Five healthy aging phenotypes were developed in the Long Life Family Study to uncover longevity pathways and determine if healthy aging across multiple systems clustered in a subset of long-lived families. Using blood pressure, memory, pulmonary function, grip strength, and metabolic measures (body mass index, waist circumference and fasting levels of glucose, insulin, triglycerides, lipids, and inflammatory markers), offspring were ranked according to relative health using gender-, age-, and relevant confounder-adjusted z-scores. Based on our prior work, families met a healthy aging phenotype if ≥ 2 and ≥ 50% of their offspring were exceptionally healthy for that respective phenotype. Among 426 families, only two families met criteria for three healthy aging phenotypes and none met criteria for four or more healthy aging phenotypes. Using Spearman correlation, the proportion of offspring within families with exceptionally healthy pulmonary function was correlated with the proportion of offspring within families with exceptional strength (r = 0.19, p = 0.002). The proportion of offspring within families meeting the healthy blood pressure and metabolic phenotypes were also correlated (r = 0.14, p = 0.006), and more families were classified as meeting healthy blood pressure and metabolic phenotypes (Kappa = 0.10, p = 0.02), as well as the healthy pulmonary and blood pressure phenotypes than expected by chance (Kappa = 0.09, p = 0.03). Other phenotypes were weakly correlated (|r| ≤ 0.07) with low pairwise agreement (Kappa ≤ 0.06). Among these families selected for familial longevity, correspondence between healthy aging phenotypes was weak, supporting the heterogeneous nature of longevity and suggesting biological underpinnings of each individual phenotype should be examined separately to determine their shared and unique determinants.