Dietary restriction (DR) represents one of the most reproducible interventions to extend lifespan and improve health outcomes in a wide range of species, but substantial variability in DR response has been observed, both between and within species. The mechanisms underlying this variation in effect are still not well characterised. Splicing regulatory factors have been implicated in the pathways linked with DR-induced longevity in C. elegans and are associated with lifespan itself in mice and humans. We used qRT-PCR to measure the expression levels of a panel of 16 age- and lifespan-associated splicing regulatory factors in brain, heart and kidney derived from three recombinant inbred strains of mice with variable lifespan responses to short-term (2 months) or long-term (10 months) 40% DR to determine their relationship to DR-induced longevity. We identified 3 patterns of association; i) splicing factors associated with DR alone, ii) splicing factors associated with strain alone or iii) splicing factors associated with both DR and strain. Tissue specific variation was noted in response to short-term or long-term DR, with the majority of effects noted in brain following long-term DR in the positive responder strain TejJ89. Association in heart and kidney were less evident, and occurred following short-term DR. Splicing factors associated with both DR and strain may be mechanistically involved in strain-specific differences in response to DR. We provide here evidence concordant with a role for some splicing factors in the lifespan modulatory effects of DR across different mouse strains and in different tissues.