Skin extracellular matrix (ECM) is a dense and well-organized structure produced by fibroblasts. This ECM transduces environmental mechano-signals to cell nucleus through the integrin-actin complex, thus triggering ECM protein syntheses. The aim of this study was to discover a novel peptide, structurally related to dermal matrikines, that promotes syntheses of ECM components. Screening tests with 120 peptides were carried out by using normal dermal human fibroblasts (HF). As a result, one candidate of interest was isolated, the N-Prolyl Palmitoyl Tripeptide-56 Acetate (PP56), which increases collagen and fibronectin productions at gene and/or protein levels. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), a recent and innovative analytical technology, in addition to more traditional techniques, it was showed that two metabolic pathways were significantly modulated: one for collagen production and one for actin. Moreover, this peptide up-regulated the transcription of Forkhead Box O (FOXO) and sestrin messenger RNAs (mRNA), leading to production of proteins involved into longevity and more recently in collagen production. Results indicated that this peptide is a potential candidate to improve ECM density and organization in a new way.