This work examined the phosphorus (P) removal from the synthetic pretreated swine wastewater using lab-scale horizontal sub-surface flow constructed wetlands (HSSF-CWs). White hard clam (Meretrix lyrata) shells (WHC) and Paspalum atratum were utilized as substrate and plant, respectively. The focus was placed on treatment performance, removal mechanisms and lifespan of the HSSF-CWs. Results indicated that WHC-based HSSF-CW with P. atratum exhibited a high P removal (89.9%). The mean P efluent concentration and P removal rate were 1.34 ± 0.95 mg/L and 0.32 ± 0.03 g/m2/d, respectively. The mass balance study showed that media sorption was the dominant P removal pathway (77.5%), followed by microbial assimilation (14.5%), plant uptake (5.4%), and other processes (2.6%). It was estimated the WHC-based bed could work effectively for approximately 2.84 years. This WHC-based HSSF-CWs technology will therefore pave the way for recycling Ca-rich waste materials as media in HSSF-CWs to enhance P-rich wastewater purification.