1 2 4 6 18 4 14 14 3 3 15 16 19 1 21 Fig. 1 Scheme of cell-assisted lipotransfer. Relatively adipose-derived stem/stromal cell (ASC)-poor aspirated fat is converted to ASC-rich fat by supplementing ASCs isolated from the other half of the aspirated fat. The ASCs are attached to the aspirated fat, which is used as a scaffold in this strategy 9 9 20 8 9 11 20 In this report, we describe the preliminary results experienced by patients who underwent CAL for cosmetic breast augmentation. This is the first report on the clinical use of ASCs for cosmetic purposes. Materials and Methods Patients From 2003 to 2007, we performed CAL for 70 patients: in the breast for 60 patients (including 8 patients who had breast reconstruction after mastectomy), in the face for 12 patients, and in the hip for 1 patient. For three patients, CAL was performed at two sites. Informed consent was obtained from all the patients. The study protocol conformed to the guidelines of the 1975 Declaration of Helsinki and was approved by individual institutional review boards. 1 Table 1 Patient data No. of cases 40 Sex 40 F, 0 M Age (years) 35.8 ± 9.1 BMI 19.7 ± 1.9 Surgical procedure   Group A 6   Group B 2   Group C 32 Site of liposuction   Thighs 25   Thighs and abdomen 13   Thighs and lower legs 2 Total volume of suctioned fat (ml) 1111.8 ± 164.0 Volume of injection (ml)   Left 268.1 ± 47.6   Right 277.3 ± 39.1 Operation time (min) 257.1 ± 39.1 Surgical Techniques 20 The adipose portion of the liposuction aspirates was either washed several times and placed in an upright position to obtain clear separation of fluids and oil (groups A and B) or centrifuged at 700 g for 3 min without washing (group C), then put into a metal jar (500 ml), which was placed in water with crushed ice. In groups A and C, the fresh SVF isolated from both the adipose and fluid portions was added to the graft material. After gentle mixing and a wait of 10 to 15 min for cell adherence to the aspirated fat, the cell-supplemented fat was put into an injection syringe. In Group B, the freshly isolated SVF was resuspended in 60 ml of saline, then diffusely injected into the whole breast mounds separately (30 ml for each breast) immediately after conventional lipoinjection. There were 6 patients in group A, 2 patients in group B, and 32 patients in group C. 2 Fig. 2 A B 2 3 Fig. 3 A clinical view of injection. The injection needle is rigidly manipulated by an operator while an assistant rotates the plunger according to the operator’s instruction. A high-pressure injection can be performed using a disposable syringe with a threaded plunger. A 150-mm-long, 18-gauge needle is connected to the syringe with a connecting tube threaded at both ends Results The transplantation of adipose tissue was successfully performed in all cases, and the time of the injection process ranged from 35 to 60 min for both breasts. Subcutaneous bleeding, occasionally seen in some parts of the breasts, resolved in 1 to 2 weeks. 4 9 Fig. 4 left right Fig. 5 A B C Fig. 6 top bottom Fig. 7 A B C B C D Fig. 8 top bottom Fig. 9 A B C Compared with breast augmentation using implants of the same size, augmentation with CAL showed a lower height but a more natural contour of the breasts. All cases but one (see later) showed natural softness of the breasts without any palpable nodules at 6 months, and all the patients were satisfied with the resulting texture, softness, contour, and absence of foreign materials despite the limited size increase possible with autologous tissue—Cyst formation (<12 mm) was detected by magnetic resonance imaging (MRI) in two patients, and microcalcification was detected by mammogram in two patients at 24 months. In one of two patients in group B, fibrous breast tissue and fibrosis on the sternum were observed by computed tomography (CT) scan at 6 months, and the breasts were found to be harder than in other cases. Discussion 3 1 3 7 In addition, centrifugation may be especially beneficial in our treatment because water content in the graft material may disturb the adherence of ASCs to the adipose tissue and interfere with differentiation into expected lineages. Any ASCs floating in a solution, which is a nonphysiologic environment, may migrate over distances, penetrate into the lymphatic flow, and differentiate unexpectedly. We believe that such migration and altered cell differentiation caused the development of fibrotic tissue on the sternum of one patient in group B. Thus, we conclude that centrifuged fat combined with ASCs as cell pellets (group C procedure) was best among the three methods used in this study. Although small cystic formation and microcalcification were detected in some cases, the microcalcification was easily distinguished from that associated with breast cancer, and the overall cosmetic results were generally satisfactory and encouraging. Almost all the patients were satisfied with their enlarged and soft breasts with a natural contour. Both CT scans and MRI showed that transplanted fat tissue survived and formed a significant thickness of the fatty layer not only subcutaneously on and around the mammary glands, but also between the mammary glands and the pectoralis muscles. Breast volume stabilized 2 to 3 months after transplantation. Maximum breast augmentation using the described technique varied among the patients and appeared to be 100 to 200 ml. Although these volumes may be smaller than those achieved with large artificial implants, a definite advantage is that patients need not be concerned about postoperative complications induced by artificial implants such as rupture, infection, capsular contracture, unnatural contour, hardness, neurologic symptoms, and immune response. Compared with our dozens of patients who underwent conventional autologous lipoinjection to the breasts, augmentation effects were apparently higher with CAL. A 2- to 3-cm increase in breast circumference was common with the conventional procedure, compared with the 4- to 8-cm increase seen in this trial of CAL, although the augmentation effect varied among patients. The measurement system we recently devised may help to quantify the difference in augmented volume in the future. 21 22 9 8 9 11 8 10 12 13 9 17 20 In this preliminary study, satisfactory clinical results were generally achieved without any major complications. Thus, we can conclude that CAL is sufficiently safe for continuation of the study, though controlled investigations and accumulated long-term results are needed to elucidate the overall safety and efficacy of the treatment. A variety of new innovations, including stem cell technology, may be developed and may contribute to the improvement of autologous tissue transplantation and regeneration. Further improvements of the technique may cause autologous tissue transfer to become the first choice for breast augmentation in the future.