Systemic insecticides when applied as seed treatments or soil drenches are often more toxicologically selective for natural enemies than target pests. This may not be the case, however, for omnivorous predators, which are at risk of extended exposure to systemically applied pesticides through ingestion while feeding on treated plants for nutrients or water. Such exposure may kill or have sublethal consequences for these natural enemies, compromising their role as biocontrol agents of agricultural pest species. The spined soldier bug, Podisus maculiventris (Say) (Hemiptera: Pentatomidae: Asopinae), is an important zoophytophagous biocontrol agent (i.e., able to substitute zoophagy by phytophagy for survival) that may be exposed to systemic insecticides in many agricultural systems. We, therefore, examined effects on P. maculiventris following exposure to cabbage plants subject to soil-drench treatments with imidacloprid, a systemic neonicotinoid insecticide. Predator survival, development, body weight, and reproduction were recorded. Imidacloprid significantly affected nymph survival and adult emergence, but not duration of the nymphal period or adult body weight. At one-twentieth the recommended field rate for whitefly and aphid management, imidacloprid treatments reduced longevity, fecundity, and fertility of female predators. These findings demonstrate that soil treatments with systemic insecticide can negatively impact zoophytophagous natural enemies.