We have accumulated spontaneous mutations in the absence of natural selection in Drosophila melanogaster by backcrossing 200 heterozygous replicates of a single high fitness second chromosome to a balancer stock for 44 generations. At generations 33 and 44 of accumulation, we extracted samples of chromosomes and assayed their homozygous performance for female fecundity early and late in adult life, male and female longevity, male mating ability early and late in adult life, productivity (a measure of fecundity times viability) and body weight. The variance among lines increased significantly for all traits except male mating ability and weight. The rate of increase in variance was similar to that found in previous studies of egg-to-adult viability, when calculated relative to trait means. The mutational correlations among traits were all strongly positive. Many correlations were significantly different from 0, while none was significantly different from 1. These data suggest that the mutation-accumulation hypothesis is not a sufficient explanation for the evolution of senescence in D. melanogaster. Mutation-selection balance does seem adequate to explain a substantial proportion of the additive genetic variance for fecundity and longevity.