Introduction 1 2 3 −7 −8 −9 1 6 7 4 5 Several other MC-ICP-MS instruments were manufactured by other companies applying different approaches for efficient reduction of ionic spectral interferences formed by argon and atmospheric gases, e.g., thermalizing the ions produced by the plasma, introducing a detection system comprising a fixed array of Faraday cups and ion counters, and including an adjustable ion beam dispersion device. 5 + + + + \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Ar}}_2^ +$$\end{document} 52 + 54 + 56 + 75 + 80 + 6 R 7 When discussing isotope ratio measurements utilizing plasma ionization, several further phenomena should be mentioned. Isotopic fractionation is of utmost importance. It is caused by repulsive forces in the intensive positive ion beam emerging from the plasma and supersonic ion expansion through the sample cone. Both effects yield radial repulsion of the lighter isotope from the beam center, i.e., increasing the heavy mass over light mass ratio. The fractionation effect is inversely mass dependent from several per mils in uranium to more than 10% in lithium. It is constant in time, since fresh sample solution is continuously aspirated into the ion source. This is in contrast to TIMS ionization, where a fixed sample is used, permanently changing in composition as the lighter isotope is preferentially vaporized. Fractionation may be corrected in one of three techniques: (1) internal and (2) external normalization, including double spike method; and (3) “standard-sample-standard bracketing”; consecutive measurements of the same ratio in a sample and standard. Further details will be given when describing the ratio measurements in the elements discussed in this review. + δ Results and discussion Lithium 8 11 12 13 14 15 σ 7 6 16 21 22 23 24 21 2 3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{^{\text{6}} {\text{Li}}} \mathord{\left/ {\vphantom {{^{\text{6}} {\text{Li}}} {^{\text{7}} {\text{Li}}}}} \right. \kern-\nulldelimiterspace} {^{\text{7}} {\text{Li}}}} = 0.0832 \pm 0.0002$$\end{document} 25 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{^{\text{6}} {\text{Li}}} \mathord{\left/ {\vphantom {{^{\text{6}} {\text{Li}}} {^{\text{7}} {\text{Li}}}}} \right. \kern-\nulldelimiterspace} {^{\text{7}} {\text{Li}}}} = 0.08015 \pm 0.00006$$\end{document} 26 16 7 6 17 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^{\text{7}} {\text{Li}} = + 15.08 \pm 0.82$$\end{document} σ 21 16 27 28 1 Table 1 Li isotopic composition in standards and selected natural samples relative to NIST NBS L-SVEC (‰) Sample δ 7 σ Reference JR-2 rock standard 3.84 0.18 24 Magmatic arc lavas (Kurile) 18 8322/3 Onekotan 4.2 <1.0 K33 Keli-Mutu 5.1 <1.0 VB30 granite −1.4 1.0 19 MG20 granite 0.8 1.0 Inorganic calcite CM019 −7.6 0.6 20 Coral Acropora 21.0 0.4 Indian Ocean water 33.0 1.2 21 Atlantic Ocean water 32.1 1.2 Foraminifera Orbulina universa 28.4 1.6 Inorganically grown carbonates 23 Aragonite (salinity 10 psu) −10.9 0.8 Calcite (salinity 50 psu) −1.9 0.8 Seawater 29.7 0.4 28 BHVO-1 rock standard 5.0 1.5 Seawater 680 W 30.7 0.4 29 Mediterranean Sea 30.59 0.26 30 Red Sea 30.49 0.12 Dead Sea 28.78 0.11 Yarkon spring 15.14 0.21 SC -1 olivine 3.4 1.0 31 Ia/211 clinopyroxene −2.4 1.0 M 1 saprolite −11.6 1 32 10 saprolite 0.2 1 SH 65 Ocean Island basalt 7.0 <1 35 KRS9806 xenolith, Japan −7.7 0.83 36 9708 xenolith, Australia 6.0 0.83 Zagami meteorite 4.4 0.5 38 15495 lunar low-Ti mare basalt 5.6 0.2 14-1 amphibolite 0.9 1 39 12-2 amphibolite −14.2 1 29 σ 31 δ 7 32 33 34 7 6 35 36 37 38 39 δ 7 40 δ 7 6 δ 7 δ 7 41 42 43 44 45 Magnesium 46 26 26 46 26 24 σ σ 47 δ 25 δ 26 2 2 2 2 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{C}}_2^ + $$\end{document} 2 + \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{C}}_{\text{2}} {\text{H}}_{\text{2}}^{\text{ + }}$$\end{document} + + 48 2+ 48 2+ 50 2+ 50 2+ 50 2+ 52 2+ Table 2 Mg isotopic composition in standards and selected natural samples relative to DSM-3 (‰) Sample δ 26 σ δ 25 σ Reference Aldrich Mg solution 2.60 0.17 1.33 0.08 46 a Dead Sea Mg metal 3.96 0.15 2.03 0.08 AG 177 magnesia 2.03 0.04 1.03 0.01 OUM 10988 magnesite, Italy 1.22 0.04 0.60 0.03 AG 27 chlorophill b, spinach 1.06 0.07 0.54 0.03 North Atlantic Sea water 2.59 0.04 1.33 0.08 51 a Mixed foraminifera −1.88 0.16 −0.99 0.10 Dolomite 1.64 0.04 0.88 0.01 Seawater 52 a EPR1 surface 1.95 0.14 0.98 0.06 WP45N 5800 m 2.01 0.16 1.00 0.04 Med-T1 surface 2.02 0.07 1.05 0.09 Hydrothermal 2,650 m −1.01 0.16 −0.51 0.06 River water   MB16 0.76 0.46 0.38 0.22 MB6 0.09 0.22 0.04 0.11 PH6 0.22 0.06 0.11 0.06 PH5 −1.01 0.16 −0.51 0.14 Ganges −1.39 0.06 −0.7 0.09 53 Amazon −1.03 0.07 −0.53 0.04 Lena −1.28 0.08 −0.66 0.02 Seawater −0.84 0.13 0.43 0.15 54 MT 66 solute −1.74 0.07 −0.90 0.07 Ett113 bulk silicate rock −0.42 0.03 −0.21 0.02 M 201 biotite −0.07 0.09 −0.01 0.00 MO33 100–110 soil 0.02 0.01 0.01 0.01 Ace78 travertine −4.01 0.11 −2.06 0.07 Dead Sea water −0.60 0.08 −0.33 0.10 55 Seawater −0.74 0.05 −0.36 0.12 Sataf spring −2.50 0.10 −1.30 0.10 Carbonaceous chondrites 56 144A, Al-Ti diopside 0.11 0.06 −0.09 0.12 144A, Al-Ti diopside −2.74 0.11 −1.74 0.11 Olivines 57 DR9894 Australia −1.43 0.2 −0.66 0.13 ZS56-2 Siberia −1.05 0.2 −0.54 0.13 a 48 δ 25 δ 26 δ 49 50 51 52 53 54 δ 26 55 26 26 56 57 δ 26 δ 25 Calcium 58 40 40 + 48 42 42 43 44 87 2+ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{14} {\text{N}}_{\text{2}}^{{\text{16}}} {\text{O}}^ +$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{{\text{12}}} {\text{C}}^{{\text{16}}} {\text{O}}_{\text{2}}^{\text{ + }}$$\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{{\text{40}}} {\text{ArH}}_{\text{2}}^{\text{ + }} \,$$\end{document} δ 3 Table 3 Ca isotopic composition in standards and selected natural samples relative to NIST SRM 915a (‰) Sample δ 44 σ Reference 3 0.61 0.28 58 2-8-E3 speleothem 0.25 0.32 Acropora coral 0.58 0.16 Shell from marine organism 59 USGS EN-1 a 0.07 3 −0.63 0.07 3 −6.62 0.08 Inorganic calcite 61 CM040 0.09 0.2 CM039 −0.07 0.2 Growth solution 0.31 0.2 Foraminifera 62 OMEX-12b 0.21 0.10 WIND-10b 0.28 0.11 Mediterranean Sea water 0.98 0.14 Seawater 1.09 0.09 54 MT 66 solute 0.54 0.06 Ett113 bulk silicate rock 0.31 0.05 MO33 0-10 soil 0.51 0.05 MO33 100-110 soil 0.54 0.13 Ace78 travertine 0.14 0.05 Carbonate fluorapatite 63 OG-5 0.26 0.11 D4/01 0.42 0.08 S30/03 0.23 0.01 32a/01 0.52 0.12 32/01s 0.13 0.03 D49/01 −0.23 0.06 a 59 δ 44 43 δ 44 42 δ 48 42 60 44 40 40 + 44 40 61 62 54 63 δ 44 2+ 2+ δ 44 64 δ 44 65 66 δ 44 sw δ 44 sw 67 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta ^{44} {\text{Ca}} = + 0.37 \pm 0.10$$\end{document} Copper 68 69 70 4 Table 4 Cu isotopic composition in standards and selected natural samples relative to SRM NIST 976 (‰) Sample δ 65 σ Reference Native copper 71 a OUM15126 Michigan, USA 0.45 0.06 OUM00061 Yekaterinburg, Russia −0.33 0.06 OUM15127 Cornwall, England 0.41 0.06 Minerals   OUM23585 malachite, England −0.26 0.06 OUM1616 azurite, USA 1.59 0.06 OUM25139 chalcopyrite, England 0.07 0.06 Acc. Ser. 25300 chalcopyrite, Canada 0.40 0.06 G-4 chalcopyrite, sulfide deposits −0.44 0.06 Ultra-pure Cu standards 75 JMC Cu Axiom 0.619 0.058 JMC Cu IsoProbe 0.641 0.019 IMP Cu IsoProbe 0.20 0.10 IMP Cu IsoProbe 0.207 0.049 Copper sulfide precipitates 78 A-Cu- 0 Cu(I)S bulk 0.70 0.06 A-Cu- 0 Cu(I)S precipitated −2.52 0.06 A-Cu-48 Cu(I)S bulk 0.62 0.06 A-Cu-48 Cu(I)S precipitated −2.32 0.06 2 −0.26 0.06 2 −0.54 0.06 Chalcopyrite from the Grasberg deposit region 73 a F1-001 Grasberg skarn 0.107 0.031 XC05-001 Ertsberg diorite 0.633 0.035 ES-005 Ertsberg skarn 0.193 0.054 XC22001 pyrite shell 0.218 0.023 XC25-002 bornite-2.69 Dalum −0.269 0.031 Alexandrinka VHMS sulfides 76 SW-1(a) chalcopyrite 0.184 <0.07 SW-1(b) quartz 0.318 <0.07 HV-1(a) sphalerite 0.330 <0.07 CA-1 pyrite 0.054 <0.07 CB-1(b) covellite −0.300 <0.07 CB-2(a) silicate −0.058 <0.07 Supergene copper sulfides 81 Tt-1, El Teniente bornite 0.37 0.16 Tt-6, El Teniente chalcopyrite −0.15 0.16 El-1, El Salvador chalcopyrite 0.81 0.16 M-1, Mocha chalcopyrite −0.06 0.16 a ɛ δ 71 65 63 23 40 + \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left( {^{{{\text{23}}}} {\text{Na}}^{{{\text{16}}}}_{{\text{2}}} {\text{O}}^{{\text{1}}} {\text{H}}^{{\text{ + }}} } \right)} $$\end{document} 25 40 + −4 −3 + + −4 2 2 ɛ δ 68 66 65 63 σ 71 72 73 σ 74 63 5 75 63 70 76 77 78 4 2 σ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta ^{65} {\text{Cu}}\left( {{\text{Cu}}\left( {{\text{II}}} \right){\text{aq}} - {\text{CuS}}} \right) = 3.06 \pm 0.14 $$\end{document} 79 80 81 82 83 δ 65 84 85 Conclusions σ δ 7 δ 25 26 δ 44 δ 65