Silver nanoparticle is widely used in the field of medicine because of its strong and effective antibacterial action. However, it has potential biological toxicity. In this study, the classical model organism, Drosophila melanogaster, was used to explore underlying mechanism for the toxic effects of silver nanoparticle. The pupation rate, eclosion time, eclosion rate and lifespan of Oregon R, w1118, and MTF mutants under different concentrations of silver nanoparticle were measured. The lacZ activity of rpr-lacZ strain was used to determine apoptosis of imaginal disc after treated with different concentrations of silver nanoparticle. The difference of intestinal protein expression in MTF mutants treated with different concentrations of silver nanoparticle was studied by SDS-PAGE. The amino acid sequence of differential proteins was further analyzed by mass spectrometry. The results showed that pupation rate and eclosion rate of MTF mutants significantly decreased when the concentration of silver nanoparticle increased to 200 μg·mL-1 and above. When the concentration of silver nanoparticle increased to 800 μg·mL-1, the rate of pupation and eclosion was significantly reduced, with the time of pupation and eclosion being not correlated to the concentration of silver nanoparticle. The concentrations of silver nanoparticle had no effect on the lifespan of Oregon R and w1118, while 200 μg·mL-1 silver nanoparticle significantly reduced the average lifespan of MTF mutant. Apoptosis increased with increasing concentration of silver nanoparticle. Results from SDS-PAGE and mass spectrometry analysis showed that the expression levels of proteins such as ATP kinase, heat shock protein and glucose metabolism related enzymes increased with increasing concentration of silver nanoparticle. Our results showed that high concentration of silver nanoparticle would reduce the survival rate of Drosophila, promote apoptosis and the expression of some proteins, which provided a theoretical basis for further understanding of the toxic mechanism of silver nanoparticle.