The non-target effects of pesticides are an area of growing concern, particularly for ecologically and economically important organisms such as bees. Much of the previous research on the effects of neonicotinoids, a class of insecticide that has gained attention for non-target effects, on bees focused on the consumption of contaminated food resources by a limited number of eusocial species. However, neonicotinoids are known to accumulate and persist in soils at concentrations 2 to 60 times greater than in food resources, and may represent an important route of exposure for diverse and ecologically important ground-nesting bees. This study aimed to assess the effect of chronic contact exposure to realistic soil concentrations of imidacloprid, the most widely used neonicotinoid pesticide, on bee longevity, development speed, and body mass. Cohorts of Osmia lignaria and Megachile rotundata were used as proxies for ground-nesting species. We observed species- and sex-specific changes to adult longevity, development speed, and mass in response to increasing concentrations of imidacloprid. These results suggest that chronic exposure to nesting substrates contaminated with neonicotinoids may represent an important route of exposure that could have considerable physiological and ecological consequences for bees and plant-pollinator interactions.