a straight-line skin incision on the lateral aspect of the tibia extending from just below the joint line proximally to about the joint line distally. Dissection was carried out down to the periostium. Synthes Trocar tipped K-wires of 70 mm length and 0.6 mm thickness were drilled through the diaphysis. One K-wire was drilled into the femur and one into the tibia. Drilling was performed by a rotary engine fixed at 1,200 rpm. This is the maximum drilling speed used in our daily practice. Cooling was not performed. After insertion, the K-wires were cut short and the K-wire ends were bent to the cortex. After the wounds were closed in layers, X-rays were made to check the position of the K-wires and the condition of the bone. Insertion time could be measured very accurately by analyzing the operations recorded on video camera. All the experiments were performed by the same investigator. Histological technique After termination, the femur and tibia were removed from the hind limb and fixed in 4% formaldehyde solution. They were then decalcified, cut transversely next to the K-wire hole, after the K-wire was removed gently by a pair of tweezers, and embedded in paraffin according to standard procedures. Four micrometer thick serial sections were cut until the drill hole was visible, stained with hematoxylin and eosin and evaluated under a light microscope at 400× magnification for the presence or absence of osteocytes in the osteocyte lacunae surrounding the drill holes by a single investigator. The best section was used for evaluation. The distance over which the osteocytes had disappeared perpendicular to the drill holes was measured with an interactive morphometry device (Q-PRODIT, Leica, Cambridge, UK). In each section, four distances from the drill hole to the first osteocyte bearing lacuna were measured and averaged. Statistics P Results t t t t t t 2 t t t P t P Fig. 2 dot. encircled dotted line P 3 P 3 Fig. 3 a t b t Discussion The two most important findings of this experiment are that (1) osteocytes disappear especially beyond a drilling time of 27 s and (2) that there is a positive correlation between the distance of the empty osteocyte lacunae in relation with drilling time. 28 33 33 13 10 13 13 28 28 28 We are convinced that delayed tissue response corresponds with late K-wire loosening seen in daily practice. Although we did not compare drilling, with and without cooling, this study demonstrates the need for a short drill time, less than 27 s to prevent the disappearance of osteocytes and to limit the bone resorption cascade.